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Abstract. By making use of well-known extension theorems on holomorphic 

mappings and CR-mappings and applying Webster's CR-invariant metrics, we give a 

characterization of certain weakly pseudoconvex domains from the viewpoint of 

biholomorphic automorphism groups.

Introduction. This is a continuation of our previous paper [11], and we retain 
the terminology and notation there.

Let D be a bounded domain in Cn and let p•¸•ÝD. Then we say that the condition 

(*) is fulfilled for (D,p) if

( *) there exists a compact set K in D, a sequence {kv} in K and a sequence {ƒÓv} 
in Aut(D) such that limv•¨•‡•¬v(kv)=p.

Now assume that the condition (*) is fulfilled for (D,p). Then we may ask if it is 

possible to determine the global structure of D from the local shape of the boundary •ÝD 

near p. Certainly, it is impossible without any further assumption, as one may see in 

the examples such as the direct product of the open unit disk in C and an arbitrary 

bounded domain in Cn-1. As for this problem, it was shown by Wong [25] that if D 

is a strictly pseudoconvex domain in Cn with smooth boundary and the condition (*) 

is fulfilled for (D,p) for some p•¸•ÝD, then D is biholomorphically equivalent to the open 

unit ball Bn in Cn. It was later extended by Rosay [20] to the case where •ÝD near p is 

C2-smooth and strictly pseudoconvex. It is natural to see what happens when p is a 

weakly (not strictly) pseudoconvex boundary point of D. It was Greene and Krantz [8] 

who first dealt with this problem in the category of weakly pseudoconvex domains in 

Cn with globally Cn+1-smooth boundaries. As a generalization of their result, we 

obtained in [11] the following characterization of the weakly pseudoconvex domain

 •¬, 

where k•¸Z with 1•…k•…n and 0<ƒ¿•¸R, and it is understood that E(k,ƒ¿)=Bn if k=n:
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THEOREM K (Kodama [11]). Let D be a bounded domain in Cn satisfying the 

following conditions:
(1) p=(1,0,...,0)•¸•ÝD•¿•ÝE(k,ƒ¿);

(2) there is an open neighborhood U of p in Cn such that D•¿U=E(k,ƒ¿)•¿U;

(3) the condition (*) is fulfilled for (D,p).
Then D is biholomorphically equivalent to the domain E(k,ƒ¿).

It should be remarked that, in general, E(k,ƒ¿) is not geometrically convex 

and, moreover, its boundary is not smooth at every point x of the form x=

(x1,...,xk,0,...,0). Also, noting the fact that such a boundary point x is an 

accumulation point of the Aut(E(k,ƒ¿))-orbit passing through the origin of Cn, one 

sees that exactly the same conclusion in Theorem K remains valid for an arbitrary 

point x=(x1,...,xk,0,...,0)•¸•ÝD•¿•ÝE(k,ƒ¿) as well as p=(1,0,...,0). This theorem 

was later extended by Kodama, Krantz and Ma [15] to a more general domain, called 

a generalized complex ellipsoid,

•¬

in Cn=Cn1•~¥¥¥•~Cns, where 0<p1,...,ps•¸R and 0<n1,...,ns•¸Z with n=n1+

¥¥¥ +ns, as follows:

THEOREM K-K-M (Kodama, Krantz and Ma [15]). Let D be a bounded domain 

in Cn with a point p•¸•ÝD and E a generalized complex ellipsoid in Cn as above. We assume 

that

(1) p•¸•ÝE and there is an open neighborhood U of p in Cn such that D•¿U=E•¿U;

(2) the condition (*) is fulfilled for (D,p) and also for (E,p).
Then D is biholomorphically equivalent to E. In particular, at least one of the exponents 

pi must be equal to 1.

In view of Kodama [12], [13] (in which the structure of generalized complex 
ellipsoids in Cn with all ni=1 was investigated), it would be natural to ask the following 

questions: In Theorem K-K-M,
(Q.1) can we remove the condition (*) for (E,p)?;
(Q.2) can we prove that D=E as sets?

