Expression patterns of class I KNOX and YABBY genes in Ruscus aculeatus (Asparagaceae) with implications for phylloclade homology

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/5483

Expression patterns of Class I KNOX and YABBY genes in Ruscus aculeatus

(Asparagaceae) with implications for phylloclade homology

Yumiko Hirayama*, Toshihiro Yamada*, Yukiko Oya, Motomi Ito, Masahiro Kato, and Ryoko Imaichi

Received:

Accepted:

Total number of words: 3580 words

Expected printed pages: 8 pages

Y. Hirayama, Y. Oya, R. Imaichi

Department of Chemical and Biological Sciences, Japan Women's University, 2-8-1

Mejirodai, Tokyo 112-8681, Japan

Toshihiro Yamada (corresponding)

Division of Life Sciences, Graduate School of Natural Science and Technology,

Kanazawa University, Kanazawa 920-1192, Japan

e-mail: ptilo@mb.infoweb.ne.jp

phone: +81-76-264-6207

Motomi Ito

Department of Systems Science, Graduate School of Arts and Sciences, University of

Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan

Masahiro Kato

Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo,

Tsukuba, Ibaraki 305-0005, Japan

*These authors made equal contributions to this work.

Abstract *STM* (*RaSTM*) and *YAB2* (*RaYAB2*) homologues were isolated from *Ruscus aculeatus* (Asparagaceae, monocots) and their expressions were analyzed by real-time PCR to assess hypotheses on the evolutionary origin of the phylloclade in the Asparagaceae. In young shoot buds, *RaSTM* is expressed in the shoot apex, while *RaYAB2* is expressed in the scale leaf subtending the shoot bud. This expression pattern is shared by other angiosperms, suggesting that the expression patterns of *RaSTM* and *RaYAB2* are useful as molecular markers to identify the shoot and leaf, respectively. *RaSTM* and *RaYAB2* are expressed concomitantly in phylloclade primordia. These results suggest that the phylloclade is not homologous to either the shoot or leaf, but that it has a double organ identity.

Keywords Asparagaceae phylloclade Ruscus aculeatus STM YABBY

Introduction

The body plan of vascular plants is quite uniform in that they consist of three major vegetative organs: root, stem and leaf (e.g. Gifford and Forster, 1989). Contrary to this uniform body plan, some plants produce novel organs that are not strictly homologous or identical to one of the three major vegetative organs; such innovations contribute to morphological diversification of vascular plants. Phylloclades are a unique organ with a compressed, leaf-like appearance despite being located in the axillary position where a lateral shoot should arise generally (Bell, 1991). A typical phylloclade is seen in the coniferous genus *Phyllocladus* (Podocarpaceae) where it is interpreted as a laterally compressed shoot system (Tomlinson et al., 1987).

In the Asparagaceae family of basal monocots (Rudall et al., 2000; Chase, 2004), a compressed, elliptic organ with a pointed apex is formed in the axil of the scale leaf (Figs. 1a-c). It also has been designated as a phylloclade, but the organ identity and evolutionary process are not fully understood. Some studies have considered the Asparagaceae phylloclade to be a compressed stem (caulome) because of its axial position and ability to generate floral buds (e.g., Turpin, 1820 cited in Hirsch, 1977;

Zweigelt, 1913; Hirsch, 1977). Others have compared it to a leaf borne on an aborted shoot, because it grows determinately and has a venation pattern similar to that of the leaf (de Candolle, 1827 cited in Hirsch, 1977; Schlittler, 1960; Cusset and Tran, 1966). In addition to these simple interpretations, the Asparagaceae phylloclade was also considered to be a *de novo* organ with stem and leaf identities (Croizat-Chaley, 1973; Sattler, 1984; Cooney-Sovetts and Sattler, 1986). Furthermore, some authors have postulated that the phylloclade is a congenital-fusion product of an axillary branch and its prophylls (Van Tieghen, 1884 cited in Cooney-Sovetts and Sattler, 1986; Arber, 1924).

The expression patterns of transcription factor genes would be helpful in clarifying the identity of the Asparagaceae phylloclade. In some model plants with simple leaves, Class I *KNOTTED*-like homeobox (*KNOX*) genes are expressed in the shoot apical meristem (SAM), while they are down-regulated in lateral organ primordia (Vollbrecht et al., 1990; Barton and Poethig, 1993). This expression pattern is plesiomorphic for Class I *KNOX* genes (Bharathan et al., 2002; Harrison et al., 2005; Sano et al., 2005). On the other hand, some genes, such as *ASYMMETRIC LEAVES 1, ASYMMETRIC LEAVES 2*, Class III *HOMEODOMAIN-LEUCIN ZIPPER* genes, *KANADI* genes, and *YABBY* genes, are expressed in lateral organ primordia and promote their asymmetric growth (Eshed et al., 2001; Bowman et al., 2002; Emery et al., 2003; Engstrom et al., 2004). Among them, expression of *YABBY* genes is specific to lateral organs in diverse lineages of angiosperms (Bowman, 2000; Kim et al., 2001; Yamaguchi et al., 2003; Yamada et al., 2004; Jang et al., 2004; Juarez et al., 2004; Fourquin et al., 2005). Based on these previous studies, it is probable that the expression patterns of Class I *KNOX* genes and *YABBY* genes could be markers for assessing the SAM and lateral organ identities, respectively, in most angiosperm lineages.

In this study, we isolated *SHOOTMERISTEMLESS (STM)* and *YABBY2 (YAB2)* homologues from *Ruscus aculeatus* L. (Asparagaceae), which are members of Class I *KNOX* and *YABBY* genes, respectively. Their expressions were analyzed by real-time PCR to assess the proposed hypotheses on phylloclade evolution.

Materials and Methods

Plant materials and phenology of Ruscus aculeatus

Plants of *R. aculeatus* cultivated in the Tokyo campus of Japan Women's University were used in this study. Dormant buds enclosed by several scale leaves (bud scales) formed at the base of the current shoots became enlarged during February and March (stage 0, Figs. 1d, 2a; see also Hirsch, 1977). At stage 0, the shoot apex was round without its own scale leaves. The shoot apex formed four to six lateral shoot axes subtended by scale leaves from April to June (stage I, Fig. 2b). In stage II lasting about 5 months from July to November, phylloclade primordia emerged acropetally in the axils of scale leaf primordia on the main or lateral axes (Fig. 2c). In the subsequent 3 months (December to early February), floral buds subtended by bracts developed on the adaxial surface of the phylloclade primordia (stage III, Fig. 2d). The basal-most phylloclades on each axis were devoid of floral buds. The phylloclade primordia became flattened at stage IV (mid-February to mid-March) while the main and lateral shoot apices ceased indeterminate growth and also flattened (Fig. 2e). At this stage, the next main shoot system (stage 0) was initiated in the axil of the scale leaf remaining on the base of the current shoot. The shoot system grew above ground and the floral buds began differentiation in late March (stage V, Fig. 2f). Anthesis began in April (stage VI, Fig. 1e).

Cloning STM homologue and YABBY gene

Samples collected for cloning were frozen in liquid N₂. Total RNA was extracted from floral buds and first-strand cDNA for 3' RACE was synthesized following Shindo et al. (1999). The partial cDNA sequence of an *STM* homologue was amplified by STM-ELK1 and UAP. Nested PCR was performed by KN4-1 and UAP (Table1). The remaining 5' end sequence was determined by 5' RACE following Shindo et al. (1999). Similarity between the obtained *STM* homologue and other *KNOX* genes was estimated by BLAST (http://www.ncbi.nlm.nih.gov/BLAST). A *YABBY* gene was isolated following Yamada et al. (2003). The obtained sequences were registered in DDBJ/EMBL/GenBank as AB000000 (*RaSTM*) and AB168115 (*RaYAB2*).

Phylogenetic analyses of KNOX and YABBY genes

The deduced amino acid sequences of *KNOX* genes and *BELL1* were obtained from the NCBI DNA Database. (See S1 for the accession numbers.) They were aligned with

the predicted amino acid sequence of the obtained *STM* homologue of *R. aculeatus* using CLUSTAL X ver. 1.64b (Thompson et al., 1997) and the alignment was revised manually. Phylogenetic analysis was performed with CLUSTAL X ver. 1.64b based on amino acid sequences of MEIKNOX, ELK, and Homeodomains (Fig. 2, S2). Bootstrap supports with 1000 replicates were also calculated by CLUSTAL X ver. 1.64b for each cluster. The obtained tree was rooted by choosing *BELL1* as an outgroup. Alignment and phylogenetic analysis of *YABBY* genes (see S3 for their accession numbers) were conducted following Yamada et al. (2003).

Real-time PCR

Collected samples were soaked in RNAlater (Ambion Inc., Austin, TX, USA) after dissection under a binocular microscope. We extracted total RNA from: shoot apices and bud scales subtending the shoot apices at stage 0; the basal-most phylloclade primordia on each axis at stage IV; scale leaves on main and lateral axes at stage IV; floral buds at stage V; and mature basal-most vegetative phylloclades at stage VI. The sample stages and contained organ type(s) are summarized in Table 2. First-strand cDNAs were synthesized for each sample by the methods described above and were used as a template for real-time PCR. To eliminate possibly-contaminated genomic DNA, we treated total RNAs with DNase I before cDNA synthesis. TagMan® probes and primers (Table 1) were designed by Primer Express ver. 1.5 (Applied Biosystems, Foster City, CA, USA). Mixtures for PCR were prepared using Platinum® Quantitative PCR SuperMIX-UDG (Invitrogen Co. Ltd, Carlsbad, CA, USA). As an internal control, the expression level of 18S rRNA was quantified for each sample using Pre-Developed TaqMan® Assay Reagants (Applied Biosystems). Three independent reactions were prepared for each amplification set. Threshold cycle (Ct) values were measured by PTC-200 DNA Engine Cycler (Bio-Rad Laboratories, Inc., Waltham, MA, USA). The obtained Ct values were compared with Ct values of standard templates with the known number of initial templates for estimating the initial target and control cDNA molecules in each reaction. The number of target cDNA molecules was divided by that of 18S rRNA and standard deviations among the three reactions were calculated. Experiments were replicated five times to verify the results.

Results

Isolation of STM homologue

We isolated one *STM* homologue (*RaSTM*) from *R. aculeatus*. The determined partial mRNA was 1114 bp, including a complete coding sequence. The predicted amino acid sequence consists of 321 residues and includes the MEIKNOX, ELK, and Homeodomains (Fig. 3, S2). BLAST X search clearly suggested a close similarity to Class I *KNOX* genes such as *STM* and *NTH15* (data not shown).

Phylogenetic analysis robustly supported a sister relationship of *RaSTM* to dicot *STM* homologues (100% bootstrap support), showing that *RaSTM* is distantly related to *Kn1* and *RS1* homologues, which are Class I *KNOX* genes of Poaceae (Fig. 4).

Isolation of YAB2 homologue

The obtained putative *YABBY2* homologue (*RaYAB2*) was 793 bp long. We could not obtain a complete coding sequence, but recognized Zinc finger-like and YABBY domains in the deduced amino acid sequence (Fig. 5). *RaYAB2* shares a motif located

just downstream of the Zn finger-like domain with other *YAB2* homologues (Fig. 5), suggesting homology of *RaYAB2* and *YAB2*.

