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   1. Introduction. 

   When we intend to calculate the Picard constants of algebroid surfaces and 
study analytic mappings among algebroid surfaces with large Picard constants, 
we have to consider some functional equations. For example, the first author 

[7], Ozawa-Sawada [11], [12], [13] and Sawada-Tohge [14], etc. (cf. [10]) con-
sidered special cases of the following functional equation : 

                     m n 

                      a,,(z)e"Cz) = f (z) bv(z)e0L7X . 

   The purpose of this paper is to study the above equation and to give an 

application. 
   First we shall prove 

   THEOREM 1. Let H and L be non-constant entire functions with H(0)=L(0) 
=0, a,,=bn=1, a,, (p=O , 1, • • • , m--1) and by (v=0, 1, , n-1) meromorphic 

functions with ao 0, bo 0 and f a meromorphic function. Further suppose that 

                  T(r, a,,) = S(r, e") = 0, ..., m-i, (1.1) 

                  T (r, b0) = S(r, eL) v = 0, . • • , n-i, (1.2) 
and 

               N(r, 0, f)+N(r, co, f) = o(m(r, e")+m(r, eL)) r--a cc (1.3) 

outside a set o f finite measure. 1 f m>_ n>_ 1, d =(m, n), m= pd, n=qd and the 

identity 
                      m n 

                     a~(z)e(~H(z) _ f(z)b0(z)e0 LCz) (1.4) 

holds, then we have one of the following two cases :
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   (I) emH(z)+nL(a) = a0(z)b0(z), f (z) = ad(z)e-nL(z), 

        a(z) = e-(j/a)(mH(z)+nL(0))ao(z)b(d-j)q(z) for = 0, 1, 2, ... , d, 

       a11(z)=0 for p~0,1p, 2p, •••, dp=m, 

      by(z) = 0 for v ~ 0, iq, 2q, , dq = n ; 

    (II) em x(z)-nL(z) = a0(z)/b0(z), f (z) = emH(z)-nL(z), 

        a(z) = ec(d-j)ld)(mH(z)-nL(z))bjq(z) for = 0, 1, 2, ..,, d, 

       a11(z) ~0 for p*0, 1p, 2p, •••,dp=m, 

       by(z) 0 for v * 0, 1 q, 2q, • • • , dq = n. 

   Changing some conditions on f in Theorem 1 we also obtain the following : 

   THEOREM 2. Let H and L be non-constant entire functions with H(0)=L(0) 
=0, am=bn=1 and a11 (p=O, 1, •••, m-1) and by (v=0, 1, •••, n-i) meromorphic 

functions satisfying ao 0, bo 0 and 

                    T(r, au) = S(r, eH) p = 0, •• • , m-i, (1.5) 

                   T (r, bv) = S(r, eL) v = 0, , n - i. (1.6) 

Further suppose that m>_ n> i, d =(m, n), m= pd, n=qd and F= f r f 2 where f 1, 

f 2 are meromorphic functions and f 2 satisfies 

           N(r, 0, f 2)+N(r, °, f2) = o(m(r, eH)+m(r, CL)) r --> co (1.7) 

outside a set of finite measure. If the identity 

                      m n 

                      a,,(z)e1 Hcz) = F(z) bv(z)euLCz) (1,8) 
                                     f1=0 v=0 

holds, then we have one of the following two cases : 

   (I) emH(z>+nL(z) = a0(z)b0(z), F(z) = a0(z)e_, 

        ajp(z) = e-(j/d)(mH(z>+nL(z))ap(z)b(d_j)q(z) for 3 = 0, i, 2, ..., d, 

       a11(z) = 0 for p * 0, lp, 2p, •••, dp = m, 

       b(z)^0 for v* 0, iq, 2q, •••, dq=n; 

    (II) emH(z)-nL(z) = a0(z)/b0(z), F(z) = emH(z)-nL(z), 

         a3(z) = eccd-j)Id)(mxcz)-mL(z))bjp(z) for = 0, i, 2, ..•, d, 

       a11(z) ̂  0 for p * 0, ip, 2p, •••, dp = m, 

       b(z) . 0 for v * 0, iq, 2q, •••, dq = n,
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unless ~;?o a(z)e'" or ~v o b(z)e' (m= n) has the following form : 

                         ~(z)(e±K ~z' -a(z))m, (1.9) 

where K(z)=H(z) or K(z)=L(z) and a and /3 are meromorphic functions satisfying 
T(r, a)=S(r, a"), T(r, jS)=S(r, e"). 

