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Flavor structure of soft supersymmetry-breaking parameters is studied in a certain type of effective s
gravity theory derived from moduli- or dilaton-dominated supersymmetry breaking. Some interesting
rules for soft scalar masses are presented. They constrain their flavor structure and predict some inte
patterns appearing in soft scalar masses in the nonuniversal case. We also study the alignment pheno
the flavor space of soft breaking parameters due to Yukawa couplings and discuss their phenomeno
consequences.
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I. INTRODUCTION

In supersymmetric theories soft supersymmetry-break
parameters play the crucial role@1#. Their phenomenological
features are completely dependent on those parameters.
means that low energy phenomenology can put strong c
straints on these parameters and may also give some in
mation on the fundamental theory at the high energy regi
which determines the structure of soft breaking paramet
Especially, constraints coming from rare phenomena such
flavor-changing neutral currents~FCNC’s! @2# and the elec-
tric dipole moment of neutron~EDMN! @3# are very strong.
Because of these reasons, the universality and reality of
soft supersymmetry-breaking parameters are usually
sumed when an analysis of various phenomenological
pects of the minimal supersymmetric standard mod
~MSSM! is done. Up to now in many works the flavor struc
ture of soft breaking parameters has been discussed on
basis of suitable fundamental frameworks@4#. They mainly
treat how the universality of soft scalar masses is realized
the low energy region.

Recently it has been noticed that in superstring theory s
supersymmetry-breaking parameters are generally non
versal @5–7# and their various phenomenological cons
quences have been studied in that framework@8,9#. These
works show that nonuniversal soft breaking parameters br
rather different phenomenological features in comparis
with universal ones. In this situation it seems to be ve
interesting to study the more detailed flavor structure of the
parameters on the basis of certain fundamental framewo
The flavor structure of soft breaking parameters seems no
have been studied enough beyond whether or not they
universal. This is, in part, because of the above-mention
phenomenological constraints and also the predictivity of
theory. However, there can be various flavor structures e
if the phenomenological constraints are imposed. FCNC c
straints, indeed, only require mass degeneracy am
squarks with the same quantum numbers. This point sho
be kept in mind when we consider the FCNC constrain
Nonuniversality among squark masses with different qua
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tum numbers can bring various interesting results as su
gested in@9#.

In this paper we study the flavor structure of soft breakin
parameters in a certain type of effective supergravity theo
which is derived from moduli- or dilaton-dominated supe
symmetry breaking in superstring@6,7#. This recently pro-
posed framework has some advantages. We can use it w
out knowledge of the origin of supersymmetry breaking
Furthermore, within this framework it can give us rather de
tailed information on the soft supersymmetry-breaking p
rameters. As a result it allows us to extract their concre
flavor structure as seen in the following discussion. Takin
account of these aspects, the study of soft supersymme
breaking parameters based on this framework now see
worthy to be done more extensively from various points
view. The results we present in this paper are derived und
strong assumptions which, however, are expected to be
plicable to a rather wide class of superstring effective mo
els.

In the following at first we briefly review the derivation of
soft breaking parameters in the case of moduli- or dilato
dominated supersymmetry breaking, which we take as t
basis of our argument. After that we present our basic a
sumptions. Next under these assumptions we derive s
breaking parameters, referring to their flavor structure. Usi
these results, we give interesting sum rules on their flav
structure and discuss the consequences derived from th
Finally we study their alignment phenomena due to Yukaw
couplings and discuss their effects on the low energy phys
briefly. The last section is devoted to the summary.

II. SOFT SUSY-BREAKING PARAMETERS

A. General formulas

We begin with a brief review of the general structure o
soft breaking parameters in the case of moduli- or dilato
dominated supersymmetry breaking. Various works based
superstring theory and also general supergravity theory s
gest that soft supersymmetry-breaking parameters are ge
ally nonuniversal@5–7#. Low energy effective supergravity
theory is characterized in terms of the Ka¨hler potentialK, the
superpotentialW, and the gauge kinetic functionf a . Each of
these is a function of ordinary massless chiral matter sup
5715 © 1996 The American Physical Society
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fieldsC I and gauge singlet fieldsF i called moduli,1 whose
potential is perturbatively flat as far as supersymmetry
unbroken.

Usually it is assumed that nonperturbative phenome
such as a gaugino condensation occur in the hidden se
After integrating out the fields relevant to these phenome
the Kähler potential and the superpotential are expanded
the low energy observable matter fieldsC I as

K5k22K̂~F,F̄!1Z~F,F̄! I J̄C IC̄ J̄

1@ 1
2 Y~F,F̄! IJC

ICJ1H.c.#1•••, ~1!