Phylogenetic analysis showed that *RaYAB2* is nested in a clade consisting of *YAB2* homologues and clade monophyly is suggested by 64% bootstrap support (Fig. 6).

Expression analyses of *RaSTM* and *RaYAB2* by real-time PCR

Expression of *RaSTM* was detected in the shoot apex, phylloclade primordial, and floral buds (Fig. 7). Among them, the strongest transcription was observed in the shoot apex, and the expression level in the phylloclade primordia was higher than that in the floral buds. No significant amplification of *RaSTM* was detected in the stage-VI phylloclade and scale leaves (Fig. 7).

The *RaYAB2* expression was highest in the scale leaves, while an expression intensity of less than half the highest expression was also detected in the shoot apex, phylloclade primordia, and floral buds (Fig. 7). Expression in the stage-VI phylloclade was very weak.

Experiments were replicated five times and resulted in identical patterns (data not

shown).

Discussion

STM homologue lost during monocots diversification

RaSTM is clearly identified as an *STM* homologue by the phylogenetic analysis. This is the first isolation of an *STM* homologue in the monocots despite extensive genomic research into the Poaceae, including rice and maize. In Poaceae, *Kn1*, a Class I *KNOX* gene, participates in maintenance of the shoot apical meristem instead of *STM* (Jackson et al., 1994; Bharathan et al., 1999; Reiser et al., 2000). Taking into account the phylogeny in which the Asparagaceae diverged earlier than the Poaceae (Chase, 2004), the occurrence of the *STM* homologue in *R. aculeatus* suggests that an *STM* homologue was lost during diversification of the monocots while its function was taken over by the *Kn1* homologue.

Phylloclade SAM and leaf identities

The validity of homology assessment based only on gene expression has been questioned because the same gene is co-opted for similar functions among non-homologous organs (e.g., Abouheif et al., 1997; Nielsen and Martinez, 2003; Theissen, 2005). Such functional co-option of a gene would cause expressional commonality (homocracy) among non-homologous organs (Nielsen and Martinez, 2003). Thus, a homocracy among organs does not necessarily ensure their homology, but it could be a tool to assess their organ identity (Rutishauser and Isler, 2001; Nielsen and Martinez, 2003).

In *Arabidopsis* and other eudicots, *STM* maintains proper growth of the SAM by expression in both vegetative and reproductive SAMs, while it is down-regulated in leaf primordia (Barton and Poethig, 1993; Long et al., 1996). Although we could not specify the exact function of *RaSTM*, we infer that monocot *RaSTM*, like other dicot *STM* homologues, is involved in maintenance of the SAM, because it is expressed strongly in the vegetative and reproductive shoot apices, but expression is not detected in the scale leaves as is usual in dicots. Notably, *RaSTM* is expressed in the phylloclade primordia, suggesting that young phylloclades are functionally comparable to the SAM.

Strong expression of *RaYAB2* in the scale leaves suggests that it may be involved in leaf formation. The expression detected in shoot apices might be attributed to the scale leaves (bud scales) covering them. *RaYAB2* is also transcribed in the phylloclade primordia, so the phylloclade is also partly comparable to a leaf.

The concomitant expression of *RaSTM* and *RaYAB2* in the phylloclade suggests that both SAM and leaf developmental pathways may be partly incorporated into the phylloclade developmental pathway. Similar incorporation of SAM and leaf developmental pathways confers continuous identity between SAM and leaf in a tomato compound leaf of (Sinha, 1999; Kim et al., 2003). The phylloclade twofold pattern could explain the apparently contradictory characteristics of leaf-like appearance and shoot-like axillary position.

Traditional plant morphological studies emphasize the positional criterion (homotopy) to assess organ homology and do not permit coexistence of multiple identities in a single organ (Rutishauser and Isler, 2001). Such an approach is called Classical Morphology (ClaM) (Rutishauser and Isler, 2001), and the ClaM approach has been applied to homology assessments of the phylloclade, interpreting it as either a compressed stem (Turpin, 1820 cited in Hirsch, 1977; Zweigelt, 1913; Hirsch, 1977) or a leaf borne on an aborted shoot (de Candolle, 1827 cited in Hirsch, 1977; Schlittler, 1960; Cusset and Tran, 1966).

There are many studies of organ heterotopy whereby organs with different identities are formed in an equivalent position (e.g., Rutishauser and Grubert, 1999; Rutishauser and Isler, 2001). Furthermore, developmental genetic studies clarify that amalgamation of different developmental pathways obscures the boundary between the three major vegetative organs (root, stem, leaf) (Hofer, 1998; Sinha, 1999). These findings have led to recent re-evaluation of the importance of the Fuzzy Arberian Morphology (FAM) approach named after Agnes Arber (Rutishauser and Isler, 2001), such as the Leaf -Shoot Continuum Hypothesis (Arber, 1950). The FAM approach emphasizes estimation of organ identities over homology, and accepts heterotopy and continuum identity between organs (Rutishauser and Isler, 2001). Arber (1924) explained the contradictory characteristics of the phylloclade as a fusion/coexistence of leaf and SAM and this interpretation is subsumed into later FAM approaches interpreting the phylloclade as having a double identity (Croizat-Chaley, 1973; Sattler, 1984; Cooney-Sovetts and Sattler, 1986).

The FAM interpretation of the phylloclade matches the results of our expression

analyses, although it is not shown here whether the *STM* and *YABBY* genes are expressed in the same or different parts (tissues) of the phylloclade. We still need to clarify how the developmental pathways of the SAM and leaf are incorporated into phylloclade development to assess phylloclade evolution. Expression analyses of other genes involved in SAM and leaf developmental pathways, as well as *in situ* hybridization experiments, which are ongoing, will shed light on this.

Acknowledgements

We thank Drs. Kunihiko Shono and Hiroyuki Sekimoto for their helpful advice. The Kn4-1 primer was a gift from Dr. Youichi Tanabe. This research is partly supported by grants-in-aid for scientific research from the Japan Society for the Promotion of Science to T.Y., M.K., M. I., and R.I.

References

Abouheif E, Akam M, Dickinson WJ, Holland PWH, Meyer A, Patel NH, Raff RA,

Roth VL, Wray GA (1997) Homology and developmental genes. Trends Genet 13: 432-433

- APG II (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141: 399-436
 Arber A (1924) *Danaë*, *Ruscus*, and *Semele*: a morphological study. Ann Bot 38:
- Arber A (1950) The natural philosophy of plant form. Cambridge University Press, Cambridge
- Barton MK, Poethig RS (1993) Formation of the shoot apical meristem in *Arabidopsis thaliana*: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119: 823-831
- Bell AD (1991) Plant Form. -An illustrated guide to flowering plant morphology-

Oxford University Press, Oxford

229-260

Bharathan G, Janssen BJ, Kellogg EA, Sinha N (1999) Phylogenetic relationships and evolution of the KNOTTED Class of plant homeodomain proteins. Mol Biol Evol 16: 553-563

Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR (2002) Homologies

in leaf form inferred from KNOXI gene expression during development. Science 296: 1858-1860.

- Bowman JL (2000) The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol 3: 17-22
- Bowman JL, Eshed Y, Baum SF (2002) Establishment of polarity in angiosperm lateral organs. Trends Genet 18; 134-141

Chase MW (2004) Monocot relationships: an overview. Am J Bot 91: 1645-1655

- Cooney-Sovetts C, Sattler R (1986) Phylloclade development in the Asparagaceae: an example of homoeosis. Bot J Linn Soc 94: 327-371
- Croizat-Chaley L (1973) En torno al concepto de Hoya -ensayo de botanica analitica y sintetica. Bibl Acad Cie Fis Mat Nat 12: 1-196
- Cusset G, Tran TTH (1966) Remarques sur l'éperon foliaire des *Asparagus*. Bull Soc Bot France 113: 121-151
- Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13: 1768-1774

Engstrom EM, Izhaki A, Bowman JL (2004) Promoter bashing, microRNAs, and Knox

genes. New insights, regulators, and targets-of-regulation in the establishment of lateral organ polarity in *Arabidopsis*. Plant Physiol 135: 685-694

- Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11: 1251-1260
- Fourquin C, Vinauger-Douard M, Fogliani B, Dumas C, Scutt CP (2005) Evidence that *CRABS CLAW* and *TOUSLED* have conserved their roles in carpel development since the ancestor of the extant angiosperms. Proc Natl Acad Sci USA 102: 4649-4654
- Gifford EM, Foster AS (1989) Morphology and evolution of vascular plants. 3rd ed.

W.H. Freeman and Co, New York

- Harrison JC, Corley SB, Moylan EC, Alexander DL, Scotland RW, Langdale JA (2005) Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434: 509-514
- Hirsch AM (1977) A developmental study of the phylloclades of *Ruscus aculeatus* L.. Bot J Linn Soc 74: 355-365
- Hofer JMI, Ellis THN (1998) The genetic control of patterning in pea leaves. Trends Plant Sci 3: 439-444

- Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405-413
- Jang S, Hur J, Kim SJ, Han MJ, Kim SR, An G (2004) Ectopic expression of *OsYAB1* causes extra stamens and carpels in rice. Plant Mol Biol 56: 133-143
- Juarez MT, Twigg RW, Timmermans MC (2004) Specification of adaxial cell fate during maize leaf development. Development 131: 4533-4544
- Kim M, Pham T, Hamidi A, McCormick S, Kuzoff RK, Sinha N (2003) Reduced leaf complexity in tomato wiry mutants suggests a role for *PHAN* and KNOX genes in generating compound leaves. Development 130: 4405-4415
- Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the *STM* gene of Arabidopsis. Nature 379: 66-69
- Nielsen C, Martinez P (2003) Patterns of gene expression: homology or homocracy? Dev Gen Evol 213: 149-154
- Reiser L, Sánchez-Baracaldo P, Hake S (2000) Knots in the family tree: evolutionary relationships and functions of *Knox* homeobox genes. Plant Mol Biol 42:

151-166

Rudall PJ, Conran JG, Chase MW (2000) Systematics of Ruscaceae/Convallariaceae: a combined morphological and molecular investigation. Bot J Linn Soc 134:73-92

Rutishauser R, Grubert M (1999) The architecture of Mourera fluviatilis

(Podostemaceae): Developmental morphology of inflorescences, flowers and seedlings. Am J Bot 86: 907-922

- Rutishauser R, Isler B (2001) Developmental genetics and morphological evolution of flowering plants, especially bladderworts (Utricularia): fuzzy Arberian complements classical morphology. Ann Bot 88: 1173-1201
- Sano R, Juarez CM, Hass B, Sakakibara K, Ito M, Banks JA, Hasebe M (2005) KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. Evol Dev 7: 69-78
- Schlittler J (1960) Die Asparageenphyllokladien erweisen sich auch ontogenetisch als Blätter. Bot Fahrb Syst 79: 428-446
- Shindo S, Ito M, Ueda K, Kato M, Hasebe M (1999) Characterization of MADS genes in gymnosperm *Gnetum parvifolium* and its implication for the evolution of reproductive organs in seed plants. Evol Dev 3: 180-190