   Next as an application of Theorem 1 we shall consider the Picard constants 
of algebroid surfaces in § 6. 

   We assume that the reader is familiar with the Nevanlinna theory of 
meromorphic functions and usual notations : 

          T (r, f), m(r, f), N(r, a, f), N(r, a, f), N1(r, a, f), etc.. 

In this paper, further, we denote by S(r, f) a quantity satisfying 

                     S(r, f) = o(T(r, f)) r -- cc 

outside a set of finite measure, a meromorphic function a is called to be small 
with respect to the function f if T(r, a)=S(r, f) and it is said for an equation 
with entire or meromorphic coefficients to be irreducible when this equation is 
irreducible over the field of the single-valued meromorphic functions in the 
complex plane C. 

   2. Zeros of polynomials in a". 

   First of all we consider the zeros of polynomials in eH with small 

meromorphic coefficients. We denote by N*(r, 0, f) the counting function of 
simple zeros of the referred function f and by N0(r, 0 ; f, g) the counting 
function of common zeros of f and g. 

   We prove 

   PROPOSITION 1. Let H be a non-constant entire function and a1, a, 
meromorphic functions satisfying 

                   T (r, a,) = S(r, e") j =1, •.., p. 

Then we have 

                N(r, 0, P~(e")) _ p m(r, e")+S(r, e"), 

where 
                P(X) = X~`+a1(z)X-1+ ... +a(z) (a~ 0). 

   Factorizing P(X) into irreducible polynomial factors in X with meromorphic 
coefficients, we can deduce Proposition 1 from the following lemma, which is an 
extension of Lemma 4 in [5] :
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   LEMMA 1. Let H be a non-constant entire function and al, ", a, (a~ 0) 
meromorphic functions satisfying 

                      T (r, a,) = S(r, aH) j -1, . •. , p. 

1 f the algebraic equation 

                 P(X) := Xu+a1(z)X~-1+ ... +a(z) = 0 

is irreducible, then we have 

   N?(r, 0, P~(e")) = p m(r, eH)+S(r, eH) and N1(r, 0, P~(eH)) = S(r, .a"). 

   PROOF. It follows from the assumption of this lemma that 

           R(z, eH) := d {P (eH(z')} /P (e"(Z)) 

                       _H'e~H-~- {ai-f-(~-1)H'al} ec~-1~H+ ...+a~                             - 
ePH+ale(a-1>H,+ ... +a~ -

is an irreducible rational function in eH (in the sense of Lame [2]) with 
meromorphic coefficients small with respect to eH. Hence a theorem due to G. 
Valiron and A. Mokhon'ko (cf. Theorem 2.2.5 in Lame [2]) implies 

                T (r, R(z, a")) = p m(r, eH)+S(r, a"). 

   On the other hand, since R(z, aH) is the logarithmic derivative of P~(e"), 
we have 

                T (r, R(z, a")) = N(r, 0, P~(e"))+S(r, aH) 

Therefore we obtain 

                N(r, 0, P~(e")) _ p m(r, eH)+S(r, aH) 

and so 

       N(r, 0, P~(e")) _< T (r, P~(e"))+O(1) = p m(r, aH)+S(r, eH). 

Hence we have 

        N1(r, 0, P~(e")) = N(r, 0, P~(e"))-N(r, 0, P~(e")) = S(r, e"). 

   Now we denote by N(r, 0: k) the counting function of distinct zeros of 
P~(e") of multiplicity k. Then 

        N1(r, 0, P~(e")) = j (k-1)N(r, 0 : k) >j N(r, 0 : k) . 
                                               k=2 k=2 

Therefore we obtain
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       N*(r, 0, P~(ex)) = N(r, 0: 1) = N(r, 0, P~(ex))- N(r, 0 : k) 
                                                                                k=2 

                    = p m(r, ex)+S(r, ex), 

which proves our Lemma 1. q.e.d. 