W5Ŵ~F!1 1
2 m̃~F! IJC

ICJ1 1
3 h̃~F! IJKC ICJCK1•••,

~2!

wherek258p/Mpl
2 . The ellipsis stands for the higher orde

terms inC I . In Eq. ~2!, Ŵ(F) andm̃(F) IJ are considered to
be induced by nonperturbative effects in the hidden sec
Using these functions the scalar potentialV can be written as
@10#

V5k22eG@Ga~G21!ab̄Gb̄23k22#1~D term!, ~3!

whereG5K1k22lnk6uWu2 and the indicesa andb denote
C I as well asF i . The gravitino massm3/2 which character-
izes the scale of supersymmetry breaking is expressed a

m3/25k2eK̂/2uŴu. ~4!

In order to get soft supersymmetry-breaking terms in the l
energy effective theory from Eq.~3!, we take the flat limit
Mpl→`, preservingm3/2 fixed. Through this procedure we
obtain the effective superpotentialWeff and soft
supersymmetry-breaking termsLsoft.

In the effective superpotentialWeff, Yukawa couplings are

rescaled ashIJK5eK̂/2h̃IJK and them IJ parameter is effec-
tively expressed as

m IJ5eK̂/2m̃ IJ1m3/2YIJ2F j̄ ] j̄ YIJ . ~5!

Soft breaking termsLsoft corresponding toWeff are defined
by

Lsoft52m̃
I J̄

2
c I c̄ J̄2~ 1

3 AIJKc IcJcK1 1
2BIJc

IcJ1H.c.!,
~6!

wherec I represents the scalar component ofC I . Each soft
breaking parameter is expressed by usingK andW as @6#2

1Here we are using the terminology ‘‘moduli’’ in the generalize
meaning. A dilatonS([F0) is included inF i other than the usua
moduli Mi@[F i (1< i<N)#. Throughout this paper we will be
using this terminology when it is not stated.
2It should be noted that these soft breaking parameters are

canonically normalized because the kinetic term ofc I is expressed

asZI J̄]mc I]mc̄ J̄ .
is
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m̃
I J̄

2
5m3/2

2 ZI J̄2FiF̄ j̄ @] i] j̄ ZI J̄2~] j̄ ZN J̄!Z
NL̄~] iZI L̄ !#

1k2V0ZI J̄ , ~7!

AIJK5Fi@~] i1
1
2 K̂ i !hIJK2ZM̄L] iZM̄ ~ IhJK)L#, ~8!

BIJ5Fi@~] i1
1
2 K̂ i !m IJ2ZM̄L] iZM̄ ~ ImJ)L#2m3/2m IJ

1@Fi~] i1
1
2 K̂ i !F

j̄ 22m3/2F
j̄ #] j̄ YIJ , ~9!

whereFi is anF term ofF i and] i denotes]/]F i . V0 is the

cosmological constant expressed asV05k22(FiF̄ j̄ ] i] j̄ K̂
23m3/2

2 ). From these expressions we find that these soft
breaking parameters are generally nonuniversal and thei
structure is dependent on the form of the Ka¨hler potential,
especially, the functional form ofZI J̄ .

The gaugino massMa is derived through the formula@10#

Ma5
1
2 ~Ref a!

21F j] j f a , ~10!

where the subscripta represents a corresponding gauge
group. In the superstring effective theory it is well known
that f a5kaS at the tree level, whereka is the Kac-Moody
level. It has a dependence onMi through one-loop effects
@11#. This fact and Eq.~10! entail an important result. That
is, if the dilaton contribution to the supersymmetry breaking
is large, the gaugino masses become large. On the othe
hand, if the gaugino masses are large enough, the differenc
among the squark masses disappears at the low energy re
gion due to the radiative effects of heavy gauginos. In this
paper we are mainly interested in the nonuniversal soft scala
masses. Thus in the following discussion we assume the
small gaugino masses implicitly.