- Sinha N (1999) Leaf development in angiosperms. Annu Rev Plant Physiol Plant Mol Biol 50: 419-446
- Theissen G (2005) Birth, life and death of developmental control genes: new challenges for the homology concept. Theor Biosci 124: 199-212
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuc Acids Res 24:4876-4882
- Tomlinson PB, Takaso T, Rattenbury JA (1987) Developmental shoot morphology in *Phyllocladus* (Podocarpaceae). Bot J Linn Soc 99: 223-248
- Zweigelt F (1913) Was sind die Phyllokladien der Asparageen? Österreichische Botanische Zeitschrift 63: 313-335
- Yamada T, Ito M, Kato M (2003) Expression pattern of *INNER NO OUTER* homologue in *Nymphaea* (water lily family, Nymphaeaceae). Dev Gen Evol 213: 510-513
- Yamada T, Ito M, Kato M (2004) YABBY2-homologue expression in lateral organs of Amborella trichopoda (Amborellaceae). Int J Plant Sci 165: 917-924
- Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka Y, Nagato Y, Hirano H (2003) The YABBY gene DROOPING LEAF regulates carpel specification and midrib

development in Oryza sativa. Plant Cell 16: 500-509

Figure legends

Fig. 1. Morphology of *Ruscus aculeatus*. a Mature shoot system. b Close-up of mature phylloclade formed at main shoot apex and lateral phylloclades. c Phylloclade
subtended by scale leaf. d Young bud at stage 0 covered by scale leaves (arrowhead). e
Flower on adaxial surface of phylloclade. *p* phylloclade, *l* scale leaf. Bars: 1 cm (a, b, e), 5 mm (c, d)

Fig. 2. Phenology of *Ruscus aculeatus*. The main shoot system of the previous year is omitted in stage 0 and I. Stage VI is not shown. The dashed line in stage II illustrates the disintegrated main shoot system of the previous year.

Fig. 3. Alignment of deduced amino acid sequences of selected *KNOX* genes. Amino acid positions used for phylogenetic analysis are shaded. MEIKNOX, ELK, and Homeodomains are indicated by clumps. Asterisks indicate identical amino acids. See S1 for the full alignment.

Fig. 4. Neighbor joining tree of *KNOX* genes. Bootstrap supports (>50%) are shown above branches. Bar: 0.05 amino acid substitutions per site

Fig. 5. Alignment of deduced amino acid sequences of *YABBY* genes. Amino acid positions used for phylogenetic analysis are shaded. Zinc finger-like and YABBY domains are marked by clumps. Asterisks indicate identical amino acids. Note a motif shared by *YAB2* homologues (boxed).

Fig. 6. Neighbor joining tree of *YABBY* genes. Bootstrap supports (>50%) are shown above branches. Bar: 0.01 amino acid substitutions per site

Fig. 7. Relative expression levels of *RaSTM* (open) and *RaYAB2* (shaded) in phylloclade primordia (PP), shoot apices and bud scales subtending them (S), floral buds (F), scale leaves (L) and mature phylloclades (PM). The expression level in shoot apices is set to 100%. Double-ended bars indicate standard deviations among three independent reactions.

Table 1. Primers used in this study. I, N, R, S, W, and Y follow the IUPAC code.

Table 2. Organs in each sample. + present, - absent

Footnote. *Abbreviations in parentheses correspond to those in Fig. 7.

S1. *KNOX* genes and *BELL1* used in phylogenetic analysis and their DDBJ/EMBL/GenBank accession numbers. Data published only in the database are indicated by asterisks.

S2. Alignment of deduced amino acid sequences of *KNOX* genes and *BELL1*. Amino acid positions used for phylogenetic analysis are shaded. MEIKNOX, ELK, and Homeodomains are indicated by clumps. Asterisks indicate identical amino acids.

S3. *YABBY* genes used in phylogenetic analysis and their DDBJ/EMBL/GenBank accession numbers

MEIKNOX

Г

ELK

Г

Г

RaSTM	ILKAKIMSHPHYPKLLSAYINCQK-	VGAPPEVVARLEEACS	SSSLMIGRAASSSSSS	AVGGDPALDQFMEA	AYCEMLTKYEQELSKPFKE	AMMFLSRIDAQFKSLNSSEEDVDVSENY
STM	SVKAKIMAHPHYHRLLAAYVNCQK-	VGAPPEVVARLEEAC	SSAAAAAAS	MGPTGCLGEDPGLDQFMEA	AYCEMLVKYEQELSKPFKE	AMVFLQRVECQFKSLGSSEEEVDMNNEF
BoSTM	LVKAKIMAHPHYHRLLLAYVNCQK-	VGAPPEVQARLEETC	SSAAAAAAS	MGPTGSLGEDPGLDQFMEA	AYCEMLVKYEQELSKPFKE	AMVFLQHVECQFKSLGSSEEEVDMNNEF
INA	SVKAKIMAHPYYHKLLAAYINCQK-	IGAPPEVAVKLEEAC	ASAATMG	RNSVSR I GEDPALDQFMEA	AYCEMLSKYEQELSKPFRE	AMLFLSRIECQFKALGSSEEEIDVDNSL
AY655753	SVKSKIMAHPHYPRLLAAYVNCQK-	IGAPPEVVAKLEEAC	ASTITIGG	RNERSCVGEDPALDQFMEA	AYCEMLTKYEQELSKPFKE	AMLFLSRIECQFKALGSSEEEFDVNNSF
AY655754	SVKSKIIAHPHYPRLLAAYVSCQK-	- I GAPPEVVAKLEEVC-	ASATSTGC	RNERSCVGEDPALDQFMEA	AYCGMLTKYEQELSKPFKD	AMLFFSRFECQFKALGSSEEEFDVNNSF
HIRZ	SLKAKIMAHPHYHRLLAAYVNCHK-	IGAPPEVVSRLEEAA	AAMARHG	TISVGEDPGLDQLMEA	AYSEMLSKYEQELSKPFKE	AMLFLSRIESQFKALGSSEEEIDVNNSF
Sbh1	AVKAKIMAHPHYHRLLAAYVNCQK-	VGAPPEVVARLEEAC	-ASAATMAGG	DAAAGSSC I GEDPALDQFMEA	AYCEMLTKYEQELSKPLKE	AMLFLORIECOFKNLGSSEEDVDLHN-M
LET6	SIKSKIMAHPHYHRLLTAYLNCQK-	-IGAPPEVVARLEEIC	ATSATMGRSSSSSGGG	I I GEDPALDQFMEA	AYCEMLTKYEQELSKPFKE	AMVFLSRIECQFKALGSSDEEVDVNNSF
TKn2	SIKSKIMLNPHYHRLLTAYLNCQK-	IGAPPEVVARLEEIC	ATSATMGRSSSSSGGG	I I GEDPALDQFMEA	AYCEMLTKYEQELSKPFKE	AMVFLSRIECQFKALGSSDEEVDVNNSF
NTH15	SIKSKIMAHPHYPRLLSAYVNCQK-	IGAPPEVVARLEEVC	-ATSATIGRN-SGG	I I GEDPALDQFMEA	AYCEMLTKYEQELSKPFKE	AMVFLSRIECQFKALGSSEEEVDVNNGF
AY112704	NIKAKIMAHPHYPRLLAAYINCQK-	- I GAPPEVVARLEEVC	-ATSAHMGRNGGGGGGGGG-	NNV I GEDPALDQFMEA	AYCEMLTKYEQELSKPFKE	AMVFLSRIECQFKALGSSEEEVDVNNSL
AY096802	SVKAKIMSHPHYPRLLSAYLNCQK-	IGAPPEVVERLEEAC	RASVVAAMSSCSGGAGTS	DGSGGGMNMI I GQDPALDQFMEA	AYCEMLIKYEQELSKPFKE	AMLFLSRIESQFKAIGSSEEEVDVNNNL
KNAT6	VIKAKIACHPSYPRLLQAYIDCQK	OVGAPPEIACLLEEIO	RESDVYKQEV	VPSSCFGADPELDEFMET	TYCDILVKYKSDLARPFDE	ATCFLNKIEMQLRNLDHEVAED
KNAT2	VIKSKIASHPLYPRLLQTYIDCQK-	-VGAPMEIACILEEIQ-	RENHVYKRDV	APLSCFGADPELDEFMET	TYCDILVKYKTDLARPFDE	ATTFINKIEMQLQNLDDIAADD
KNAT1	AMKAKIIAHPHYSTLLQAYLDCQK-	IGAPPDVVDRITAAR	QDFEARQQ	RSTPSVSASSRDPELDQFMEA	AYCOMLVKYREELTRPIQE	AMEFIRRIESQLSMLSGGETELPE
Kn1	AIKAKIISHPHYYSLLTAYLECNK	VGAPPEVSARLTEIA	QEVEARQ	RTALGGLAAATEPELDQFMEA	AYHEMLVKFREELTRPLOE	AMEFMRRVESQLNSLSGGETELPE
RS1	AIĶAĶĮVAHPOYSAĻĻAAYLDÇOĶ		AKLDASA	AGR-HEPRDPELDOFMEA	YCNMLVKYREELTRPIDE	AMEFLKRVEAQLDCINGRENDPPE
	^ ^ ^ ^ ^			~ ~~ ~~		