   In order to prove Theorem 2 we need the following lemma, which is deduced 

from Lemma 5 in [5] : 

   LEMMA A. Let H be a non-constant entire function and a1, • • • , a~, b1, , by 

meromorphic functions satisfying 

     T (r, a;) = S(r, ex) j =1, • , p and T (r, b;) = S(r, ex) j =1, •.., v. 

I f the equations 
                P(X) := X +a1(z)X+ ... +a(z) = 0, 

                 Q(X) := Xv+b1(z)Xv-1+ ... +b(z) = 0 

are irreducible and Pu(excz~) Qv(excz>), then we have 

                N0(r, 0 ; P1(ex), Qv(ex)) = S(r, ex) 

   3. Borel's identity. 

   In order to prove our theorems we can use Lemma 1 in [5], however, we 
here give its refinement as follows : 

    PROPOSITION 2. Let ao, a1, , a n be meromorphic functions and go, g1, , gn 

entire functions satisfying 

            T (r, a;) = S(r, egz o) j = 0, 1, ... , n ; v = k, k+1, ... , n. 

I f ao0 and the identity 

n 

                           aY(z)e= 0 (3.1) 
                                              v=o 

holds, then we have 

                                                          k-1 
                       ao(z)eg0~t'-f- cyay(z)eey~z' = 0, (3.2) 

                                                    v=1 

where cv, v=1, 2, •••, k-1, are suitable constants, not all zero. 

   Before going to prove this proposition we need the following lemma due to 

Hiromi-Ozawa [4]. 

    LEMMA B. Let ao, a1, • • • , an be meromorphic functions and g1, • • • , gn entire 

functions. Further suppose that
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n 

             T(r, a;) = o m(r, egg) (r -~ oo), 1=0, 1, , n 
                                            v=1 

holds outside a set of finite measure. If the identity 

n 

                             j av(z)egy(z' = a0(z) 
                                                v=1 

holds, then we have an identity 

n 

                                evav(z)egy(~' = 0, 
                                              v=1 

where cv, v=1, 2, . . . , n, are constants which are not all zero. 

   PROOF OF PROPOSITION 2. Write (3.1) as 

                             av(z)egv(z'-g0(z' = _a0(z), (3.3) 
                                vEIUJ 

where sets I and J are defined by 

     1= {v : av(z) 0, 1 <_ v < k-1} and J {v : av(z) 0, kin}. 

   Now we may assume J # 0, otherwise there is nothing to prove. Then we 

can apply Lemma B. In fact, for any l in J, then we have 

n 

                        m(r, eglcz)-gocz)) J m(r, egv(~'_g0(z') 
                                                           v=1 

and T(r, a;)=S(r, egg-go) for any j (0< j n). Hence the requirements of Lemma B 

are fulfilled in the identity (3.3). 

   Suppose that the set 1 is empty, that is, (3.3) is reduced to the identity 

                          v av(z)e80(z' = -- a0(z) . (3.4) 

Then applying Lemma B to (3.4), we obtain 

                           ~clvav(z)egy(z'~gD`z'-0, (3.5) 
                                      vEJ 

where c1, are constants which are not all zero. Choose a non-zero 

constant c11 and rewrite (3.5) to 

a1(z)e)_0(EJ\{t} 
Substituting this identity into (3.4), we have 

                        (1-clv/c11)aL(z)egy(z'-g0(~' = -a0(z). (3.6) 
                       vEJ\{1}
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Since a0(z)O, there is an integer m in J and different from l with clm * c11. 

Repeating the above procedure, we can reduce (3.6) to the identity of the form 

                           ca~(z)egv(Z'-g0(;' = -a0(z), 

where c is a non-zero constant and v E J. This is however impossible, because 

av and a0 are supposed to be small functions with respect to functions eev'g0, 

   Hence we may assume that the set 1 is also not empty in the identity (3.3). 