These cannot be answered in full generality at this moment except when all 

•¬ are positive integers, i.e., the boundary •ÝE is real-analytic (cf. [14]). Recall that 

our proofs there relied heavily upon a result on the localization principle of holomorphic 

automorphisms of generalized complex ellipsoids E with real analytic boundaries due 

to Dini and Selvaggi Primicerio [5], [6]. A glance at their proof tells us that the real 

analyticity of •ÝE cannot be avoided with their technique.

The main purpose of this paper is to give partial affirmative answers to the 

questions (Q.1) and (Q.2) when the boundary •ÝE is not necessarily smooth. In fact, we
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consider here exclusively generalized complex ellipsoids E(n;k,n-k;l,ƒ¿)=E(k,ƒ¿) with 

arbitrary real numbers ƒ¿>0 and prove the following theorems, which were announced 

at the POSTECH International Conference on Several Complex Variables in Pohang, 

South Korea, 1997:

THEOREM 1. Let E1=E(k,ƒ¿), E2=E(l,ƒÀ) be generalized complex ellipsoids in Cn 

with arbitrary real numbers ƒ¿,ƒÀ>0 and let p1•¸•ÝE1, P2•¸•ÝE2. We assume that

(1) k•…n-2 and l•…n-2;

(2) there are open neighborhoods U1 of p1, U2 of p2 in Cn and a biholomorphic 

mapping f:U1•¨U2 such that f(p1)=p2, f(U1•¿E1)=U2•¿E2 and f(U1•¿•ÝE1)=

U2•¿•ÝE2.

Then f extends to a biholomorphic mapping F from E1 onto E2. In particular, we have 

(k,ƒ¿)=(l,ƒÀ).

Combining this with a result of Bell [2; Theorem 2], we obtain the following:

COROLLARY. Let E(k,ƒ¿) and E(l,ƒÀ) be generalized complex ellipsoids in Cn with 

k•…n-2,l•…n-2 and assume that f:E(k,ƒ¿)•¨E(l,ƒÀ) is a proper holomorphic mapping. 

Then (k,ƒ¿)=(l,ƒÀ) and f is a biholomorphic automorphism of E(k,ƒ¿).

THEOREM 2. Let D be a bounded domain in Cn and let E=E(k,ƒ¿) be a generalized 

complex ellipsoid in Cn with 0<ƒ¿•¸R. We assume that

(1) there exist a point p•¸•ÝD•¿•ÝE and an open neighborhood U of p in Cn such 

that D•¿U=E•¿U;

(2) the condition (*) is fulfilled for (D,p). 
Then we have D=E as sets.

We would like to remark that the assumption (1) in Theorem 1 is essential. Indeed, 

consider the generalized complex ellipsoids E1={(z,w)•¸C•~C||z|2+|w|2ƒ¿<1}, E2=B2 

and a branch f of (z,w)•¬(z,wƒ¿) defined in a small neighborhood of a point 

p1=(z0,w0)•¸•ÝE1 with w0•‚0, where 0<ƒ¿•¸R, ƒ¿•‚1. Then f gives rise to a biholomorphic 

equivalence between a neighborhood U1 of p1 and a neighborhood U2 of 

P2:=f(p1)•¸•ÝE2 satisfying the condition (2) in Theorem 1; however, it is clear that f 

cannot be continued to a biholomorphic mapping from E1 onto E2. Also, considering 

the special case ƒ¿=ƒÀ=1 in the corollary above, we see that every proper holomorphic 

self-mapping of the unit ball Bn must be a biholomorphic automorphism of Bn. This 

is just a well-known theorem of Alexander [1].