н	lom	000	lom	nain
		COU		ann

RaSTM	VDP0AEDRELKGQLLRKYSGYLSSLKQEFLKKRKKGKLPKEARQQLLDWWTRHYKWPYPSESQKMALAESTGLDQKQINNWFINQRKRHWKPSEEIOTYVVMGDGERI
STM	VDP0AEDRELKG0LLRKYSGYLGSLK0EFMKKRKKGKLPKEARQQLLDWWSRHYKWPYPSEQ0KLALAESTGLDQK01NNWF1NQRKRHWKPSEDM0-FVVM-DATHP
BoSTM	VDP0AEDRELKG0LLRKYSGYLGSLK0EFMKKRKKGKLPKEARQ0LLDWWSRHYKWPYPSEQ0KLALAESTGLDQK01NNWF1NQRKRHWKPSEDM0-FVVM-DATHP
INA	IDPOAEDRELKGQLLRKYSGYLGSLK0EFMKKRKKGKLPKEARQQLLDWWSRHYKWPYPSES0KLALAE0TGLDQK01NNWF1NQRKRHWKPSEDMQ-FVVM-DAAHP
AY655753	IDPOAEDRELKGQLLRRYSGYLGNLK0EFMKKRKKGKLPKEARQQLLDWWSRHYKWPYPSES0KLALAESTGLDQKQ1NNWF1NQRKRHWKPSEDMQ-FVVM-DATHP
AY655754	IDP0AEDHELKGQLLRKYSGYLGNLK0EFMKKRKKGKLPKEARQQLLDWWSRHYKWPYPSES0KLALAESTGLEQK01NNWF1NQRKRHWKPSEDMQ-FVVM-DAAHP
HIRZ	IDPOAEDIELKGQLLRKYSGYLGSLKQEFMKKRKKGKLPKEARQQLLEWWSRHYKWPYPSESQKLALAESTGLDQKQINNWFINQRKRHWKPSEDMQ-FVVM-DAANP
Sbh1	IDP0AEDRDLKGQLLRKYSGYLGSLK0EFMKKRKKGKLPKEARQQLLEWWNRHYKWPYPSES0KLALAESTGLDQK01NNWF1NQRKRHWKPSEDM0-FVVM-DPSHP
LET6	IDP0AEDRELKGQLLRKYSGYLGSLK0EFMKKRKKGKLPKEARQQLVDWWLRHIKWPYPSESQKLALAESTGLDQK01NNWFINQRKRHWKPSEDMQ-FVVM-DAAHP
TKn2	IDPOAEDRELKGQLLRKYSGYLGSLK0EFMKKRKKGKLPKEARQQLVDWWLRHIKWPYPSESQKLALAESTGLDQKQ1NNWFINQRKRHWKPSEDMQ-FVVM-DAAHP
NTH15	IDP0AED0ELK00LLRKYS0YL0SLK0EFMKKRKK6KLPKEAR00LLDWWTRHYKWPYPSES0KLALAEST0LD0K01NNWF1N0RKRHWKPSEDM0-FVVM-DAAHP
AY112704	VDP0AEDRELKGQLLRKYSGYLGSLKQEFMKKRKKGKLPKEARQQLLDWWTRHYKWPYPSESQKLALAESTGLD0KQ1NNWF1NQRKRHWKPSEDMQ-FVVM-DAAHP
AY096802	IDPOAEDRELKGQLLRKYSGYLGSLK0EFMKKRKKGKLPKEARQQLLDWWTRHYKWPYPSEAQKLALAESTGLDQK01NNWF1NQRKRHWKPSEDMQ-FVVM-DAAHP
KNAT6	GRORCEDRDLKDRLLRKFGSRISTLKLEFSKKKKKGKLPREARQALLDWWNLHYKWPYPTEGDKIALADATGLD0KQINNWFINORKRHWKPSENMP-FAMM-DDS
KNAT2	SQQRSNDRDLKDQLLRKFGSHISSLKLEFSKKKKKGKLPREARQALLDWWNVHNKWPYPTEGDKISLAEETGLD0KQINNWFINQRKRHWKPSENMP-FDMM-DDS
KNAT1	IDPRAEDRELKNHLLKKYSGYLSSLKOELSKKKKKGKLPKEAROKLLTWWELHYKWPYPSESEKVALAESTGLDQKQ1NNWFINQRKRHWKPSEDMQ-FMVM-DG
Kn1	VDAHGVDQELKHHLLKKYSGYLSSLKQELSKKKKGKLPKEARQQLLSWWDQHYKWPYPSETQKVALAESTGLDLKQINNWFINQRKRHWKPSEEMH-HLMM-DG
RS1	IDPRAEDKELKYQLLKKYSGYLSSLROEFSKKKKKKKKKKKELPKEAROKLLHWWELHYKWPYPSETEKIALAESTGLDOKQINNWFINORKRHWKPSEDMP-FVMM-EG

Class I KNOX

Zinc finger-like

Г

RaYAB2	PEHVCYVHCNFCNTIL	VVNVPGNNLF	NIVTIRCGHCA	NLLSVN	MGAL	LQALP	LQDFQNH	QVASQDNF	RG	D-CSSSS	NCNRTALM-FTQE-HD-	
YAB2	SERVCYVHCSFCTTIL	AVSVPYASLF	TLVTVRCGHC1	NLLSLN-	- I GV	SLHQTSAPP	IHQDLQPH	RQHTTSLV	rrk	D-CASSSRS		
0sFIL1	SEHVCYVNCNYCNTIL	VVNVPNNCSY	NIVTVRCGHC1	MVLSMD-	-LAPF	HQARTV	QDHQV	QNRGFQG		NN-FGSYDIAS	RNQRTSTAMYPMP-TS-	
0sFIL2	PEHVCYVHCNFCNTIF	AVSVPSNSML	NIVTVRCGHC1	SLLSVN	-LRGL	VQALPA	EDHL-QDN	LKMHNMSFRE		N-YSEYGSSS-	RYGRVPMMFSK-ND-	
AmbF1	SEHVCYVQCNLCNTIL	AVSVPGSCLF	GIVTVRCGHC1	NLLSMN-	-MGAL	LQT-IP	FHDLQNQS-	VAPQERQR-M		E-DGSSS	KSIKDSETIPSEN-EE-	
YAB5	TEQLCYIPCNFCNIIL	AVNVPCSSLF	DIVTVRCGHC1	NLWSVN		LQSLSRPN	FQATN-	YAVP-EY		GSSS	RSHTKIPSRIS-T-RT-	
PROL	LEQLCYISCNFCSIVL	AVSVPCSSLF	DVVTVRCGHC1	NLWSVN	-MAAAAT	FQSLQP	HWQDAVVHQAP-	NHAST-EYN	/	D-LGSSS	RWNNKMAVQPSIT-	
GRAM	SEQLCYVHCNFCDTVL	AVSVPCTSLI	KTVTVRCGHC1	NLLSVN-	-MRGLLLP	AANQ-LH	LGHSFFSP	QNLLEE-IRN		-SPSN-LLMNQP	-NPNDSMMPVRGLD-	
YAB3	TDQLCYVHCSFCDTVL	AVSVPPSSLF	KTVTVRCGHCS	SNLLSVTV	SMRALLLPSVS-	-NLGHSF-LPP	PPPPPPP	NLLEEMRS	-GGQNINM	N-MMMSHHA-	-SAHH-PNEHLVMAT-RNG	
FIL	SDHLCYVQCNFCQTIL	AVNVPYTSLF	KTVTVRCGCC1	NLLSVN	-MRSYVLP-AS-	-NQLQLQ-LGP	HSYFNP	QDILEELRD	APSNMNM	MMMNQHP	-TMND-IPSFMDLHQ-QH-	
TaYAB1	SEQLCYVHCHFCDTVL	VVSVPSSSLF	KTVTVRCGHCS	SSLLTVD-	-MRGLLFPTTT	TVAAESAA	SAVTTTTSPPPA-	AAAHHGQFH-	-YPSSLNLAPC	GNPPR-HSLL-DEISS	ANPSLQL-LEQ-HG-	
ZmYABBY9	AEQLCYVHCYFCDTVL	VVSVPTSSLF	KTVTVRCGHCS	SSLLTVD-	-MRGLLFPGTPT	DTVAGAAPPP	-AADTSTTTTTTTTAPPP	ANSVNN-GQFH-	-LPHSLN	-HPYH-QSLLVDEISS	-AANPSLQLQLEQ-HG-	
ZmYABBY10	SEQLCYVHCHFCDTVL	VVSVPTSSLF	KTVTVRCGHCS	SSLLTVN-	-MRGLLFPGTPA	NT-AAAAAAAPPPPP	PAAAVTSTTATMTTAPPPP-	PATSVNNNGQFH	FIPHSLDLALF	PIPPH-QSLLLDEISS	-AANPSLQL-LEQ-HG-	
AmbF2	SEQLCYVHCNFCDTVL	AVSVPCSSLF	KMVTVRCGHC1	NVLSVD-	-TRGLLHPT	AATQLH	LGHAFFSPT	PHNLLDE	CS-PPS	SLLLDH		
ZmYABBY15	TEQLCYVHCNCCDTIL	AVGVPCSSLF	KTVTVRCGHCA	NLLSVN-	-LRGLLLPPA	APAPPNHLN	FAHSLLSPTS-	PHGLLDE	LALQQA	PSFLMEQ	-ASANLSSTMTGRSS-NS-	
ZmYABBY14	QEQICYVHCSYCDTIL	AVGVPCSSLF	QTVTVRCGHC/	NLLYVN-	-LRALLLPPAT-	APAAANHLPP	FGQALLSPTS-	PHGLLDA	ETMSSSS-	-FQAPSLPSAEPP-	SAACVSGITSINN-TA-	
INO	PGQICHVQCGFCTTIL	LVSVPFTSLS	MVVTVRCGHC1	SLLSVN	LMKASFIP	LHLLAS	LSHLDETGK	EEVAATD		GVEEEAWK	VNQEKENSPTTLVSS-SDN	
NaINO	TEQLCYVQCSFCDTIL	LVSVPCSSLL	KVVPVRCGHCS	SNLFSVN-	MLKASFLP	LQLLAS	INN	E-AKQD		SFENAP	VKIGDTTFMES	
NcINO	TEQLCYVQCSFCDTIL	LVSVPCSSLL	KVVPVRCGHCS	SNLFSVN-	MLKASFLP	LQLLAS	INN	E-TKQE		NFQNAP	AKIGDTSFMES	
CRC	AEHLYYVRCSICNTIL	AVGIPLKRML	DTVTVKCGHCG	SNLSFLT-	-TTPP	LQG	H-VSLTLQ	MQ	8	SFGGS-D-Y	KKG-SSSSSSSST-SSD	
AmbCRC	TDHLCYVRCNFCDTLL	AVGVPCRRLM	DTVTVKCGHCS	SHLSFLS-	-ARPL	LQNQS	LELLS	TQ	N	NFCGDNK	KSQQSSSSSPLTP-NQ-	
DL	SEHLCYVRCTYCNTVL	AVGVPCKRLM	DTYTVKÇGHÇN	INLSFLS-	PRPP	-MVQPLSPT	DHPLGP	FQ	(GPCTD-C	RRNQ-PLP-LVSP-TSN	