   Apply Lemma B to (3.3). Then we have 

                               cla (z)egv(z'_g0(Z' = 0, (3.7)                                                   v v 
                                 IEIVJ 

where c1v, v E I U J, are constants which are not all zero. Choose a non-zero 
constant c11 and rewrite (3.7) to 

   a1(z)e10( _ (c11/ c11)av(z)egy(z) 8o(z) 
                                       vE(IvJ)\(11 

Substituting this into (3.3), we obtain the identity 

                          (1-clv/c11)av(z)egy(Z'-g0(z' = -a0(z) . (3.8) 
                      vE(I'JJ)\(11 

We here define 11= {vEI : v*l, c1v*c11} and J1= {vE J : v*l, c1v*c11}. Note 

that I1U J1 * 0 in view of (3.8) and the assumption a0(z) 0. If 11= 0, then 

the identity (3.8) reduces to the identity (3.6), which leads to a contradiction by 

the previous argument. Also the case J1= 0 reduces the identity (3.8) to one 
which we claim as (3.2). Therefore we assume that neither of the sets I1 and 

J1 is empty and 
                               ~2vav(Z)egv(z) 80 (z) = -a0(z) 

                              vE11VJ1 

holds with suitable non-zero constants c2v. Since 11UJ1 is a proper subset of 
I U J and further 11 * O and J1 *0, we can finally reach the following identity 
after suitably repeated procedures mentioned above : 

                ~ «as(z)ega(a)-g0(z)~c ~a~(z)eg~(z' g0(z) = -a0(Z), 

where c*« and c*~ (a E I, 4 E J) are non-zero constants. Writing this identity as 

                a0(z)ego(z)-g~(z)~~*«a«(z)eg"(z)-gp(Z) = -c*pa~(z), 

and applying Lemma B to this identity, we obtain the desired identity 

                          a°(z)eg0(Z'~ca«(z}eR"(Z' = 0 

with a non-zero constant c, q.e.d.
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   4. Lemmas. 

   Before going to prove our Theorems, we need some more lemmas. 

   We can deduce from the impossibility of Borel's identity that 

    LEMMA C. Let a1, •••, an be meromorphic functions, g a non-constant entire 

function and a1, • • • , an distinct constants. Further suppose that 

                      T (r, a1) = S(r, eg) j =1, • • • , n 

holds. Then the identity 

n 

                             a;(z)e 0i 1= 0, 
                                                                   ,~=1 

is impossible unless all a1, • • •, an are identically zero. 

   We have 

   LEMMA D ([6]). Let g and a0, a1, • • • , an be meromorphic functions such 

that a n 0 and 

                    T (r, a1) = S(r, g) j = 0, ... , n 

holds. I f a meromorphic function f satisfies an equation 

                    an(z)f n+an-1(z)f n-1+ ...+ a0(z) = 0, 

then we have 

                T (r, f) = S(r, g) 

   We prove 

   LEMMA 2. Let a be a positive number, p and v positive integers and H and 

L non-constant entire functions such that H(0)=L(0)=0. I f 

                  m(r, eH) = a m(r, eL)+S(r, eL), 

then we have 

                  m(r, e'"') > p I a-v/p I m(r, eL)+S(r, eL). 

   PROOF. It follows that 

     p m(r, eH) m(r, e~' ' ')+m(r, e~vL) = m(r, e"-)+v ~m(r, eL) 

and hence 

     m(r, e,Px±vL) > p m(r, e")-v m(r, eL) I = p a--v/p I m(r, eL)+S(r, eL), 

which proves our Lemma. q.e.d.
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   5. Proof of Theorems. 

   PROOF OF THEOREM 1. It follows from (1.4) that T(r, f)=0(m(r, eH)+ 

m(r, eL)) outside a set of finite measure. Hence from the condition (1.3) we 

have 

                  T (r, f'/f) = a(m(r, e")+m(r, e')) (5.1) 

outside a set of finite measure. We put 

                      m n 

            U(z) :_ a(z)e"(z' and V(z) :_ J b(z)e. 
                                 p=0 v=0 

Then Proposition 1 implies 

   N(r, 0, U) = m m(r, eH)+S(r, eH) and N(r, 0, V) = n m(r, eL)+S(r, eL). 