Here it is necessary to make some comments on the ap
plication of these formulas to the MSSM. The chiral super-
fieldsC I represent quarks and leptonsQa, Ūa, D̄a, La, and
Ēa wherea is a generation index. If only a pair of Higgs
doublets are included,CK in Yukawa couplings and the cor-
respondingA terms should be identified withH1 andH2. For
this reason we will abbreviate the indexK of AIJK in Eq. ~8!.
From the gauge invariance, allowed terms such as
m IJC

ICJ inWeff andYIJC
ICJ in the Kähler potentialK are

only mH1H2 and YH1H2, respectively. Taking account of
these, the effective superpotentialWeff and soft
supersymmetry-breaking termsLsoft in the MSSM can be
written as

Weff5hab
U ŪaH2Q

b1hab
D D̄aH1Q

b1hab
E ĒaH1L

b

1mH1H2 , ~11!

Lsoft52(
I ,J

zI†m̃
Ī J

2
zJ2SAab

U ŪaH2Q
b1Aab

D D̄aH1D
b

1Aab
E ĒaH1L

b1BH1H21(
a

1
2 Mal̄ala1H.c.D .

~12!

The first term of Eq.~12! represents the mass term of all
scalar components (zI5Qa, Ua, Da, La, Ea, H1 , H2) in

d
l
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the MSSM. In the last termla are the gaugino fields for the
gauge groups specified bya(a53,2,1).

As seen from the general expressions of soft breaki
parameters~7!–~9!, their structure is determined by the
moduli dependence3 of ZI J̄ andW. In order to apply these
general results to Eq.~12! and proceed further to investigate
their flavor structure, it is necessary to make the model mo
definite by introducing some assumptions.

B. Assumptions

Our basic assumptions are the following.
~i! We impose the simplest target space duality SL(2,Z)

invariance

Mi→
aiM

i2 ibi
ic iM

i1di
~aidi2bici51,ai ,bi ,ci ,diPZ!

~13!

for each usual modulusMi . Under this target space duality
transformation~13! the chiral superfieldsC I are assumed to
be transformed as

C I→~ ic iM
i1di !

nI
i
C I , ~14!

wherenI
i is called the modular weight and takes a suitab

negative value@5#. This requirement also causes invarianc
under the Ka¨hler transformation

K→K1 f ~Mi !1 f̄ ~M̄ ī !, ~15!

W→e2 f ~Mi !W, ~16!

~ii ! The Kähler metric and then the kinetic terms of chira
superfields are flavor diagonal:

ZI J̄5ZId IJ . ~17!

~iii ! The coefficient functionsh̃IJK ,m̃ IJ ,YIJ of the superpo-
tential and Ka¨hler potential are independent of the modu
fields whoseF terms contribute the supersymmetry breakin
that is,

] i h̃IJK5] im̃ IJ5] iYIJ50 for FiÞ0. ~18!

The second assumption is satisfied in almost all known s
perstring models as suggested in@7#. The third one is a pure
assumption at this level. Under this assumption the super
tentialW, except for aŴ part, can depend only on modul
which do not contribute the supersymmetry breaking and
a result, for example, Yukawa couplingsh̃IJK can be dy-
namical variables at the low energy region as discussed
Ref. @12#. These assumptions are rather strong ones but th
may be expected to be satisfied in many known superstr
models. Moreover, they can induce very interesting featu
to the soft breaking parameters as seen in the following s
tions.

3The known exception is the dilaton-dominated supersymme
breaking.
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In order to parametrize the direction of supersymmetry
breaking in the moduli space, we introduce the parameter
Q i which correspond to the generalized Goldstino angles in
moduli space@7#. They are defined as

FiAK̂ i j̄ 5A3Cm3/2Q i , (
i50

N

Q i
251, ~19!

where we take thek51 unit. N is the number of usual
moduli Mi in the model. A constantC satisfies
V053k22(uCu221)m3/2

2 . In the following we assume
C51 and thenV050. The introduction of these parameters
makes it possible to discuss the soft breaking paramete
without needing to know the origin of supersymmetry break-
ing.

C. Sum rules for soft scalar masses

In the superstring models studied by now,K̂ can be gen-
erally written as

K̂52(
i50

N

ln~F i1F̄ ī !. ~20!

On the other hand, if we apply assumptions~i! and ~ii ! to
ZI J̄ in the Kähler potentialK, we can constrain the func-
tional form ofZI as

ZI5)
i51

N

~Mi1M̄ ī !nI
i
. ~21!

Using these facts in Eqs.~7!–~9! and normalizing them ca-
nonically, we can write down the soft breaking parameters
as4

m̃I
25m3/2

2 S 113(
i51

N

Q i
2nI

i D , ~22!

AIJ52A3m3/2hIJ(
i50

N

Q i~nI
i1nJ

i 1nH1,2

i 11!, ~23!