YABBY

٦

RaYAB2	QQQRLPIRSPEKRORVPSAYNRFIKEEIQRIKANNPDISHREAFSAAAKNWAHF-PHIHFGLTLDGNKQSTLDEAIAAAHGGGQK
YAB2	QPTIFYERCONTRACTIONQPTIFYERCONTRACTIONQSVAGQK
0sFIL1	GGSNSRRRGLPAGHR
0sFIL2	TEHMLHVRPPEKRORVPSAYNRFIKEEIRIKANNPDISHREAFSTAAKNWAHF-PNIHFGLG-SHESSKKLDEAIGAPSPQK
AmbF1	OVTLDEVLVNEGSQSDP
YAB5	ITE-QRIVNRPPEKRQRVPSAYNQFIKEEIQRIKANNPDISHREAFSTAAKNWAHF-PHIHFGLMLESNKQAKIAQAKIA
PROL	
GRAM	ELPKPPVANRPPEKRORVPSAYNRFIKDEIORIKAGNPDISHREAFSAAAKNWAHF-PHIHFGLMPD-OPVKKPNVCROHGD
YAB3	RSVDHLQEMPRPPPANRPPEKRQRVPSAYNRFIKEEIQRIKAGNPDISHREAFSAAAKNWAHF-PHIHFGLMADHPPTKKANVRQQEGEDG-MMG
FIL	EIPKAPPVNRPPEKRORVPSAYNRFIKEEIORIKAGNPDISHREAFSAAAKNWAHF-PHIHFGLVPDNOPVKKTNMPQOEGEDN-MVM
TaYAB1	LGGLIAAAGGRNAAAPAPLPPPPVAGGKGG-KE-PSPRTN-PVVNRPPEKRORVPSAYNRFIKDEIORIKAGNPDISHREAFSAAAKNWAHF-PHIHFGLMPDHOGLRKTSLLPODHORKDGHGLL
ZmYABBY9	GLGGLILGGSRNTAAPPPPOPPAAGKGA-KE-PSPRVN-PAVNRPPEKRORVPSAYNRFIKDEIORIKAGNPNISHREAFSAAAKNWAHF-PHIHFGLMPDHOGLKTTSLLPODHORKDGLL
ZmYABBY10	LGGMITSGRNAAAPHPHPP0P0APAAGKGA-KE-PSPRAN-SAINRPPEKRORVPSAYNRFIKDEIORIKAGNPDISHREAFSAAAKNWAHF-PHIHFGLMPDH0GPKKTSLLP0DH0RSDGGGLL
AmbF2	PLMTPSNTGSASTRLQENEALHSPVSRPPEKRORVPSAYNRFIKEEIQRIKAGNPDITHREAFSTAAKNWAHF-PHIHFGLMAD-QSIKKTNMQDDVLI
ZmYABBY15	SCASNLPPPAPMPAAQPVQQEA-ELPKTAP-SVNRPPEKRQRVPSAYNRFIKDEIQRIKAGNPDITHREAFSAAAKNWAHF-PHIHFGLMPD-QGLKKTFKTHQDGAEDMLL
ZmYABBY14	CGGNNAASAMAPPPAKPALHEPPQLPRSAA-SANKTSEKRORVPSAYNRFIKDEIQRIKASNPDITHREAFSAAAKNWAHF-PHIHFGLMPD-QGLKKHPMQTQEGAECMLF
INO	EDEDVSRV-Y0VVNKPPEKRORAPSAYNCFIKEEIRLKAONPSMAHKEAFSLAAKNWAHF-PPAHNKRAASDOCFCEEDNNAILPCNVFEDHEES
NaINO	DKEG
NcINO	DKEG
CRC	
AmbCRC	
DL	

Г

Primer name	Reaction used	Oligonucleotide sequence
KN4-1	Isolation of STM homologue	5'-CAUCAUCAUCAUAARAARGGIAARYTNCC-3'
STM-ELK1	Isolation of STM homologue	5'-GGNWSYYTNAARCARGARTTYAT-3'
RaSTM-RTF	Real-time PCR	5'-GCGCATCACCAGCATTATTTC-3'
RaSTM-RTR	Real-time PCR	5'-CAGATAAGGGCTGGAGTGACATC-3'
RaSTM-TaqMan® Probe	Real-time PCR	5'-GGCGTAGGGATTGCCGAAGCCATTT-3'
RaYAB2-RTF	Isolation of YAB2 homologue	5'-TGGGCACATTTTCCACACAT-3'
RaYAB2-RTR	Isolation of YAB2homologue	5'-CGTCCAGCGTTGATTGCTTA-3'
RaYAB2-TaqMan® Probe	Real-time PCR	5'-CCCGTCAAGAGTGAGCCCGAAATG-3'
UAP	Isolation of STM homologue	5'-CUACUACUAGGCCACGCGTCGACTAGTAC-3'

Sample*	Stage	Shoot apex	Phylloclade	Scale leaf	Floral organs
Phylloclade primordium (PP)	IV	-	+	-	-
Shoot apex (S)	0	+	-	+	-
Floral bud (F)	V	-	-	-	+
Scale leaf (L)	IV	-	-	+	-
Mature phylloclade (PM)	VI	-	+	-	-