   On the other hand it follows from (1.3) that the identity (1.4) implies 

N(r, 0, U) '--'N(r, 0, V). Therefore we have 

                     m(r, 0H) ti (n/m) m(r, eL) r --> co (5.2) 

outside a set of finite measure. 

   By differentiating both sides of (1.4) we have 

              U' = f V'+ f'V = (U/V) {V'+(f'/ f)V} 

that is, 
                        m n 

                              A(z) epH(z)+vL(z) = 0, (5.3) 
                                      a=o v=o 

where 
              Acv = a~bv-aubv+a~b~{l~H'-vL'-Cf'lf)}, 

especially, Amn=mH'-nL'-(f'/ f) because of am=bn=1. It is clear from (1.1), 

(1.2), (5.1) and (5.2) that 

                       T(r, Acv) = s(r, €L). 

   Assume that Amn(z) 0. Then we apply Proposition 2 to the identity (5.3). 
Putting g0=mH+nL in Proposition 2 and taking Lemma 2 into account we 
have 

d 
                          c1A(Jp)(Jq)(z)QJ(PH(z)+qL(Z)) = 0 

where c,=1 and the other cJ are suitable constants. Hence Lemma C implies 

                  T (r, emH+nL) = d T (r, 2PH+qL) = S(r, aL). 

Therefore, since ,uH+vL=(;u/m)(mH+nL)+(v-(n/m)p)L, (5.3) reduces to
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                        m n 
                              B v(z)e(v (n/m)(~)L(z) = 0, (5.4) 

                                   /=0 v=0 

where Bay=A~yec~lm) cmH+nL) and they satisfy 

                        T (r, B~v) = S(r, eL). (5.5) 

Since -n<v-(n/m)p for 0 p<m, 0 i n and n>v-(n/m)p for 0<_p<_m, 

0~ v< n, it follows from (5.5) that (5.4) and Lemma C yield 

 Bmo = {-bo--Fbo(mH'--(f'/f))} emu1+nL = 0 and Bon = ao-a0(nL'-F(f'/f)) - 0 

and so f'/ f --nL'+aa/ao=mH'-bo/bo. Hence we have 

             f(z) = cao(z)e-nL(z) and emH(z)+1L(z) = cla0(z)bo(z), 

where c and c1 are non-zero constants. Substituting these relations into (1.4) 

we obtain 
                m n 

                       a~ec~rm)(mH+nL)e(n-Pn/m)L_Ca0 be" = 0 
                          p=O v=0 

Hence it follows from Lemma C that 

          a0-caobn = a0(1-c) = 0, 

           amemH+nL_caobo - = emH+nL__eaobo = 0 

, 

          a~ec lm) cmH+nL) = caoby for ,u such that n- in/m = v N, 

         a~ = 0, by = 0 for the other p and v, 

which proves the case (I) of our Theorem 1. 

   Next we assume that Amn(z)=mH'(z)-nL'(z)- f'(z)/ f (z) = 0. Then we have 

                             f (z) = CemH(z)-nL(z) 

, where c is a non-zero constant. Substituting this into (1.4) we obtain 

                               n m 

                      (bvl bo)emH- (n-v) L = (a~/Cb0)e~H, 
                                v=0 p=0 

that is, 

                            n m 

          emH-nL+ (bylbo)emH-(n-v)L_ (a~/cbo)e~H-(ao/cbo) = 0. 
                                                                    11=1 

We apply Proposition 2 to this identity. Putting go=mH-nL in Proposition 2 

and using Lemma 2, we have 

                    emH(z)-fLtz)+C1(ao(z)/Cbo(z)) = 0, 

where c1 is a non-zero constant. Hence we have
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                        T (r, emH-nL) = S(r, e'). 

Therefore we rewrite the identity (1.4) as follows 

                    m 
a~ec~tm)(mH-nL)e(n/m)PL_cemH-nL be' = 0 

                        ~=0 v=0 y 

and from Lemma C we have 

           ap-CemH-nLbp = 0 

           amemH-nL _CemH-nLbn"=`(1-e)emx-nL _ 0, 

          a~e(u~m)(mH-nL) = cbvemH-nL for p such that pn/m = v E N, 

        a = 0, by = 0 for the other p and v, 

which proves the case (II) of our Theorem 1. q.e.d. 

