A CHARACTERIZATION OF CERTAIN WEAKLY PSEUDOCONVEX DOMAINS

Dedicated to Professor Fuichi Uchida on his sixtieth birthday

Akio Kodama

(Received July 8, 1997, revised March 9, 1998)

Abstract

By making use of well-known extension theorems on holomorphic mappings and CR-mappings and applying Webster's CR-invariant metrics, we give a characterization of certain weakly pseudoconvex domains from the viewpoint of biholomorphic automorphism groups.

Introduction. This is a continuation of our previous paper [11], and we retain the terminology and notation there.

Let D be a bounded domain in C^{n} and let $p \in \partial D$. Then we say that the condition $(*)$ is fulfilled for (D, p) if
there exists a compact set K in D, a sequence $\left\{k_{v}\right\}$ in K and a sequence
$\left\{\varphi_{v}\right\}$ in $\operatorname{Aut}(D)$ such that $\lim _{v \rightarrow \infty} \varphi_{v}\left(k_{v}\right)=p$.
Now assume that the condition $(*)$ is fulfilled for (D, p). Then we may ask if it is possible to determine the global structure of D from the local shape of the boundary ∂D near p. Certainly, it is impossible without any further assumption, as one may see in the examples such as the direct product of the open unit disk in C and an arbitrary bounded domain in C^{n-1}. As for this problem, it was shown by Wong [25] that if D is a strictly pseudoconvex domain in C^{n} with smooth boundary and the condition (*) is fulfilled for (D, p) for some $p \in \partial D$, then D is biholomorphically equivalent to the open unit ball B^{n} in C^{n}. It was later extended by Rosay [20] to the case where ∂D near p is C^{2}-smooth and strictly pseudoconvex. It is natural to see what happens when p is a weakly (not strictly) pseudoconvex boundary point of D. It was Greene and Krantz [8] who first dealt with this problem in the category of weakly pseudoconvex domains in C^{n} with globally C^{n+1}-smooth boundaries. As a generalization of their result, we obtained in [11] the following characterization of the weakly pseudoconvex domain

$$
E(k, \alpha)=\left\{\left.z \in C^{n}\left|\sum_{i=1}^{k}\right| z_{i}\right|^{2}+\left(\sum_{j=k+1}^{n}\left|z_{j}\right|^{2}\right)^{\alpha}<1\right\},
$$

where $k \in \boldsymbol{Z}$ with $1 \leqq k \leqq n$ and $0<\alpha \in \boldsymbol{R}$, and it is understood that $E(k, \alpha)=B^{n}$ if $k=n$:

[^0]Theorem K (Kodama [11]). Let D be a bounded domain in C^{n} satisfying the following conditions:
(1) $p=(1,0, \ldots, 0) \in \partial D \cap \partial E(k, \alpha)$;
(2) there is an open neighborhood U of p in C^{n} such that $D \cap U=E(k, \alpha) \cap U$;
(3) the condition (*) is fulfilled for (D, p).

Then D is biholomorphically equivalent to the domain $E(k, \alpha)$.
It should be remarked that, in general, $E(k, \alpha)$ is not geometrically convex and, moreover, its boundary is not smooth at every point x of the form $x=$ $\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)$. Also, noting the fact that such a boundary point x is an accumulation point of the $\operatorname{Aut}(E(k, \alpha))$-orbit passing through the origin of C^{n}, one sees that exactly the same conclusion in Theorem K remains valid for an arbitrary point $x=\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) \in \partial D \cap \partial E(k, \alpha)$ as well as $p=(1,0, \ldots, 0)$. This theorem was later extended by Kodama, Krantz and Ma [15] to a more general domain, called a generalized complex ellipsoid,

$$
E\left(n ; n_{1}, \ldots, n_{s} ; p_{1}, \ldots, p_{s}\right)=\left\{\left(z_{1}, \ldots, z_{s}\right) \in C^{n_{1}} \times \cdots \times\left. C^{n_{s}}\left|\sum_{i=1}^{s}\right| z_{i}\right|^{2 p_{i}}<1\right\}
$$

in $\boldsymbol{C}^{n}=\boldsymbol{C}^{n_{1}} \times \cdots \times \boldsymbol{C}^{n_{s}}$, where $0<p_{1}, \ldots, p_{s} \in \boldsymbol{R}$ and $0<n_{1}, \ldots, n_{s} \in \boldsymbol{Z}$ with $n=n_{1}+$ $\cdots+n_{s}$, as follows:

Theorem K-K-M (Kodama, Krantz and Ma [15]). Let D be a bounded domain in C^{n} with a point $p \in \partial D$ and E a generalized complex ellipsoid in C^{n} as above. We assume that
(1) $p \in \partial E$ and there is an open neighborhood U of p in C^{n} such that $D \cap U=E \cap U$;
(2) the condition (*) is fulfilled for (D, p) and also for (E, p).