MEIKNOX

Г

٦

RaSTM	ILKAKIMSHPHYPKLLSAYINCQK-	-VGAPP-	-EVVARLEEAC	SSSLMIGRAASSSSSS	AVGGDPA	-LDQFMEAYCEMLTKYEQELSKPF	KEAMMFLSRIDAQFKSL	NSSEEDVDVSENYVDPQAE
STM	SVKAKIMAHPHYHRLLAAYVNCQK-	-VGAPP-	EVVARLEEAC	SSAAAAAAS	MGPTGCLGEDPG	-LDQFMEAYCEMLVKYEQELSKPF	KEAMVFLQRVECQFKSL	GSSEEEVDMNNEFVDPQAE
BoSTM	I VKAKIMAHPHYHRI I LAYVNCQK-	-VGAPP-	EVQARI FETC	SSAAAAAAS	MGPTGSLGEDPG	-I DOEMEAYCEMI VKYEOEL SKPE	KEAMVELOHVECOEKSL	GSSEEEVDMNNEEVDPOAE
INA	SVKAKIMAHPYYHKII AAYINCOK-	-IGAPP-	EVAVKI FEAC	ASAATMG	RNSVSRIGEDPA	-I DOEMEAYCEMI SKYEOEL SKPE	REAMLEL SRIECOEKAL	GSSEEEIDVDNSLIDPOAE
AV655752				ASTITIGG			KEAMLEL SPIECOEKAL	
AVGEETEA		LCADD		ASATSTCC	DNEDSOVGEDDA			
A1055754		LOAPP		ASATSTUC	RIVERSOVGEDPA			
HIRZ	SLKAKIMAHPHYHRLLAAYVNGHK-	-IGAPP-	EVVSRLEEAA	AAMAKHG	TISVGEDPG	-LDQLMEAYSEMLSKYEQELSKPF	KEAMLFLSRIESQFKAL	GSSEEETDVNNSFTDPQAE
Sbh1	AVKAKIMAHPHYHRLLAAYVNCQK-	-VGAPP-	EVVARLEEAG	ASAATMAGG	DAAAGSSCIGEDPA-	-LDQFMEAYCEMLTKYEQELSKPL	KEAMLFLQRIECQFKNL	GSSEEDVDLHN-MIDPQAE
LET6	SIKSKIMAHPHYHRLLTAYLNCQK-	-IGAPP-	EVVARLEEIC	ATSATMGRSSSSSGGG	I I GEDPA-	-LDQFMEAYCEMLTKYEQELSKPF	KEAMVFLSRIECQFKAL	GSSDEEVDVNNSFIDPQAE
TKn2	SIKSKIMLNPHYHRLLTAYLNCQK-	-IGAPP-	-EVVARLEEIC	ATSATMGRSSSSSGGG	I I GEDPA	-LDQFMEAYCEMLTKYEQELSKPF	KEAMVFLSRIECQFKAL	––GSSDEEVDVNNSFIDPQAE
NTH15	SIKSKIMAHPHYPRLLSAYVNCQK-	-IGAPP-	EVVARLEEVC	ATSATIGRNSGG	I I GEDPA	-LDQFMEAYCEMLTKYEQELSKPF	KEAMVFLSRIECQFKAL	GSSEEEVDVNNGFIDPQAE
AY112704	NIKAKIMAHPHYPRLLAAYINCQK-	-IGAPP-	EVVARLEEVC	ATSAHMGRNGGGGGGGGG-	NNVIGEDPA-	-LDQFMEAYCEMLTKYEQELSKPF		GSSEEEVDVNNSLVDPQAE
AY096802	SVKAKTMSHPHYPRLLSAYLNCQK-	-IGAPP-	FVVFRI FFAC	RASVVAAMSSCSGGAGTS	DGSGGGMNMT LGODPA-	-I DOEMEAYCEMLIKYEOELSKPE	KEAMLELSRIESQEKAT	GSSEEEVDVNNNI IDPOAE
PKn3	VVKAOTASHPI YPNI VSAYTOCRK-		EMAALLEELS	KVTOPITT			DEAKTEL SSIESOLSNI	EVEVAESOEHLNNNSEG
NTH1		VGADO	EMACTIEETS					
		VUAFG	LWASILLEIS			LDDF MESTGAVEERTREELSRFF	DEATTFEINNTESQESSE	
AF224499	LMKAQIASHPRYPSLLSAYIECRK-	-VGAHP-	HVTSLLEEVS	RERRPDA-G	AG-EIGVDPE	-LDEFMDAYCRVLVRYKEELTRPF	DEAASFLSSIQAQLSDL	DTDVPDMGQE-HSSHLG
LG3	LMKAQIASHPRYPSLLSAYIECRK-	-VGAHP-	HVTSLLEEVS	RERRPDA-G	AG-EIGVDPE	-LDEFMDAYCRVLVRYKEELTRPF	DEAASFLSSIQAQLSDL	DTDVPDMGQE-HSSHLG
OSH6	LMKAQIAGHPRYPTLLSAYIECRK-	-VGAPP-	EVASLLKEIG	RERRAGGGGGG	GAG-QIGVDPE	-LDEFMEAYCRVLVRYKEELSRPF	DEAASFLSSIQTQLSNL	ETDMLDIGQE-QSSRLA
0SH71	LMKAQIAGHPSYPSLLSAYIECRK-	-VGAPP-	EVTTLLEEIG	REGRGGGGGGAT	AGGE I GLDPE	-LDEFMETYCRVLERYKEELTRPF	DEAASFLTGIHTQLASL	DADAADFGQEHSSRLA
CRKN0X1	VIRSKIMSHPTYPRLVMAYVNCHK-	-IGAPP-	EVATSLEEIS	KKYQSFRSSS	PAPTGADPE	-LDNFMETYCNVLQKYHDELMQPY	KEAMTFFRKIELQLNAL	
CRKN0X2	LIRTKIVSHPSYPRLVMAYVNCYK-	-IGAPE-	DAALILEEVS	RKYQEIRSSS	SEVIGADPE-	-LDNFMELYCNVLQRYHEELTHPY		
KNAT6	VIKAKIACHPSYPRLLOAYIDCOKK	OVGAPP	FIACLEETO	RESDVYK0EV	VPSSCEGADPE	-I DEEMETYCD II VKYKSDI ARPE	DEATCELNK LEMOL RNL	DHEVAEDGRORCE
KNAT2								
TKn2		VCADA						
TKn3	I IKAKILSHPTTPKLLNAT IDGQK-	-VGAPA-	SIVNLLEEIR	QUND-FKKPN	ATOLOIGADPE			DASSSMKKSE
NTH22	I I KAKVVSHPFYPKFVKAY I DCQK-	-VGAPP-	EIAIVLEEIR	QQND-FRKPN	AISICIGADPE	-LDEFMETYCDILVKYKSDLSRPF	DEATTFLSKTELQLSNL	EVEGQDASQRSE
PKn1	LIKAKIASHPSYPKLLEAYIDCQK-	-VGAPP-	-EIASFLDEIR	RENDLFKHDS	RVSTCFGDDPE	-LDIFMETYCDILVKYKSDLSRPF	DEAKTFLNKIETQLSNL	EAEEQDSAVKGE
PKn2	MIKAKIASHPCYPKLLHAYIDCQK-	-VGAPP-	EIATVLDEIR	REDDELRKRGGGG	AVSSCLGADPE	-LDEFMETYYDMLVKYKSDLSKPF	HEATTFLNTIETQLSNL	ETDIQQESITKTE
AJ276389	EMKARIASHPRYPHLLEAYIDCQK-	-VGAPP-	DIASLLEEIR	RENAGGERLA	SSSVILGSDPE	-LDEFMEMYCDVLVKYRRDLERPF	DEATAFLNTMEVQLSDL	EGEAPESHLKGE
NTH9	DIRAKISSHPLYPKLLRTYIDCHK-	-VGAPS	EIVDMLDNINIV	HENDLSRRSN	RLSDDSE	-LDAFMETYCDVLAKFKSDLERPF	NEATTFLNDIETQLTNL	DTSGGGGNTNDMCRS
AF063248	AIKAKILAHPQYPSLLGAYIDCQK-	-IGAPP-	EVVARLDALT	HEYENQQHRT	TVSIGMDPE-	-LDQFMEAYCEMLTKYHEELTKPF		ASSEEVEDGSGGETDFQEV
190092	A LKAK IL AHPOYPSI L GAY LDCOK-	-IGAPP-	FVVARI DAL T	HEYENQOHRT	TVSIGMDPF	-I DOEMEAYCEMI TKYHEEL TKPE	KEAMSELKKTEAQLNSL	ASSEEVEDGSGGETDEQEV
PtKn2	A LKSKIL AHPOYPNIL GAY IDCOK-		EVASRI DAL S				KEAMSELKKTEAOLNSL	
AE 402070		LCADD		DEVONOODD	TVSICMDDE			
AF403270	AIKSKILAUPOVPOLLOAVIDOOK	LOAPP			TVOLONDE			
090091	AIKSKILAHPQYPSLLGAYIDCQK-	-IGAPP-	EAVARLUAL I	HEYUNUURR	TVSTGMDPE	-LDQFMEAYCEILIKYHEELAKPF	KEAMIFLMKIEAQFNSL	GSSEEVEDGSGGETDFQEV
PtKn1	ATKSKTLAHPQYPSLLGAYTDCQK-	-IGAPP-	-EAVARLDALI	REHQDPQRR	IVSIGMDPE	-LDQFMEAYCEILIKYHEELAKPF	KEAMLFLKKIEIQFNSL	GSSEEVEDGSGGETDFQEV
AY680405	TLKTKIACHPHYPQLLAAYMDCQK-	-IGAPP-	-EVVTVLDEIS	QENQLGRHLA	TMD I GVDPE-	-LDQFMEAYCQMLIKYHLELSKPF	KEARTFLNKMETQLNCL	GSSEEEFSCGEIEVHEV
TKn1	ALKAKIIAHPQCSNLLDAYMDCQK-	-VGAPP-	EVAARLSAVR	QEFEARQ	RRSLTDRDVSKDPE	-LDQFMEAYYDMLVKYREELTRPL	QEAMEFMQK I EAQLNML	SGGETELPEIDPRAE
NTH20	ALKAKIIAHPQCSNLLDAYMDCQK-	-VGAPP-	EVVARLSAVR	QEFEVRQ	RDSSTDRDVSKDPE	-LDQFMEAYYDMLVKYREELTRPL	HEAMDFMRKIETQLNML	SGGETEIPEIDPRAE
MDKN11	AIKAKIIAHPQYSNLVEAYMDCQR-	-VGAPS-	DVVPRLSVAR	QEFEARQ	RSSGTSRETSKDPE	-LDQFMEAYYDMLVKYREELTRPI	QEAMDFMRRIETQLNML	SGGETEVPEIDPRAE
MDKN12	ATKAKTTAHPQYSNLLEAYMDCQR-	-VGAPS-	DVVARI SVAR	QFFFARQ		- L DOEMEAYYDML VKYREEL TRPI	QEAMDEMRRIETQUNML	SGGETEVPEIDPRAF
AY660748	ATKAKTTAHPOYSNLLEAYMDCOK-	-VGAPP-	EVVARI AAAR	OEEESR0	RSELTSRONSKOPE	-I DOEMEAYCOMI VKYREEL TRPI	OFAMDEMERIETOLINMI	SGGETEL PEIDPRAE
AV604020	A LKAKI LAHDOVSNI MEAVMDOOK	VGADD						
AT004930	ALKAKI LEUDUVENI LOAVMDOOK	VCADD						
A1096803	ALKAKIISHPHTSNLLQATMUGQK-	-VGAPP-	EVVGRLTAVR	QETEAKQ	RANLGURENTRUPE		QEAMEFMERTESQLSTL	
KNA I 1	AMKAKIIAHPHYSILLQAYLDCQK-	-IGAPP-	DVVDRIIAAR	QDFEARQQ	RSTPSVSASSRDPE	-LDQFMEAYCDMLVKYREELTRPI	QEAMEFIRRIESQLSML	SGGETELPETDPRAE
HvKN0X3	AIKAKIISHPHYSSLLAAYLDCQK-	-VGAPP-	-EVSARLTAVA	QDLELRQ	RTALGGLGTATEPE	-LDQFMEAYHEMLVKYREELTRPL	QEAMEFLRRVETQLNSL	SGGETELPEIDAHGV
OSH1	AIKAKIISHPHYSSLLAAYLDCQK-	-VGAPP-	-EVAARLTAVA	QDLELRQ	RTALGVLGAATEPE	-LDQFMEAYHEMLVKYREELTRPL	QEAMEFLRRVETQLNTL	SGGETELPEIDAHGV
Kn1	AIKAKIISHPHYYSLLTAYLECNK-	-VGAPP-	EVSARLTEIA	QEVEARQ	RTALGGLAAATEPE	-LDQFMEAYHEMLVKFREELTRPL	QEAMEFMRRVESQLNSL	SGGETELPEVDAHGV
0SH15	SIKAKIMAHPQYSALLAAYLDCQK-	-VGAPP-	EVLERLTATA	AKLDARP	PGR-HDARDPE-	-LDQFMEAYCNMLAKYREELTRPI	DEAMEFLKRVESQLDTI	SGRENEPPEIDPRAE
RS1	ATKAKTVAHPQYSALLAAYLDCQK-	-VGAPP-	DVI FRI TAMA	AKI DASA	AGR-HEPRDPE	-I DOFMEAYCNMI VKYREEL TRPI	DEAMEEL KRVEAQLDCT	NGRENDPPEIDPRAF
AE544045	ATKTKIMAHPOYTALI VAYLDCOK-	-VGAPP-	DVI FRI TAMA	AKI DAHT	PGRI HEARDPE	-I DOEMEAYCNMLAKYREEL TRPI	EEAMEEL KRVEAOLDST	SGRENEPPEIDPRAE
05H43	AVKAETMSHDOVSALL AAVLGCKK	VGAPP						
001140		VCCDA		VDEADODAA				
0503	PVKARTVSHPRTHKLLAAFLDUHK-	-VGCPA-			AAASKMPPAPEUPE		WEAEEFLKIVESELE-L	EMMEAAEDEDLGTTDPKSD
SKKNUXT	MLRAAIVSHPHYPELVVAHMNCHK-	-VAASP-	-EVVSQIDEIIQN	FKDFQPP	VAASLGANPE	-LDQFMVAYYSMLLKCEKEVRKIF	KEAVAFCKKLDUUFUVI	SEDEDSGAEVETEVDPMAK
SkKN0X2	MK-AAISGHPQYLELIKAHMSIKK-	-VGASS-	-QKVAEINEVIRM	HQDSQPSS	VHINIGANPE	-LDQFMVAYCDVLNMYENQLNKAF	IGATEYCKQQEQELKLV	AESDDVAADGG-DIDPLIG
MKN4	LLRDAIVDHPLYPELVVAHISIFK-	-IGAPK-	-GLLIKLDEMEKK	FQRFQYGESSWN	VLHVTKFGQDPS-	-LDFFMRSYIDLLTKFREDLENPY	NKFAQYKDKVTKDLEDL	NLMYTADIDESIVIDPDAA
CRKN0X3	RLKADITMHPLYDQLLAAHVACLR-	-IATPV-	-DQLPRIDAQIAQA-	SQIVAKYAVLGQ	NNLLVGEEKDE	-LDQFMAHYVLLLCTFKEQLQQHVKV	HAMEAVMACWELEQSLLTL	DTHDSGAFGPLIPTETER
SkKN0X3	KLKADIVTHPLYEQLLEAHVSCLR-	-IATPV-	-DQLGKIDGQIAQC-	HQLIAKYYILAN	HQLLCGNSKDE	-LDQFMAHYVMLLRSFKDQLQHHVRV	HAKEAVMACWELEQSLLGL	WQDNLG-FGPLIPTETER
KNAT7	QLKGEIATHPMYEQLLAAHVACLR-	-VATPI-	-DQLPIIEAQLSQS-	HHLLRSYAST	AVGY-HHDRHE-	-LDNFLAQYVMVLCSFKEQLQQHVRV	HAVEAVMACRE I ENNLHSL-	
Z29703	QMKGEIATHPMYDQLLAAHVACLR-	-VATPI-	-DOLPIIEAOLSHS-	HHLLRSYAST	AVGFSHHDRQE	-LDNFLAQYVMVLCSFKEQLQQHVRV	HAVEAVMACRE I ENNLHSL-	
THox2	OLKSETATHPLYEOLLSAHVACLR	-VRTPI-	DOL PL LDAOL TOS-			I DNEL AQYLL VI CSEKEQL QOHVRV	HAVEAVMACRETEONLOLL	AHDI MGMGEGI PTESER
H0S66					RDEI SDHDKOE		HAVEAVMACRELEOSLODI	
KNATA		IATDY					HAMEAVMACKETEGOLOOF	
	DUKAETLOUDI VEOLLOAUVAGLE	LATON	DOLDDID TO AGE				IAMEAVMAGWETEQSLQSF	
NNA13	KHKAETLSHPLTEQLLSAHVACLR-	-IAIPV-	DULPRIDAULAUS-		AAUGLVGDDKE		HAMEAVMACWETEQSLQSL	GLDVLGFGPLIPTESER
271980	RHKAEILAHPLYEPLLSAHVACLR-	-IATPV-	-DQLPRIDAQLAQS-	QNVVAKYSALG	NGMVGDDKE	-LDQFMRNYVLLLCSFKEQLQQHVRV	HAMEAVMACWEIEQSLQSL	E-GHDSMGFGPLIPTESER
LET12	KCKADILNHPLYDQLLSAHVSCLR-	-IATPV-	-DOLPRIDAOLAOS-	QNVVAKYSVLG	QGQPPLDDKD	-LDQFMTHYVLLLSSFKEQLQQHVRV	HAMEAVMACWELEQSLQSL	D-GPDSMGFGPLVPTESER
HOS59	KAAIAAHPLYERLLEAHVACLR-	-VATPV-	DQLPRIDAQIAARP	PPLAAATAAAAAAA	AGGAPSGGEE	-LDLFMTHYVLLLCSFKEQLQQHVRV	HAMEAVMACWELEQTLQSL	D-GSDGMGFGPLMLTEGER
KNAT5	SYKAAILRHPMYEQLLAAHVACLR-	-VATPV-	DQIPRIDAQLSQL-	HTVAAKYSTLG	VVVDNKE	-LDHFMSHYVVLLCSFKEQLQHHVCV	HAMEAITACWEIEQSLQSL	DGSDCLMGFGPLVPTERER
MKN1-3	RDKFLIVAHPLYPDLLNAHASCI R	-VGTPV-	DOLPHIEAOLTOA-	RHVTSKYSVLHP	DHLEITEDEKTE	LDQFMAQYIMLLCSFKDHLQQHVYY	DVTEAMMSCWELEQALHNI	
AaKN0X1	DMGEQVIMHPLYPDI VKAIMDCRK	VGGMD	ESRHHIQIRTFOVI	EDLHRKREQYQITG	RMPAL DPE	LDOFLROY I QVLDEL HAFLININ	READNILHMETTQIAEV	AQSNIDMT
RELL1		RYIKDT		-GNKKMKNDKGODEHN		SOEL SPSEROEL OSKKSKLLTMUDE	VDKRYNOYHHOMEAL ASSE	KEOTOVIRGKI GERETODE
OFFE !			SELDETTOTINDEN		GOODATTEDDIG	COLLEGIOLING CLOUNDLE INVDL	Contracting in the main CACAGO	Incorrect multiculine 100L