In Section 1, by making use of Rudin's extension theorem [21;p.311] on 

holomorphic mappings defined near boundary points of Bn, we show some properties 

of generalized complex ellipsoids E(k,ƒ¿), which will be a key step to the proofs of our 

theorems. After this preparation, Theorems 1 and 2 will be proved in Sections 2 and 

3, respectively. Our proofs here are based on some extension theorems on proper 

holomorphic mappings and CR-mappings obtained by Forstneric and Rosay [7], 

Pinchuk [18], [19], Bell [3], and also on the existence of Webster's CR-invariant metrics
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on strictly pseudoconvex real analytic hypersurfaces in Cn without umbilical points 

[22], [23].
The author would like to express his thanks to Professors Junjiro Noguchi and 

Kang-Tae Kim for their useful comments on the subject of this paper.

1. A key lemma. For later purpose, we prove some facts on the structure of 

the model spaces E(k,ƒ¿) with arbitrary real numbers ƒ¿>0.

Throughout the rest of this paper, we use the following notation: For a point 

z=(z1,...,zn)•¸Cn and for a domain E(k,ƒ¿), we set z'=(z1,...,zk), Z"=(zk+1,...,zn),

E=E(k,ƒ¿) and

•¬

which is an open dense subset of •ÝE. Then, by using the facts in the previous paper 

[11; Section 1], the following assertions are easily proved:

 (1.1) •Ý*E is a connected, strictly pseudoconvex, real analytic hypersurface in Cn; 

moreover, it is simply connected if k•…n-2[9;p.346].

(1.2) Aut (E) can be regarded as a subgroup of Aut (Bk•~Cn-k).

(1.3) Aut (E)••Ý*E=•Ý*E and Aut(E) acts transitively on •Ý*E as a real analytic 

CR-automorphism group of •Ý*E.

The following lemma will play a crucial role in our proofs of Theorems 1 and 2 .

LEMMA. Let E=E(k,ƒ¿) be a generalized complex ellipsoid in Cn with k•…n-2 and 

let p•¸•Ý*E. Assume that there are an open neighborhood U of p in Cn and a biholomorphic 

mapping f from U into Cn such that

U•¿•ÝE=U•¿•Ý*E, f(U•¿•Ý*E)=f(U)•¿•ÝBn and f(U•¿E)=f(U)•¿Bn.

Then f extends to a biholomorphic mapping F:E•¨Bn . In particular, we have ƒ¿=1.

PROOF. Since •Ý*E is a connected, strictly pseudoconvex , real analytic hyper

- surface in Cn by (1.1), it follows from a result of Pinchuk [18] , [19;p.193] that f can 

be continued along any path lying in •Ý*E as a locally biholomorphic mapping . Since 
•Ý *E is now simply connected by our assumption k•…n -2

, the monodromy theorem 

guarantees that f extends to a locally biholomorphic mapping F defined on some con

nected open neighborhood V of •Ý*E in Cn such that F(•Ý*E)•¼•ÝBn and F(V•¿E)•¼Bn . 

Now we will proceed in several steps.

(1) F extends to a holomorphic mapping F from E into Bn. To prove this, take 
an arbitrary r with 0<r<1 and put

Kr={(z',z")•¸Ck•~Cn-k||

z'|•…r,|z'|2+|z"|2ƒ¿=1} Since Kr•¼•Ý*E•¼V and Kr is compact in V, one can choose a small ƒÃ=ƒÃ(r)>0 in such 

a way that

Ur,ƒÃ:= {(z',z")•¸Ck•~Cn-k||z'|<r,1-ƒÃ<|z'|2+|z"|2ƒ¿<1+ƒÃ}•¼V .
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Clearly, Ur ,ƒÃ is a bounded Reinhardt domain in Cn. Moreover, since k•…n-2, we have 

Ur ,ƒÃ•¿{z•¸Cn|zj=0}•‚ƒÓ for j=1,...,n. Hence, by a well-known fact [16;p.15] every

 component function Fj of F has a holomorphic extension •¬ to the domain

Ur ,ƒÃ={(z',z")•¸Ck•~Cn-k||z'|<r,|z'|2+|z"|2ƒ¿<1+ƒÃ},

the smallest complete Reinhardt domain in Cn containing Ur.ƒÃ. In particular, putting

Er={(z',z")•¸Ck•~Cn-k||z'|<r,|z'|2+|z"|2ƒ¿<1},

we see that F=(F1,...,Fn) has a holomorphic extension •¬ to Er•¾V. 