B52m3/2mFA3(
i50

N

Q i~nH1

i 1nH2

i 11!11G , ~24!

where the indicesI and J represent the flavorsQa , Ūa ,
D̄a , La , andĒa(a5123). In these formulasnI

050 should
be understood since we do not consider the transformation
such as Eqs.~13! and ~14! for a dilaton.

Taking account of the functional form ofK̂ in Eq. ~20!,
assumption~i! requires f (Mi)52 ln(iciM

i1di) in Eq. ~15!.
As a result, Eq.~16! shows that the superpotentialW and
then its coefficient functionsh̃IJ and m̃ IJ are transformed as
the modular forms under the duality transformation of
moduli fieldsMi ,

ry

4It should be noted that these are the tree-level results. Howeve
the introduction of string one-loop effects will not change the quali-
tative features discussed here.
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W→)
i51

N

~ ic iM
i1di !

21W, ~25!

h̃IJ→)
i51

N

~ ic iM
i1di !

~2nI
i
2nJ

i
2nH1,2

i
21!h̃IJ , ~26!

m̃ IJ→)
i51

N

~ ic iM
i1di !

~2nH1

i
2nH2

i
21!m̃ IJ . ~27!

Assumption~iii ! requires that the modular weights ofh̃IJ and
m̃ IJ for moduliM

i which are relevant to the supersymmet
breaking (FiÞ0) should be equal to zero. This results in th
relations

nI
i1nJ

i 1nH1,2

i 1150, ~28!

nH1

i 1nH2

i 1150, ~29!

for eachi (Þ0). Flavor indicesI andJ in Eq. ~28! should be
taken as the ones composing each Yukawa coupling in
~11!. After substituting these relations into Eqs.~22!–~24!,
we obtain the formulas for soft breaking parameters:

m̃Qa

2 5m3/2
2 S 113(

i51

N

Q i
2nQa

i D , ~30!

m̃
Ūa

2
5m3/2

2 S 113(
i51

N

Q i
2~2nQa

i 2nH2

i 21!D , ~31!

m̃
D̄a

2
5m3/2

2 S 113(
i51

N

Q i
2~2nQa

i 2nH1

i 21!D , ~32!

m̃La

2 5m3/2
2 S 113(

i51

N

Q i
2~2n

Ēa

i
2nH2

i 21!D , ~33!

m̃
Ēa

2
5m3/2

2 S 113(
i51

N

Q i
2n

Ēa

i D , ~34!

AIJ52A3m3/2hIJQ0 , ~35!

B52~A3Q011!m3/2m. ~36!

The results for parametersAIJ andB are similar to the
ones obtained in the case of dilaton-dominated supersym
try breaking. These features are brought about by assump
~iii !. Although soft scalar masses are flavor diagonal, tho
values are nonuniversal unlike the dilaton-dominated ca
Their nonuniversality is determined by the modular weigh
of the relevant fields, which are completely dependent on
models. This feature seems to make it difficult to practice
model-independent study of the flavor structure of soft sca
masses in the present model. However, it is remarkable
we can easily extract some information on the flavor stru
ry
e

Eq.

me-
tion
se
se.
ts
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lar
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c-

ture of soft scalar masses in a model-independent way by
constructing sum rules from these formulas. We present her
two sum rules5 atMpl :

m̃Qa

2 1m̃
D̄a

2
5m̃La

2 1m̃
Ēa

2
, ~37!

2m̃Qa

2 1m̃
Ūa

2
1m̃

D̄a

2
5m3/2

2 S 423(
i51

N

Q i
2D , ~38!

where for these derivations we used the above constraint
~28! and ~29! on the modular weights. These sum rules for
the flavors are satisfied in each generation (a5123).

Although these sum rules become trivial in the universal
case, they can give us useful information on the flavor struc-
ture of soft scalar masses in the nonuniversal situation. Es
pecially, the latter sum rule~38! gives us very interesting
insights into the flavor structure in the quark sector.

At first it shows that we cannot impose the relation
m̃fa
2 ,m̃fb

2 (a,b) on all flavors f5Q, Ū, and D̄, simulta-

neously. This means that soft scalar masses at least for on
flavor in the squark sector must decrease according as th
generation number increases though scalar masses in oth
flavor sectors increase with the generation. For example, we
assume that soft scalar masses of the first two generation
with the same charges cause each other to degenerate and

m̃Q1

2 5m̃Q2

2 ,m̃Q3

2 , m̃
D̄1

2
5m̃

D̄2

2
,m̃

D̄3

2
. ~39!