	ELK	Homeodomain		
RaSTM	DRELKGQLLRKYSGYLSSLKQEF	LKKRKKGKLPKEARQQLLDWWTRHYKWPYPSESQKMALAESTGLDQKQINNWF	INQRKRHWKPSE	EIQTYVVMGDGERI
STM	DRELKGQLLRKYSGYLGSLKQEF	MKKRKKGKLPKEARQQLLDWWSRHYKWPYPSEQQKLALAESTGLDQKQINNWF	INQRKRHWKPSE	DMQ-FVVM-DATHP
BoSTM		MKKRKKGKLPKEARQQLLDWWSRHYKWPYPSEQQKLALAESTGLDQKQINNWF	INQRKRHWKPSE	DMQ-FVVM-DATHP
AY655753	DRELKGQLLRRYSGYLGNLKQEF	MKKRKKGKLPKEARQQLLDWWSRHYKWPYPSESQKLALAESTGLDQKQINNWF	INQRKRHWKPSE	DMQ-FVVM-DATHP
AY655754	DHELKGQLLRKYSGYLGNLKQEF	MKKRKKGKLPKEARQQLLDWWSRHYKWPYPSESQKLALAESTGLEQKQINNWF	INQRKRHWKPSE	DMQ-FVVM-DAAHP
HIRZ	DIELKGQLLRKYSGYLGSLKQEF	MKKRKKGKLPKEARQQLLEWWSRHYKWPYPSESQKLALAESTGLDQKQINNWF	INORKRHWKPSE	DMQ-FVVM-DAANP
LET6		MKKRKKGKLPKEARQQLVDWWLRHTKWPTPSESQKLALAESTGLDQKQTNNWF MKKRKKGKLPKEARQQLVDWWLRHTKWPYPSESQKLALAESTGLDQKQTNNWF	INURKRHWKPSE	DMQ-FVVM-DPSHP DMQ-FVVM-DAAHP
TKn2	DRELKGQLLRKYSGYLGSLKQEF	MKKRKKGKLPKEARQQLVDWWLRHIKWPYPSESQKLALAESTGLDQKQINNWF	INQRKRHWKPSE	DMQ-FVVM-DAAHP
NTH15	DQELKGQLLRKYSGYLGSLKQEF	MKKRKKGKLPKEARQQLLDWWTRHYKWPYPSESQKLALAESTGLDQKQINNWF	INQRKRHWKPSE	DMQ-FVVM-DAAHP
AY112704 AY096802	DRELKGULLKKYSGYLGSLKUEF	MKKKKKGKLPKEARQULLDWWIRHYKWPYPSESQKLALAESIGLDQKQINNWF MKKRKKGKIPKEARQQIIDWWTRHYKWPYPSEAQKIAIAESTGIDQKQINNWF	INGRKRHWKPSE INGRKRHWKPSF	DMQ-FVVM-DAAHP DMQ-FVVM-DAAHP
PKn3	DQQIKEMLMRKYSGYLSSLRKEF	LKKRKKGKLPKDARVALLDWWNSHYRWPYTTEEEKNKLSEATGLDQKQINNWF	INQRKRHWRPSE	DMR-FALM-EGVS-
NTH1	DNELKETLMRKYSGYLSSLRKEF	LKKRKKGKLPKDARTALLEWWNTHYRWPYPTEEEKNRLSEITGLDPKQINNWF	INQRKRHWRPSE	DMK-YALM-EGVSS
AF224499		LKKRKKGKLPKDARTVLLEWWNTHYRWPYPTEEDKVRLAAMTGLDPKQINNWF	INQRKRHWKPSE	DMR-FALM-EGVAG
OSH6	DHELKEMLLKKYSGCLSRLRSEF	LKKRKKGKLPKDARSALLEWWNTHYRWPYPTEEDKLRLAARTGLDPKQINNWF	INQRKRHWKPSD	GMR-FAFM-EGVAG
0SH71	DHELKEMLLKKYSGCLSRLRSEF	LKKRKKGKLPKDARSALMDWWNTHYRWPYPTEEDKVRLAAMTGLDPKQINNWF	I NQRKRHWKPSE	DMR-FALM-EGVTG
CRKNOX1		LKKKKKGKLPKNAREKLLDWWNQHYKWPYPSEAEKAALAETTGLDQKQINNWF	INORKRHWKPSE	DMQ-YVMV-DSPTA
KNAT6	DRDLKDRLLRKFGSRISTLKLEF	SKKKKKGKLPREARQALLDWWNLHYKWPYPTEGDKIALADATGLDQKQINNWF	INGRKRHWKPSE	NMP-FAMM-DDS
KNAT2	DRDLKDQLLRKFGSHISSLKLEF	SKKKKKGKLPREARQALLDWWNVHNKWPYPTEGDKISLAEETGLDQKQINNWF	INQRKRHWKPSE	NMP-FDMM-DDS
TKn3	DNELKDRLLRKFGSHLSSLKLEF	SKKKKKGKLPKEAREMLLAWWYDHFRWPYSTEADKNSLAESTGLDPKQINNWF	INQRKRHWKPSE	NMQ-LAVM-DNL
NTH22 PKn1	DRELKDRLLKKFGSHLSTLKLEF	SKKKKKGKLPKEARQMLLAWWNDHYKWPYPTEADKNSLAESTGLDPKQTNNWF SKKKKKGKTPKDARQTTTFWWKGHYRWPYPTEDDKTSLAETTGLDQKQTNNWF	INURKRHWKPSE INORKRHWKPSF	NMQ-LAVM-DNL HMQ-LAVM-DNL
PKn2	ERQLKNTLLRKYGSHLSSLKLEF	SKKKKKGKLPKEARQTLLDWWSDHYKWPYPTEADKIALAESTGLDQKQINNWF	INQRKRHWKPSE	SMQ-LAVM-ENL
AJ276389	ERDLKEKLLRKYSGYLSSLKQEF	SKKKKKGKLPKEARQILFEWWTAHYKWPYPTEADKIALAEATGLDQKQINNWF	INQRKRHWKPAE	NMH-FSVM-DNSS-
NTH9 AF063248	ENETKDKLMRKYSGYTSSLKQEF	SKKNKKGKLPREARQILLNWWIIHYKWPYPIEGEKICLAESIGLDPKQINNWF MKKKKGKIPKDAROKIIDWWTVHYKWPYPSETEKIAIAECTGIDOKOINNWE	INQRKRHWKPSE INORKRHWKPSF	NMQ-YAVM-ESI
U90092	DHHAVEDRELKDHLLRKYSGYLSSLKQEF	MKKKKKGKLPKDARQKLLDWWTVHYKWPYPSETEKIALAECTGLDQKQINNWF	INQRKRHWKPSE	DMQ-LMAM-DGQSP
PtKn2	DHHAVEDRELKDHLLRKYSGYLSSLKQEF	MKKKKKGKLPKDARQKLLDWWTVHYKWPYPSETEKIALAECTGLDQKQINNWF	I NQRKRHWKPSE	DMQ-LMAM-DGQSP
AF483278	DHHAVEDRELKDHLLRRYSGYLSSLKQEF	MKKKKKGKLPKDARQKLLDWWSLHDKWSYPSETEKIALAECTGLDQKQINNWF	INORKRHWKPSE	DMH-FMVM-NSHSP
PtKn1	DHHAVEDRELKDHLLRKYSGTLSSLKQEF	MKKKKKGKLPKDARGKLLDWWSLHDKWPTPSETEKTALAEGTGLDGKGTNNWF	INGRKRHWKPSE	DMH-FMVM-NSHSP DMH-FMVM-NSHSP
AY680405	DPRA-EDRELKDQLLRKYSGYFSSLKQEF	LKKKKKGKLPKEARQKLLEWWNVHYKWPYPSETDKVSLAESTGLDQKQINNWF	INQRKRHWKPSE	DMQ-FVVM-DSLNP
TKn1	DRELKNHLLRKYSGYLSSLKQEL	SKKKKKGKLPKDARQKLITWWELHYKWPYPSESEKVALAESTGLDQKQINNWF	INQRKRHWKPSE	DMQ-FMVM-DG
MDKN11	DRELKNHLLRKYSGYLSSLKQEL	SKKKKKGKI PKEAROKLI SWWELHTKWPTPSESEKVALAETTGLDGKQTNNWF SKKKKKGKI PKEAROKLI SWWELHYKWPYPSESEKVALAESTGLDGKQTNNWF	INGRKRHWKPSE	DMQ-FMVM-DG
MDKN12	DRELKNHLLRKYSGYLSSLKQEL	SKKKKKGKLPKDARQKLLSWWELHYKWPYPSESEKVALAESTGLDQKQINNWF	INQRKRHWKPSE	DMQ-FMVM-DG
AY660748	DRELKNHLLRKYSGYLGSLKQEL	SKKKKKGKLPKEARQKLLSWWELHYKWPYPSETEKVALAETTGLDQKQINNWF	INQRKRHWKPSE	DMQ-FMVM-DG
AY096803	DRELKNHLLKKYSGYLGSLKUEL	SKKKKKGKLPKEARGKLLSWWELHYKWPYPSETEKVALAETTGLDGKQTNNWF SKKKKKGKTPKEARGKLLSWWELHYKWPYPSESEKVALAESTGLDGKOTNNWF	INURKRHWKPSE INORKRHWKPSF	DMQ-FMVM-DG
KNAT1	DRELKNHLLKKYSGYLSSLKQEL	SKKKKKGKLPKEARQKLLTWWELHYKWPYPSESEKVALAESTGLDQKQINNWF	INQRKRHWKPSE	DMQ-FMVM-DG
HvKN0X3	DQELKHHLLKKYSGYLSSLKQEL	SKKKKKGKLPKEARQQLLSWWEMHYKWPYPSESQKVALAESTGLDLKQINNWF	INQRKRHWKPTD	EMQ-FVMM-DA
USH1 Kn1	DQELKHHLLKKYSGYLSSLKQEL	SKKKKKGKLPKDARQQLLNWWELHYKWPYPSESQKVALAESTGLDLKQ1NNWF SKKKKKGKLPKEAROOLLSWWDOHYKWPYPSETOKVALAESTGLDLKO1NNWF	INQRKRHWKPSD INORKRHWKPSF	EMQ-FVMM-DG
OSH15	DKELKFQLLKKYSGYLSSLRQEF	SKKKKKGKLPKEARQKLLHWWELHYKWPYPSETEKIALAESTGLDQKQINNWF	INQRKRHWKPSE	DMP-FVMM-EG
RS1	DKELKYQLLKKYSGYLSSLRQEF	SKKKKKGKLPKEARQKLLHWWELHYKWPYPSETEKIALAESTGLDQKQINNWF	INQRKRHWKPSE	DMP-FVMM-EG
AF544045 0SH43		SKKKKKGKLPKEARQKLLHWWELHYKWPYPSETEKTALAESTGLDQKQTNNWF SKRTKKGKLPKEARQKLLHWWELHYKWPYPSEMEKMTLAOTTGLDQKQTNNWF	INQRKRHWKPSE	DMP-FVMM-EG
0SH3	DKALKRHLLRKYSGYLGGLRKEL	SKKRKKGKLPKEARQKLLTWWELHYRWPNPSEMEKIALAESTGLEQKQINNCF	INORKRHWKPTE	EME-FAVM-EAYHH
SkKN0X1	DKELKEQLMRKYSGYISSLKHEF	LKKKKKGKLPKDSRQILLNWWSVHYKWPYPSESEKASLAESTGLDQKQINNWF	I NQRKRHWKPSD	ELTALSGQ-PSQST
SkKN0X2	DKEIKRALMKKYGGYLGGLTQEY	LKKKKKSKLPSAATKTLRDWWFQHLEHPYPSEAQKATLAATTKLDPKQINNWF	INQRKRHWDPSA	AAASARGE-SLQQQ
CRKN0X3			INQRKRNWHSNPSSTAA	MKTK-RKR
SkKN0X3	TLMERVRQELKHELKHGYRARIVDVREE	LRKRRAGKLPGDTTSVLKAWWHAHSKWPYPTEDEKARLVQETGLELKQINNWF	I NQRKRNWHHHPSSSAS	TTSK-LKCKS
KNAT7	SLMERVRQELKLELKQGFKSRIEDVREE	MRKRRAGKLPGDTTTVLKNWWQQHCKWPYPTEDDKAKLVEETGLQLKQINNWF	INORKRNWHNNSHSLTS	LKSK-RKH
ZZ9703 THox2	SLMERVRQELKIELKQGFRSRIEDVREE	IRKRRAGKLPGDTTTVLKNWWQQHGKWPTPTEDDKAKLVEETGLQLKQTNNWF	INGRKRNWHSNSGSVTS	LKSK-RKR
HOS66	SLMERVRQELKIELKQGFKSRIEDVREEI	LRKRRAGKLPGDTTTILKQWWQQHSKWPYPTEDDKAKLVEETGLQLKQINNWF	INQRKRNWHNNSQ-TST	LKSK-RKR
KNAT4	SLMERVRQELKHELKQGYKEK I VD I REE I	LRKRRAGKLPGDTTSVLKSWWQSHSKWPYPTEEDKARLVQETGLQLKQ1NNWF		SKNK-RRSNA
KNA13 Z71980	SLMERVRUELKHELKUGYKEKIVDIREEI	LRKRRAGKLPGDTTSVLKAWWQSHSKWPYPTEEDKARLVQETGLQLKQINNWF LRKRRAGKLPGDTTSVLKAWWQSHSKWPYPTEEDKARLVQETGLQLKQINNWF	INGRKRNWHSNPSSSIV	LKNK-RKSNA LKSK-RKR
LET12	SLMERVRQELKHELKQGYKEKIVDIREE	LRKRRAGKLPGDTTSVLKAWWQSHSKWPYPTEEDKARLVQETGLQLKQINNWF	INQRKRNWHSNPSTSSS	QKSQ-TQECR
H0S59	SLVERVRQELKHELKQGYREKLVDIREE	LRKRRAGKLPGDTASTLKAWWQAHSKWPYPTEEDKARLVQETGLQLKQINNWF	INORKRNWHSNPASSSS	DKSK-RKRYR
KNAT5 MKN1-3	SLMERVKKELKHELKQGFKEKIVDIREE	MRKRRAGKLPGDTTSVLKEWWRTHSKWPYPTEEDKAKLVQETGLQLKQINNWF	INURKRNWNSNSSTSST	LTKN-KRKRT
AaKNOX1	WFEIRNEQEQRVLLKQKYRQELLALKEEF	SKRKKRGKLPTHSIEVLKSWWKEHIAWPYPTDSAKRSLASQTNLTSIQINNWF	INQRKRHWHKLFPEGVPNRSL	KARGMLGM-DSSGP
BELL1	QGERIPRLRYLDQRLRQQRALHQQLGMVF	PAWRPQRGLPENSVSILRAWLFEHFLHPYPKESEKIMLSKQTGLSKNQVANWF	INARVRLWKPMIEEMYKEE	SAELLSNS-NQDTK