Note that Er•¼Es for 0<r<s<1, •¾0<r<1Er=E and that the holomorphic extensions 

Fr are uniquely determined by the values of F on a small neighborhood of the point 

(0,...,0,1)•¸V•¿•Ý*E. Then, by standard argument, one can define a holomorphic 

extension F:E•¾V•¨Cn of F:V•¨Cn.

Now we wish to show that F(E)•¼Bn. For this let us fix an arbitrary point 

z0=(z0',z0")•¸E and set

E(z0)={(z0',z")•¸Ck•~Cn-k||z0'|2+|z"|2ƒ¿<1},

which can be regarded as an open ball in Cn-k. Consider the non-constant, continuous 

plurisubharmonic function •¬ defined on some open neighbor

hood of the closure E(z0) of E(z0) in Cn-k. Then •¬(•ÝE(z0))=0 and •¬(z")<0 on E(z0)•¿V. 

This, combined with the maximum principle for plurisubharmonic functions, guarantees 

that •¬(z0")<0, i.e., F(z0)•¸Bn and accordingly F(E)•¼Bn.

(2) There exists a locally injective, real analytic homomorphism ƒ³:Aut(E)

•¨ Aut(Bn) such that ƒ³(ƒÐ)•¬F=F•¬ƒÐ on E for all ƒÐ•¸Aut(E). Indeed, take an arbitrary ƒÐ•¸

Aut(E). By virtue of (1.2) and (1.3), one can choose an open neighborhood W of the 

point p•¸•Ý*E so small that W•¾ƒÐ(W)•¼V and F is injective on W and on ƒÐ(W). Let us 

consider the biholomorphic mapping •¬. By an 

extension theorem due to Rudin [21;p.311] we obtain an element ƒµ•¸Aut(Bn) such 

that ƒµ(z)=ƒµ(z) for all z•¸F(W•¿E). Note that W•¿E and F(W•¿E) are non-empty open 

subsets of E and Bn, respectively. Then, by the principle of analytic continuation, we 

have that •¬ on E and ƒµ is uniquely determined by ƒÐ. Accordingly, one can 

define a mapping

ƒ³:Aut(E)•¨Aut(Bn)

by setting ƒ³(ƒÐ)=ƒµ so that •¬ on E for all ƒÐ•¸Aut(E).

It is easy to check that ƒ³ is a group homomorphism. Once it is shown that ƒ³ is 

continuous at the identity element idE of Aut(E), it follows that ƒ³ is real analytic on 

Aut(E) (cf.[9;p.117]). Since the topology of Aut(E) satisfies the second axiom of 

countability, we have only to show that ƒ³ is sequentially continuous at idE. For this 

let us take an arbitrary sequence {ƒÐv} in Aut(E) which converges to idE and assume 

that {ƒ³(ƒÐv)} does not converge to the identity element idBn of Aut(Bn). Passing to a
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subsequence, we may assume that there is a neighborhood 0 of idBn in Aut(Bn) such 

that ƒ³(ƒÐv)•¬0 for all v. Pick an arbitrary point x•¸E. Then limv•¨•‡ƒ³(ƒÐv)(F(x))=

limv•¨•‡F(ƒÐv(x))=F(x)•¸Bn, which implies that {ƒ³(ƒÐv)(F(x))} lies in a compact subset of 

Bn. Hence, after taking a subsequence if necessary, we may assume that {ƒ³(ƒÐv)} con

- verges to some element •¬•¸Aut(Bn) (cf.[16;p.82]). Since •¬0, we see that •¬•‚idBn. 

On the other hand, we have •¬(F(z))=limv•¨•‡ƒ³(ƒÐv)(F(z))=limv•¨•‡F(ƒÐv(z))=F(z) for all 

z•¸W•¿E; consequently, •¬=idBn by analytic continuation. This ia a contradiction. 