In this situation, from Eq.~38! we have

m̃
Ū1

2
5m̃

Ū2

2
.m̃

Ū3

2
. ~40!

This feature can bring nontrivial results at the weak scale
through dynamical effects of the low energy region as seen
in the next section.

Furthermore, since the sum of squark masses is con
strained to be constant independently of the generation, if the
soft scalar mass for one flavor, for example,m̃Qa

2 becomes

larger, soft scalar massesm̃
Ūa

2
and m̃

D̄a

2
must be smaller in

comparison with6 m̃Qa

2 . In such a case Eq.~37! shows that in

the present model all left-handed soft scalar masses can b
larger than all right-handed ones,

m̃Qa

2 , m̃La

2 @m̃
Ūa

2
, m̃

D̄a

2
, m̃

Ēa

2
. ~41!

Soft scalar masses with this feature have been shown to brin
various interesting implications in the phenomenology of the
MSSM @9#.

In the next section we will study the low energy implica-
tion of these structures. In this study we will consider the
alignment of soft scalar masses in the flavor space which ha
recently been proposed in Ref.@15#.

5Similar sum rules are derived in@13#. However, the flavor struc-
ture is not explicitly discussed there.
6It can be shown that this kind of hierarchical soft scalar mass can

be realized if we consider three moduli case in orbifold models
@14#.
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III. ALIGNMENT OF SOFT SCALAR MASSES

A. Flavor symmetry

We start this section with a discussion of the flavor sym
metry of the system defined by the Ka¨hler potential~1! and
the superpotential~2!. What we refer to here as the flavor
symmetry is the invariance under the transformation

C fa→Sba
~ f !C fa, ~42!

where C fa stands for Qa , Ua , Da , La , and
Ea (a51;3) andS( f ) is an element of U~3!. Thus the full
flavor symmetry of our present model is U(3)5. Needless to
say, Yukawa couplings in the superpotential break this sym
metry. Even if we switch off these couplings, this symmetr
is also broken by the kinetic terms unlessZI J̄ is proportional
to the unit matrix. This condition for the kinetic terms is no
generally satisfied in the present model. However, there m
be an alternative possibility. If there are some relations b
tween moduli space and flavor space, the moduli depende
of ZI J̄ may restore the symmetry. That is, it may be expecte
that ZI J̄ ([Zab̄

( f )
) is also transformed simultaneously unde

the transformation~42! as

Zab̄
~ f !→Sga

~ f !Zab̄
~ f !
Sb̄ d̄

~ f !† , ~43!

and then this can be the symmetry of the system.
If such a situation is realized in the presen

supersymmetry-breaking scenario, vacuum expectation v
ues ~VEV’s! of moduli F terms and then the soft
supersymmetry-breaking parameters will cause the break
of this flavor symmetry as well as supersymmetry. In thi
breaking process the dynamical degrees of freedom cor
sponding to the Goldstone modes of this spontaneously b
ken flavor group will remain undetermined unless explic
breakings exist. However, there are Yukawa couplings in th
real world. As a result the phenomenon known as alignme
occurs to fix the remaining undetermined degrees of freedo
in the soft breaking parameters at the low energy regio
Recently, this possibility has been suggested in the gene
framework of supersymmetric models assuming the exis
ence of the corresponding flavor symmetry@15#. In the re-
maining part we study the alignment of soft breaking param
eters in our model. In this study we assume th
transformation property~43! in the moduli sector as the start-
ing point of our argument.7

7It should be noted that this assumption is crucial for the realiz
tion of the alignment of soft breaking parameters in flavor spac
due to Yukawa couplings. Although the contributions from th
Goldstone boson loops to the effective potential are sufficient
suppresssed by the symmetry-breaking scaleL in the case of ex-
plicit breakings due to Yukawa couplings, their contribution
through the breakings due toZI J̄ in the kinetic terms cannot be
suppressed byL and make the scenario in@15# ineffective. For this
reason we will adopt this assumption, although the existence
such a proprety has not been known in superstring models up
now.
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B. Alignment in the flavor space

As seen from Eqs.~30!–~36!, soft scalar masses andA
terms are produced in flavor diagonal form in the present
model. In the limit that Yukawa couplings are negligible,
however, the degrees of freedom corresponding to the rota
tion „SU(3)/U(1)2…5 in flavor space remain undetermined
under the above assumption of the flavor symmetry. If we
represent these degrees of freedom with 333 matricesS( f )

in the basis where Yukawa couplingshF(F5U,D,E) are
diagonal, soft breaking parametersm̃f

2 andAF([AIJ) can be
written as8

m̃f
25S~ f !†S~ f !S~ f !, AF5S~ f 8!†DFS~ f !. ~44!