   PROOF OF THEOREM 2. Let Nk (r, 0, f) be the counting function of zeros 

of f with their multiplicity not greater than k. We put 

                      m n 

            U(z) :_ a(z)e1"(Z) and V(z) :_ b(z)e'. 

                                        

,u=0 v=0 

Since U and V are not of the form (1.9), Lemma 1 and Lemma A yield 

                  Nm-1(r, 0, U) = m m(r, e")+S(r, eH) (5.6) 

and further 

                  Nn_1(r, 0, V) = n m(r, eL)+S(r, eL), (5.7) 

if V is not of a form S(z)(e rL (z) _ a(z))n, and 

                  Nn(r, 0, V) = n m(r, eL)+S(r, e'), (5.8) 

if n<m and V is of a form S(z)(e±L(z)-a(z))n. 
   Hence we can deduce from (1.8), (5.6), (5.7) and (5.8) that 

     N(r, 0, f 1) = o(m(r, eH) +m(r, e')), N(r, oo, f 1) = o(m(r, a") H-m(r, e1)) 

and consequently taking (1.7) into account we obtain 

     N(r, 0, F) = o(m(r, eH)+m(r, eL)), N(r, oo, F) = o(m(r, ex)+m(r, e")) 

outside a set of finite measure. 
   Thus we have seen that F satisfies the condition (1.3) in our Theorem 1. 
Therefore Theorem 2 follows Theorem 1. q.e.d.
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   6. Picard constants of algebroid surfaces. 

   As an application of Theorem 1 we shall consider the Picard constant of an 
n-sheeted algebroid surface which is the proper existence domain of an n-valued 

algebroid function. This is a number defined for an arbitrary Riemann surface 

R as follows : Let M(R) be the family of non-constant meromorphic functions 

on R and P(f) the number of the values which are not taken by an element f 

of M(R). Then the Picard constant P(R) of R is defined by 

               P(R) = sup {P(f) I f M(R)} 

We note that P(R) is a conformal invariant of R, P(R)>_2 if R is open, and 

also P(R) <2n if R is an n-sheeted algebroid surface (see, for example, Ozawa 

[8]). 
   Ozawa [9], Hiromi-Niino [3] and Aogai [1] gave a characterization of 

regularly branched algebroid surfaces with large Picard constants (cf. [10]). 

Recently Ozawa and Sawada [11], [12], [13] have obtained a characterization 

of three- or four-sheeted algebroid surfaces which are not regularly branched 
and have large Picard constants. Their results for four-sheeted surfaces are 

summarized as follows : 

   THEOREM A. Let R be a four-sheeted algebroid surface defined by an 

irreducible equation 

                y4-S1(z)y3-+S2(z)y2-S3(z)y+S4(z) = 0, (6.1) 

where S, are entire functions and at least one of them is transcendental. 

   (I) Then P(y)=8, only i f y is defined, up to a linear fractional trans-

formation, by (6.1) with 

                  S1(z) = ae"+~1(a3, a4, a5, a6), 
                  S2(z) = b1(a1, a2)aeH+~2(a3, a4, a5, a6),                                                 62) 
                  S3(z) = b2(a1, a2)aeH+b3(a3, a4, a5, a6), (. 

                   S4(z) = ~4(a3, a4, a5, a6), 

where a, are distinct non-zero constants, a is a non-zero constant, H is a non-
constant entire function with H(0)=0, and further b 5(x1, x2i • • • , xn) denotes the 

elementary symmetric expression in x, of degree k. 