Therefore, ƒ³ is continuous at idE, as desired.

Finally we claim that ƒ³ is locally injective. It suffices to prove that ƒ³ is injective 

in some neighborhood 0 of idE. To this end, let us select a small open neighborhood 

W of the point p•¸•Ý*E in Cn and non-empty open subsets W1, W2 of W•¿E with the 

properties: F is injective on W, and W1 is a relatively compact subset of W2. We claim 

that 0={ƒÐ•¸Aut(E)|ƒÐ(W1)•¼W2} is what is required. Indeed, it is clear that 0 is an 

open neighborhood of idE in Aut(E). Moreover, assume that ƒ³(ƒÐ1)=ƒ³(ƒÐ2) for ƒÐ1,ƒÐ2•¸0. 

It follows that F(ƒÐ1(z))=ƒ³(ƒÐ1)(F(z))=ƒ³(ƒÐ2)(F(z))=F(ƒÐ2(z)) for all z•¸E. Since Fis injective 

on W2•¼W and since ƒÐ1(z), ƒÐ2(z)•¸W2 for all z•¸W1, this says that ƒÐ1=ƒÐ2 on W1; and 

hence ƒÐ1=ƒÐ2 on E by analytic continuation. Therefore, we have shown that ƒ³ is locally 

injective on Aut(E).

(3) F:E•¨Bn is locally injective. Set S={z•¸E|(JF)(z)=0}, where (JF)(z) denotes 

the holomorphic Jacobian of F at z. Assume that S•‚ƒÓ. Then S is a complex analytic 

subset of E of dimension n-1. Once S•¼{(z',z")•¸Ck•~Cn-k|z"=0}•ßCk is shown, we 

arrive at a contradiction, since dim S=n-1>k=dim Ck by our assumption. Thus we 

have only to show that S•¼Ck•~{0}. To this end, take an arbitrary point x=(x',x")•¸S 

and assume that x"•‚0. We may assume that x is a regular point of S. Recall that 

•¬ on E for all ƒÐ•¸Aut(E) by (2). Then

(JF)(ƒÐ(x))•(JƒÐ)(x)=(Jƒ³(ƒÐ))(F(x))•(JF)(x)=0 and (JƒÐ)(x)•‚0

for all ƒÐ•¸Aut(E). This means that Aut(E)¥x, the Aut(E)-orbit passing through the 

point x, is contained in S. This is impossible. Indeed, since x"•‚0, one can show by 

using the explicit expression of Aut(E(k,ƒ¿)) as in [11;Section1] that the orbit Aut(E)¥x 

is a real analytic submanifold of E of real dimension 2n-1; on the other hand, S near 

x is a real analytic submanifold of E of real dimension 2n-2. Therefore we conclude 

that S•¼Ck•~{0}, completing the proof of (3).

Before proceeding further, we need some preparation. First, notice that Bn is 

homogeneous and each element •¬•¸Aut(Bn) extends to a biholomorphic mapping defined 

in an open neighborhood of Bn. Thus, shrinking the neighborhood V of •Ý*E and 

replacing F by a suitable mapping of the form •¬ with some •¬•¸Aut(Bn), if necessary, 

we may assume that the holomorphic mapping F:E•¾V•¨Cn satisfies an additional 

condition F(0)=0, where 0 stands for the orgin of Cn. Next, let us consider the toral 

subgroups TE and TBn of Aut(E) and Aut(Bn), respectively, induced by the rotations on 

Cn as follows:
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(z1,...,zn)•¬((exp •ã-1ƒÆ1)z1,...,(exp•ã-1ƒÆn)zn),(ƒÆ1,...,ƒÆn)•¸Rn.

Then ƒ³(TE)(0)=ƒ³(TE)(F(0))=F(TE(0))=F(0)=0, which says that ƒ³(TE) is contained in 

the unitary group U(n) of degree n (the isotropy subgroup of Aut(Bn) at the origin 0). 