From the definition of the Yukawa couplings, Eq.~11!, the
index f 8 in the representation ofAF stands for the flavor
f 85U,D,E which can compose the Yukawa couplings with
the flavor f5Q,L. BothS ( f ) andDF correspond to the ones
derived in the previous section and they are defined at the
scaleL5Mpl . The Goldstone degrees of freedomS( f ) are
determined through the physics below the scaleL. To study
this determination process we adopt a Wilsonian approach to
the low energy effective theory. Following Ref.@15#, the low
energy effective potential which can be derived by such a
prescription is

Veff5VL1
L2

32p2StrSM22
1

32p2bM
~1!1••• D , ~45!

whereVL is an S( f )-independent part andM represents a
mass matrix of the fields in the theory at the scaleL. The
ellipses stand for higher order correction terms which are
irrelevant in the present approximation. One-loopb func-
tions bM

(1) for the masses of the relevant scalar fields are
given in Ref.@16#:

Trbm̃
Q
2

~1!
5Tr@2~hU†hU1hD†hD!m̃Q

2 12hU†m̃
Ū

2
hU

12hD†m̃
D̄

2
hD12AU†AU12AD†AD#1•••,

Trbm̃
L
2

~1!
5Tr@m̃L

2hE†hE12hE†m̃
Ē

2
hE1hE†hEm̃L

212AE†AE#

1•••,

Trb
m̃
Ū

2
~1!

5Tr@2m̃Ū

2
hUhU†14hUm̃Q

2 hU†12hUhU†m̃
Ū

2

14AUAU†#1•••,

Trb
m̃
D̄

2
~1!

5Tr@2m̃D̄

2
hDhD†14hDm̃Q

2 hD†12hDhD†m̃
D̄

2

14ADAD†#1•••,

a-
e
e
ly

s

of
to8It should be noted thatS( f ) for the flavorsŪ, D̄, and Ē are
defined as the ones for the right-handedU, D, andE in Eq. ~42!.
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Trb
m̃
Ē

2
~1!

5Tr@2m̃Ē

2
hEhE†14hEm̃L

2hE†12hEhE†m̃
Ē

2

14AEAE†#

1•••,

Trbm̃
H2

2
~1!

56 Tr@m̃Q
2 hU†hU1hU†m̃

Ū

2
hU1AU†AU#1•••,

Trbm̃
H1

2
~1!

5Tr@6m̃Q
2 hD†hD12m̃L

2hE†hE16hD†m̃
D̄

2
hD

12hE†m̃
Ē

2
hE16AD†AD12AE†AE#1•••,

~46!

where the ellipsis stands for theS( f ) independent contribu-
tions. Following Eq.~44!, the soft scalar masses in thes
e

formulas are expressed in the Yukawa coupling diagonal ba-
sis by using the nonlinearly realized Goldstone modesS( f ) as
follows:

m̃QU

2 5S~Q!†S~Q!S~Q!,

m̃QD

2 5K†S~Q!†S~Q!S~Q!K,

m̃
Ū

2
5S~U !†S~U !S~U !,

m̃
D̄

2
5S~D !†S~D !S~D !, ~47!

whereK is the Kobayashi-Maskawa matrix. Using these, we
can write down theS( f )-dependent part of this effective po-
tential:
V~S~ f !!52
L2

~32p2!2
Tr@12S~Q!†S~Q!S~Q!~hU†hU1KhD†hDK†!18S~L !†S~L !S~L !hE†hE112S~U !†S~U !S~U !hUhU†

112S~D !†S~D !S~D !hDhD†18S~E!†S~E!S~E!hEhE†#. ~48!
Here it should be noted that theAF contribution toVeff dis-
appears in Eq.~48! becauseAF appears as the unitary
invariant form in the effective potential in this approximatio
level. The flavor structure of soft breaking parameters at
weak scale is determined through Eq.~44! by using S( f )

which minimizes this effective potential.
As easily proved for the diagonal matricesX and Y,