   The discriminant D(z) of this surface is of the form 

s 

                        D(z) = A,e' 3 (6.3) 
                                                        ~=0 

for some constants A, (j=0, 1, •.., 6) satisfying A0A6 ~ 0.
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   (II) For every surface R with P(y)=7, y is necessarily defined, up to a 
linear fractional transformation, by (6.1) with the following S; : 

                 S1(z) _ j;eL `z' +r~ (J =1, 2, 3, 4), (6.4) 

where L is a non-constant entire function with L(0)=0 and the Q; and r; are 
constants such as those in one of the following three cases: 

              ~1= 0, r1= b1(b2, b3, b4, b5), 

   Case 1 /32 = ' and 12 =1)2(b2, b3, b4, b5),              a
3 = 1(b1) j3, 13 = (b3(b2, b3, b4, b5), 

              ~4 = 0, 14 = b4(b2, b3, b4, b5), 

             481 = Q, rl _ (P1(b2, b3, b4, b5), 

   Case 2 /32 = ~ 1(b1, b1)13, and 72 = ~ 2(b2, b3, b4, b5),              48
3 = (b2(b1, b1)/3, Is = (I)3(b2, b3, b4, bb), 

              484 = 0, 14 _ (4(b2, b3, b4, b5), 

             ~1 = 48, rl = (P1(b3, b3, b4, b5), 

   Case 3 /32 = (P1(b1, b2)19, and 12 = b2(b3, b3, b4, b5), 
               3 = ( 2(b1, b2) j3, 73 - (b3(b3, b3, b4, b5), 

              /34 = 0, r4 = tt.4(b3, b3, b4, b5), 

where j3 is a non-zero constant and P k (x 1, x2, • • • , x n) is again the elementary 
symmetric expression in x; of degree k. 
   The discriminant z(z) of R has two forms according to the cases. In the 

first two cases 

5 

                      a(z) _ B;e'L, (6.5) 
                                               ~=o 

and in the third case 

s 

                       a(z) _ B; ejL eL (6.6) 
                                                  ~=o 

where Bo, B1, • • • , B5 are constants with BOBS * 0. 

   Using this observation, they have obtained the following characterization 

under certain conditions. 

   THEOREM B. Suppose that L is a polynomial in (6.4). Then every surface 

R given in Cases 1)-3) of Theorem A does not admit the maximal Picard con-
stant, unless B1=B2=B3=B4=0 in (6.5) or (6.6). In other words, P(R)=7. 

   These results hold similarly for three-sheeted algebroid surfaces ([11]). In 

the case of three-sheeted algebroid surfaces Sawada-Tohge [14] proved that 

there is no need for L(z) in the corresponding Theorem B to be a polynomial. 

In their proof the lemma, which is due to E. Mues on Weierstrass products, 

played a central role. This needs to be combined with a kind of Borel's unicity
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lemma, and so demands a disgusting routine of consideration from us. Applying 
Theorem 1, however, takes us to a direct goal from the materials given in [11]. 

   In this section we shall show this process for the case of four-sheeted 
instead of three-sheeted algebroid surfaces, that is, we shall prove that 

   THEOREM 3. Theorem B remains true without assuming that L(z) should be 
a polynomial. 

   To prove this theorem we need the following lemma, which also played a 

very important role in the proof of Theorem B : 

   LEMMA E ([12]). Let R be a surface listed up in Theorem A, whose Picard 
constant is at least 7, so that we may assume that R is defined by the equation 

(6.1) with 
                  S;(z) = b;eM(2)+E; (j =1, 2, 3, 4), 

where 8; and e, are suitable constants and M is a non-constant entire function 
satisfying M(0)=0. Let f be a regular function on R. Then f is representable as 

                     f = F1+F2y+F3y2+F4y3, 

where F1, F2, F3 and F4 are meromorphic functions in C, all of which are regular 
at any point z satisfying M'(z)*0. 

   PROOF OF THEOREM 3. Let R be a surface with P(y)=7, which is defined 
by (6.1) and (6.4) with j3; and r; in one of Cases 1)-3). Suppose that P(R)=8 
so that there exists a regular function f on R with P(f)=8. By Lemma E, f 
is represented by 

                       f = F11+F21y+F31y2+F41y3, 

where F;1 (j=1, 2, 3, 4) are meromorphic functions in C, and have all the poles 

possibly at zeros of L'(z). We may assume that f defines the surface S by the 
equation 

                f 4-U1(z)J 3+U2(z)f 2-U3(z)f +U4(z) = 0 

with U; equal to S; in (6.2). 
   Now let y k and f k are the k-th determinations of y and f, respectively, 
such that 

              fk = F11+F21yk+F3lyk+F4lyk (k =1, 2, 3, 4). 