Since ƒ³(TE) as well as TBn is now a maximal torus in U(n) by (2), it is well-known that 

they are conjugate to each other in U(n), that is, there exists an element ƒÑ•¸U(n) such 

that ƒÑ•Eƒ³(TE)•EƒÑ-1=TBn. Thus, considering •¬ instead of F, ƒ³ if necessary, 

we may further assume that ƒ³(TE)=TBn. Under these assumptions, we claim the 

following:

(4) F:E•¨Bn is, in fact, a biholomorphic mapping. Thanks to the fact (3) one 

can choose a small open ball BƒÏ={z•¸Cn||z|<ƒÏ}•¼E on which F is injective. Then, 

since F(BƒÏ)=F(TE(BƒÏ))=ƒ³(TE)(F(BƒÏ))=TBn(F(BƒÏ)), we see that F(BƒÏ) is a bounded 

Reinhardt domain in Cn with center at •¬. Therefore, by a well-known theorem 

of H. Cartan [21;p.24], the restriction F|BƒÏ:BƒÏ•¨F(BƒÏ) is a linear transformation. 

So we may assume that F•¸Aut(Cn). This, combined with the facts that F(•Ý*E)•¼•ÝBn 

and •Ý*E is dense in •ÝE, guarantees that F(E)=Bn; and hence F:E•¨Bn is a 

biholomorphic mapping. Finally, the assertion ƒ¿=1 follows from a result of Naruki 

[17]. This completes the proof of the Lemma.

2. Proof of Theorem 1. The proof is divided into three cases as follows:

 Case 1. ƒ¿=ƒÀ=1. We have E1=Bn=E2 in this case; hence our theorem follows 

at once from Rudin's result [21;p.311].

Case 2. ƒ¿•‚1,ƒÀ=1 or ƒ¿=1,ƒÀ•‚1. We claim that this case does not occur. Indeed, 

assume the contrary. Since •Ý*E1 and •Ý*E2 are open dense subsets of •ÝE1 and •ÝE2, 

respectively, and since f:U1•¨U2 is a biholomorphic mapping, we may assume that 

p1•¸•Ý*E1, U1•¿•ÝE1=U1•¿•Ý*E1, ƒ¿•‚1 and ƒÀ=1.

In particular, we have E2=Bn. As an immediate consequence of the Lemma in Section 

1, we now have ƒ¿=1, a contradiction.

Case 3. ƒ¿•‚1, ƒÀ•‚1. Without loss of generality, we may assume that pi•¸•Ý*Ei and 

Ui•¿•ÝEi=Ui•¿•Ý*Ei for each i=1,2. Here, we claim that any strictly pseudoconvex real 

analytic hypersurface •Ý*Ei has no umbilical points in the sense of CR-geometry; hence, 

Webster's CR-invariant Riemannian metric •¬i can be defined on the whole space •Ý*Ei. 

(For the notion of umbilical points and Webster's CR-invariant metrics in CR-geometry, 

see [4]; and also, [22], [23], [24].) To prove our claim, assume that there exists an 

unbilical point on •Ý*Ei. Then, all the points of •Ý*Ei are umbilical, since Aut(Ei) acts 

transitively on •Ý*Ei by (1.3). Hence, •Ý*Ei must be locally biholomorphically equivalent 

to the sphere •ÝBn (see, for example, [22; p.213]). By the Lemma in Section 1 we 

conclude that ƒ¿=1 or ƒÀ=1 according as i=1 or i=2. This is a contradiction, as desired. 