Tr(XS( f )YS( f )†) is maximized whenS( f ) is aligned so as for
their eigenvaluesXi andYi to be ordered in such a way tha
Xi<Xj andYi<Yj are simultaneously realized for the diag
onal component labelsi, j . We are considering the effectiv
potential~48! in the basis where the Yukawa coupling m
trices are diagonal and also their eigenvalues are ordere
such a way that their values increase. So the potential m
mization makesS( f )( f5L,U,D,E) a unit matrix if the ei-
genvalues ofS ( f ) are ordered in a suitable way. Thus so
scalar masses for these flavors at the weak scale are c
pletely aligned to Yukawa couplings in flavor space. In t
f5Q sector the situation is different. Because of the ex
ence of the Kobayashi-Maskawa matrixK, S(Q) deviates
from the unit matrix even if the eigenvalues ofS (Q) are
ordered according to their magnitude. From the investigat
of the effective potential it is easily found
that S(Q) should be determined so thatS(Q)(hU†hU
-
n
the

t
-
e
a-
d in
ini-

ft
om-
he
ist-

ion

1KhD†hDK†)S(Q)† is proportional toS (Q). As found from
Eq. ~44!, these facts show thatA parameters in the squark
sector are not generally proportional to the Yukawa cou-
plings, althoughAL in the lepton sector is proportional to
hL.

Here we should remember again that in our model the
following condition forS ( f ) is satisfied independently of the
generation,

2S~Qa!1S~Ua!1S~Da!5const, ~49!

and then the eigenvalues ofS ( f ) are not necessarily ordered
in such a way that their magnitude increases for allf as
mentioned before. In that case the minimization of the effec-
tive potential determinesS( f )(Þ1) so as to exchange the
ordering of the eigenvalues according to their magnitude.
The existence of the Kabayashi-Maskawa matrixK makes
this situation more subtle. These make the flavor structure of
A parameters somehow complex, at least in the squark sec-
tor.

C. Squark sector

We study the squark sector in more detail. The squark
mass matrices inu-squark andd-squark sectors can be writ-
ten as
S umUu21m̃QU

2 1mZ
2cos2b~ 1

2 2 2
3 sin

2uW! AU^H2&1mUm* cotb

AU†^H2&*1mU
†m cotb umUu21m̃

Ū

2
1 2

3 mZ
2cos2b sin2uW

D , ~50!

S umDu21m̃QD

2 2mZ
2cos2b~ 1

2 2 1
3 sin

2uW! AD^H1&1mDm* tanb

AD†^H1&*1mD
†m tanb umDu21m̃

D̄

2
2 1

3 mZ
2cos2b sin2uW

D , ~51!
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wheremf and m̃f are masses of thef quark and the corre-
sponding left- and the right-handed squark mass matric
respectively. These squark mass matrices can be explic
determined in our model. We show this by using a typica
example.

As discussed above, no matter how eigenvalues ofS ( f )

are ordered in the squark sector, under the condition of E
~49! we obtain the nontrivial results forS(Q), S(U), and
S(D) as far as theS ( f ) has nondegenerate eigenvalues. W
are interested in the nontrivial case where the eigenvalues
S ( f ) are not ordered according to their magnitude. As a typ
cal example, we take

S~Q!5S m1
2 0 0

0 m1
2 0

0 0 m2
2D ,

S~U !5S~D !5S m3
2 0 0

0 m3
2 0

0 0 m4
2D , ~52!
es,
itly
l

q.

e
of
i-

wherem1
2.m2

2 andm4
2.m3

2 following Eq. ~49!. For theŪ
and D̄ sectors we getS(U)5S(D)51 trivially. If K51, for
theQ sector we obtain

S~Q!5S 0 1 0

0 0 21

1 0 0
D . ~53!

For thisS(Q), S(Q)†S (Q)S(Q) becomes diagonal with increas-
ingly ordered eigenvalues in the same way as the case o
Ū andD̄ sectors. IfKÞ1, however,S(Q)†S (Q)S(Q) cannot be
diagonal anymore. After some algebra for the minimization
of the effective potential, we obtain

S~Q!5S 0 1 X

Y X 21

1 0 Y
D , ~54!

whereX;2Vtsmb
2/mt

2 andY;2Vtdmb
2/mt

2 This results in
S~Q!†S~Q!S~Q!;S Y2m1
21m2

2 XYm1
2 2Ym1

21Ym2
2

XYm1
2 m1

21X2m1
2 0

2Ym1
21Ym2

2 0 X2m1
21m1

21Y2m2
2D . ~55!
e

This shows that the effect ofKÞ1 is very small and
S(Q)†S (Q)S(Q) can be regarded as diagonal in the good a
proximation even in theQ sector. However, it should be
noted that the degeneracy between the first and second g
eration squarks in theQ sector atMpl is lost at the low
energy region.