Then we obtain the equation 

                  f~ 1 y1 yi y~ F11 
                    f 2 _ 1 y2 y2 y2 F21                     f 

3 1 y3 y2 y3 F31 
                        f4 1 y4 y4 2 3                                        y4 F41
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Since we can also write 

         f k = Fl,+F21y k+F9jyk+F4lyk (j = 2, 3 ; k =1, 2, 3, 4) 

for meromorphic functions F~1 (i=1, 2, 3, 4 ; j=2, 3) having their poles possibly 
at zeros of L'(z), we further obtain 

            1 f l f 1 f 1 1 yl Yi Y3 1 Fli 112 113 
            1 f 2 f 2 f 2 1 y2 y2 y2 0 121 122 123 (6

.7)            1 f
3 f3 f3 1 01                                 y3 313 y3 31 1 1                                                                    32 33 ' 

              1 f4 f4 f4 1 J'4 314 y4 O 141 142 143 

Since f and y are four-valued and the determinant of the second matrix in the 
right hand side of (6.7) is not identically equal to zero, y is regular on S. 

Hence we similarly have 

            1 yl yl yl 1 f l f 1 f i 1 G11 G12 G13 
               1 y2 y2 y2 _ 1 1 2 f 2 f 2 0 G21 G22 G23 (6.8)                1 

y3 y3 2 3 y3 y 1 f 3 f 3 f 3 0 G31 G32 G33 
                1 y4 314 2 3                      y4 1 f 4 f 4 f 4 O G41 G42 G43 

where G i; (i=1, 2, 3, 4 ; j=1, 2, 3) are meromorphic functions having their poles 

possibly at zeros of H'(z). 
   Discriminants of S and R are D(z) and a(z) given by (6.3) and either of 

(6.5) and (6.6), respectively. On the other hand 

               1 f l f l f l 2 1 yl y2),32 
2 3 

        D(z) ` 1 f 2 f 2 f 2 and Q(z) = 1 y2 y2 y2                1 f
3 f3 f3 1 y3 y3 2 3                                          y9 

              1 f4 f4 f4 1 y4 314 314 

and thus representations (6.7) and (6.8) imply the identity 

                      D(z) = d(z)G(z)2 (6.9) 
with

G (z) _

Then (6.10) implies 

          N(r, oo, 

Moreover we have

1 F11 F12 F13 

0 F21 F22 F23 

0 F31 F32 F33 

0 F41 F42 F43

1 G11 G12 G13 

0 G21 G22 G23 

0 C31 G32 C33 

0 G41 G42 G43

G) <_ N(r, 0, L') and N(r, 0, G) N(r,

N(r, oc, G) <_ 5N(r, 0, L')

0, H').

(6.10)

(6.11)
and

N(r, 0, G) <_ 6N(r, 0, H'). (6.12)
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In fact, we can prove these two inequalities in the same manner as in [14]. 

Write 

b 

                       /.(z) = BbeEL~z' !J (CL`z'-d;) 

with E {0, 1} and non-zero constants d; (1j5). _< <_ Assume that G (z) has a 

pole of order p (>_1) at a point z0. Then a(z) necessarily vanishes there in 
view of the identity (6.9). Thus there exists an integer j (1j5) _< <_ such that 

eL(to)=df. Since za is a zero of L'(z) of order n (>_1), say, the function 

eL (z) -d1 has zo as a zero of order n+1. It follows therefore that 5(n + 1) 2 p, 

and thus 

                  p 5(n+1)/2 ; 5n, 

which yields the estimate (6.11). Just a parallel reasoning implies the other 

(6.12). 
   We can apply Theorem 1 to the identity (6.9) with (6.3) and either of (6.5) 

and (6.6). In each case we obtain B,=B2=B3=B4=0 for B; of a(z). q.e.d. 
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