Moreover, we see that (•Ý*Ei,•¬i) is complete as a Riemannian manifold, because •Ý*Ei 

is homogeneous under the CR-automorphism group Aut(Ei). As a result, each (•Ý*Ei,•¬i)
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is a connected and simply connected, complete real analytic Riemannian manifold . On 

the other hand, f:U1•¿•Ý*E1•¨U2•¿•Ý*E2 is an isometry with respect to the CR-invariant 

metrics •¬1 and •¬2. By a well-known fact in Riemannian geometry [10; p . 256], f can 

now be uniquely extended to a global isometry F:(•Ý*E1,•¬1)•¨(•Ý*E2,•¬2) . It is easily 

seen that F:•Ý*E1•¨•Ý*E2 is a real analytic CR-diffeomorphism. Accordingly , by a result 

of Pinchuk [18], [19; p.186] there are open neighborhoods V1 of •Ý*E1 and V2 of •Ý*E2 

in Cn such that F:•Ý*E1•¨•Ý*E2 and its inverse G:=F-1:•Ý*E2•¨•Ý*E1 extend to locally 

biholomorphic mappings written in the same notation F:V1•¨Cn and G: V2•¨Cn 

satisfying F(V1•¿El)•¼E2 and G(V2•¿E2)•¼El. Hence, in exactly the same way as in (1) 

of the proof of the Lemma in Section 1, it can be shown that F and G extend to 

holomorphic mappings F:E1•¨Cn and G:E2•¨Cn. Moreover , replacing •¬(z") by

 •¬ 1(z")=ƒÏ2(F(z'0,z")) in (1) of the proof of the Lemma in Section 1, we can prove that 

F(E1)•¼E2, where ƒÏ2 is the continuous plurisubharmonic function on Cn defined by 

•¬ , z•¸Cn. Analogously, we see that G(E2)•¼El. 

Since •¬ near •Ý*E1 and •¬ near •Ý*E2, we conclude by analytic 

continuation that •¬ and •¬; consequently, F:E1•¨E2 is a biholo-

morphic mapping. Finally the assertion (k,ƒ¿)=(l,ƒÀ) follows now from Naruki [17] , 

completing the proof of Theorem 1.

3. Proof of Theorem 2. The case k=n-1 is contained in our previous paper [13] .
Thus it suffices to prove Theorem 2 when k•…n-2. We have two cases to consider:

Case 1. The point p•¸•ÝD is a strictly pseudoconvex boundary point . Hence D 

is biholomorphically equivalent to Bn by a result of Rosay [20] . Fix a biholomorphic 

mapping F:D•¨Bn. Using a theorem on the boundary continuity of proper holomorphic 

mappings due to Forstneric and Rosay [7], one sees that F extends to a homeomorphism 

from a connected open neighborhood M of p in •ÝD•¿•ÝE onto an open subset M' of 

•ÝBn. Accordingly, by results of Bell [3; Theorem 2], Pinchuk [19; p . 186], the 

CR-homeomorphism F: M•¨M' can be extended to a biholomorphism between some 

open neighborhoods O of M and O' of M' in Cn. Hence, E=Bn by the Lemma in 

Section 1 and F extends to a biholomorphic automorphism ƒ³ of Bn by [21; p .311]. 

Set ƒµ=ƒ³-1•¸Aut(Bn). Then, since ƒµ=F-1 near M', we have that ƒµ=F-1 on Bn by 

analytic continuation. Thus we obtain that D=F-1(Bn)=ƒµ(Bn)=Bn=E , as desired.

Case 2. The point p•¸•ÝD is not a strictly pseudoconvex boundary point . The point 

p must be of the form p=(p1,...,Pk,0,...,0) by (1.1). Therefore, it follows at once 

by Theorem K in the introduction that there exists a biholomorphic mapping F:D•¨E . 

In exactly the same way as in the proof of [13; Lemma 3]
, it can be shown that F 

extends to a homeomorphism from an open subset of U•¿•Ý*E•¿•ÝD onto an open subset 

of •Ý*E. By the same reasoning as above, one can now find points p1•¸U•¿•Ý*E
,p2•¸•Ý*E, 

open neighborhoods U1 of p1, U2 of p2 in Cn and a biholomorphic extension F: U1 •¨U2 

of F satisfying all the conditions in (2) of Theorem 1 . Thus F extends to a biholomorphic 

automorphism ƒ³ of E; hence, repeating exactly the same arguments as in Case 1
, we
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can show that D=E as sets. This completes the proof of Theorem 2.
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