Gene	Accession No.	Species	Family	Reference
AaKNOX1	AF170172	Acetabularia acetabulum	Dasycladaceae	Serikawa and Mandoli 1999
AF063248	AF063248	Picea abies	Pinaceae	*
AF224499	AF224499	Triticum aestivum	Poaceae	Takumi 2000
AF483278	AF483278	Picea abies	Pinaceae	Hjortswang et al. 2002
AF544045	AF544045	Hordeum vulgare	Poaceae	Lin and Muller 2002
AJ276389	AJ276389	Dendrobium grex	Orchidaceae	*
AY096802	AY096802	Helianthus annuus	Asteraceae	*
AY096803	AY096803	Helianthus annuus	Asteraceae	*
AY112704	AY112704	Petunia x hybrida	Solanaceae	*
AY655753	AY655753	Streptocarpus rexii	Gesneriaceae	Harrison et al. 2005
AY655754	AY655754	Streptocarpus saxorum	Gesneriaceae	Harrison et al. 2005
AY660748	AY660748	Populus tomentosa	Salicaceae	*
AY680405	AY680405	Picea mariana	Pinaceae	Guillet-Claude et al. 2004
AY684938	AY684938	Populus trichocarpa x P. deltoides	Salicaceae	Guillet-Claude et al. 2004
BELL1	AY085278	Arabidopsis thaliana	Brassicaceae	Haas et al. 2002
BoSTM	AF193813	Brassica oleracea	Brassicaceae	Zheng et al. 2002
CRKNOX1	AB043954	Ceratopteris richardii	Adiantaceae	Sano et al. 2005
CRKNOX2	AB043956	Ceratopteris richardii	Adiantaceae	Sano et al. 2005
CRKNOX3	AB043957	Ceratopteris richardii	Adiantaceae	Sano et al. 2005
HIRZ	AY072736	Antirrhinum majus	Scrophulariaceae	Golz et al. 2002
HvKNOX3	X83518	Hordeum vulgare	Poaceae	Mueller et al. 1995
HOS59	AB061818	Oryza sativa	Poaceae	Ito et al. 2002
HOS66	AB061819	Oryza sativa	Poaceae	Ito et al. 2002
INA	AY072735	Antirrhinum majus	Scrophulariaceae	Golz et al. 2002
Kn1	X61308	Zea mays	Poaceae	Vollbrecht et al. 1991
KNAT1	AF482995	Arabidopsis thaliana	Brassicaceae	Venglat et al. 2004
KNAT2	NM_105719	Arabidopsis thaliana	Brassicaceae	*
KNAT3	NM_122431	Arabidopsis thaliana	Brassicaceae	*
KNAT4	NM_121144	Arabidopsis thaliana	Brassicaceae	*
KNAT5	NM_119356	Arabidopsis thaliana	Brassicaceae	*
KNAT6	NM_102187	Arabidopsis thaliana	Brassicaceae	*
KNAT7	NM_104977	Arabidopsis thaliana	Brassicaceae	*
LET6	AF000141	Lycopersicon esculentum	Solanaceae	Janssen et al. 1998
LET12	AF000142	Lycopersicon esculentum	Solanaceae	Janssen et al. 1998
LG3	AF100455	Zea mays	Poaceae	Muehlbauer et al. 1999
MDKN11	Z71978	Malus x domestica	Rosaceae	Watillon et al. 1996
MDKN12	Z71979	Malus x domestica	Rosaceae	Watillon et al. 1996
MKN4	AF284817	Physcomitrella patens	Funariaceae	Champagne et al. 2001
MKN1-3	AF285148	Physcomitrella patens	Funariaceae	Champagne et al. 2001
NTH1	AB025573	Nicotiana tabacum	Solanaceae	*
NTH9	AB025713	Nicotiana tabacum	Solanaceae	Nishimura et al. 1999
NTH15	AB004785	Nicotiana tabacum	Solanaceae	Tamaoki et al. 1997
NTH20	AB025714	Nicotiana tabacum	Solanaceae	Nishimura et al. 1999

Gene	Accession No.	Species	Family	Reference
NTH22	AB025715	Nicotiana tabacum	Solanaceae	Nishimura et al. 1999
OSH1	D16507	Oryza sativa	Poaceae	Matsuoka, 1993
OSH3	AB028882	Oryza sativa	Poaceae	Sentoku et al. 1999
OSH6	AB028883	Oryza sativa	Poaceae	Sentoku et al. 1999
OSH15	AB016071	Oryza sativa	Poaceae	Sato et al. 1998
OSH43	AB028884	Oryza sativa	Poaceae	Sentoku et al. 1999
OSH71	AB028885	Oryza sativa	Poaceae	Sentoku et al. 1999
PKn1	AB015999	Ipomoea nil	Convolvulaceae	*
PKn2	AB016000	Ipomoea nil	Convolvulaceae	*
PKn3	AB016002	Ipomoea nil	Convolvulaceae	*
PtKn1	AY680402	Pinus taeda	Pinaceae	Guillet-Claude et al. 2004
PtKn2	AY680403	Pinus taeda	Pinaceae	Guillet-Claude et al. 2004
RaSTM	AB000000	Ruscus aculeatus	Asparagaceae	This study
RS1	L44133	Zea mays	Poaceae	Schneeberger et al. 1995
Sbh1	L13663	Glycine max	Fabaceae	Ma et al. 1994
SkKNOX1	AY667449	Selaginella kraussiana	Selaginellaceae	Harrison et al. 2005
SkKNOX2	AY667450	Selaginella kraussiana	Selaginellaceae	Harrison et al. 2005
SkKNOX3	AY667451	Selaginella kraussiana	Selaginellaceae	Harrison et al. 2005
STM	NM_104916	Arabidopsis thaliana	Brassicaceae	Long et al. 1996
THox2	U76410	Lycopersicon esculentum	Solanaceae	*
TKn1	U32247	Lycopersicon esculentum	Solanaceae	Hareven et al. 1996
TKn2	U76407	Lycopersicon esculentum	Solanaceae	*
TKn3	U76408	Lycopersicon esculentum	Solanaceae	*
U90091	U90091	Picea mariana	Pinaceae	Rustledge et al. 1997
U90092	U90092	Picea mariana	Pinaceae	Rustledge et al. 1997
Z29073	Z29073	Brassica napus	Brassicaceae	Boivin et al. 1994
Z71980	Z71980	Malus x domestica	Rosaceae	Watillon et al. 1996