If we use Eq.~44!, we can explicitly calculateAU and
AD in this example as,

AU5DS~U !†hUS~Q!

;
eD

A2mWsinbsinuWS 0 mu Xmu

Ymc Xmc 2mc

mt 0 Ymt
D , ~56!

AD5DS~D !†hDS~Q!

;
eD

A2mWcosbsinuWS 0 md Xmd

Yms Xms 2ms

mb 0 Ymb
D , ~57!

whereD is defined asDF5DhF. This result shows thatAU

andAD can have rather large off-diagonal elements unle
S(Q)5S(U)5S(D)51, which is realized only when the
masses of three generation squarks with the same quan
numbers degenerate. However, the nonuniversal soft sca
p-

en-

ss

tum
lar

masses such as Eq.~52! appear only in the case of moduli-
dominated supersymmetry breaking (( i51

NQ i
2;1 and

Q0
2!1) and thenDF!m3/2. Thus the components of off-

diagonal blocks in squark mass matrices~50! and ~51! are
small compared with the elements of the diagonal blocks. In
our model the left and right mixing squark masses generally
bring no serious problems to the FCNC.

From this example we learn that if flavor alignment oc-
curs in the squark masses, the good degeneracy between th
masses of the first and second generation squarks atMpl can
be lost at the low energy region. This shows that the good
degeneracy atMpl among the masses of three squarks with
the same quantum numbers may be necessary to satisfy the
FCNC constraints.

A consideration like this can give us more insight into soft
scalar masses. Finally we present such a typical example in
the nondegenerate case. Taking account of the alignment ef-
fects discussed above, if we assume

m̃Q1

2 .m̃Q2

2 ,m̃Q3

2 , m̃
D̄1

2 .m̃
D̄2

2
,m̃

D̄3

2
, ~58!

at the scaleL, these relations are preserved at the weak
scale. This situation is favorable to satisfy the FCNC con-
straints. On the other hand, the sum rule atL and the align-
ment effects predict

m̃
Ū1

2
,m̃

Ū2

2 .m̃
Ū3

2
~59!
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at the low energy region. This suggests that in the pres
model it is difficult to make onlym̃

Ū3

2
light enough in com-

parison with other right-handedU sector squarks.

IV. SUMMARY

We studied the structure of soft supersymmetry-break
parameters in the effective theory derived from moduli-
dilaton-dominated supersymmetry breaking. In particular,
focused our attention on the flavor structure of soft sca
masses. Under certain assumptions about the moduli de
dence of the Ka¨hler potential and superpotential we obtaine
sum rules for soft scalar masses, which gave interesting
lations among different flavors in a model-independent w
We showed that we could extract some typical features fr
these sum rules when the scalar masses were nonuniver

We also applied these results as the initial conditions
Mpl to the recently proposed alignment scenario for soft s
lar masses in flavor space. In this discussion we pointed
that the degeneracy of the masses among three gener
squarks with the same quantum numbers might be requ
ent

ing
or
we
lar
pen-
d
re-
ay.
om
sal.
at
ca-
out
ation
ired

atMpl to satisfy the FCNC constraints. Only the good degen-
eracy between the first and second generation squark masse
at Mpl may not be necessarily sufficient to avoid excessive
FCNC’s.

The consequences induced from the nonuniversality of
soft supersymmetry-breaking parameters have been studied
from various viewpoints by now. Although FCNC con-
straints require the degeneracy of squark masses among the
species with the same quantum numbers, it does not require
universality more than that. It seems to be necessary to take
account of this important point when we study the flavor
structure of soft breaking parameters. This viewpoint may
open new possibilities in the study of supersymmetric theory.
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No. FTUAM95/26~unpublished!.

@14# T. Kobayashi, D. Suematsu, K. Yamada, and Y. Yamagish
Phys. Lett. B348, 402 ~1995!.

@15# S. Dı́mpoulos, G. F. Giudice, and N. Tetradis, Nucl. Phys
B454, 59 ~1995!.

@16# S. P. Martin and M. T. Vaughn, Phys. Rev. D50, 2282~1994!;
Y. Yamada,ibid. 50, 3587~1994!; I. Jack, D. Jones, S. Martin,
V. Vaughn, and Y. Yamada,ibid. 50, 5481~1994!.