Then D is biholomorphically equivalent to E. In particular, at least one of the exponents p_{i} must be equal to 1 .

In view of Kodama [12], [13] (in which the structure of generalized complex ellipsoids in C^{n} with all $n_{i}=1$ was investigated), it would be natural to ask the following questions: In Theorem K-K-M,
(Q.1) can we remove the condition (*) for (E, p)?;
(Q.2) can we prove that $D=E$ as sets?

These cannot be answered in full generality at this moment except when all p_{i} 's are positive integers, i.e., the boundary ∂E is real-analytic (cf. [14]). Recall that our proofs there relied heavily upon a result on the localization principle of holomorphic automorphisms of generalized complex ellipsoids E with real analytic boundaries due to Dini and Selvaggi Primicerio [5], [6]. A glance at their proof tells us that the real analyticity of ∂E cannot be avoided with their technique.

The main purpose of this paper is to give partial affirmative answers to the questions (Q.1) and (Q.2) when the boundary ∂E is not necessarily smooth. In fact, we
consider here exclusively generalized complex ellipsoids $E(n ; k, n-k ; 1, \alpha)=E(k, \alpha)$ with arbitrary real numbers $\alpha>0$ and prove the following theorems, which were announced at the POSTECH International Conference on Several Complex Variables in Pohang, South Korea, 1997:

Theorem 1. Let $E_{1}=E(k, \alpha), E_{2}=E(1, \beta)$ be generalized complex ellipsoids in C^{n} with arbitrary real numbers $\alpha, \beta>0$ and let $p_{1} \in \partial E_{1}, p_{2} \in \partial E_{2}$. We assume that
(1) $k \leqq n-2$ and $l \leqq n-2$;
(2) there are open neighborhoods U_{1} of p_{1}, U_{2} of p_{2} in C^{n} and a biholomorphic mapping $f: U_{1} \rightarrow U_{2}$ such that $f\left(p_{1}\right)=p_{2}, f\left(U_{1} \cap E_{1}\right)=U_{2} \cap E_{2}$ and $f\left(U_{1} \cap \partial E_{1}\right)=$ $U_{2} \cap \partial E_{2}$.
Then f extends to a biholomorphic mapping F from E_{1} onto E_{2}. In particular, we have $(k, \alpha)=(l, \beta)$.

Combining this with a result of Bell [2; Theorem 2], we obtain the following:
Corollary. Let $E(k, \alpha)$ and $E(l, \beta)$ be generalized complex ellipsoids in C^{n} with $k \leqq n-2, l \leqq n-2$ and assume that $f: E(k, \alpha) \rightarrow E(l, \beta)$ is a proper holomorphic mapping. Then $(k, \alpha)=(l, \beta)$ and f is a biholomorphic automorphism of $E(k, \alpha)$.

Theorem 2. Let D be a bounded domain in C^{n} and let $E=E(k, \alpha)$ be a generalized complex ellipsoid in \boldsymbol{C}^{n} with $0<\alpha \in \boldsymbol{R}$. We assume that
(1) there exist a point $p \in \partial D \cap \partial E$ and an open neighborhood U of p in C^{n} such that $D \cap U=E \cap U$;
(2) the condition (*) is fulfilled for (D, p).

Then we have $D=E$ as sets.
We would like to remark that the assumption (1) in Theorem 1 is essential. Indeed, consider the generalized complex ellipsoids $E_{1}=\left\{(z, w) \in C \times\left. C| | z\right|^{2}+|w|^{2 \alpha}<1\right\}, E_{2}=B^{2}$ and a branch f of $(z, w) \mapsto\left(z, w^{\alpha}\right)$ defined in a small neighborhood of a point $p_{1}=\left(z_{o}, w_{o}\right) \in \partial E_{1}$ with $w_{o} \neq 0$, where $0<\alpha \in \boldsymbol{R}, \alpha \neq 1$. Then f gives rise to a biholomorphic equivalence between a neighborhood U_{1} of p_{1} and a neighborhood U_{2} of $p_{2}:=f\left(p_{1}\right) \in \partial E_{2}$ satisfying the condition (2) in Theorem 1; however, it is clear that f cannot be continued to a biholomorphic mapping from E_{1} onto E_{2}. Also, considering the special case $\alpha=\beta=1$ in the corollary above, we see that every proper holomorphic self-mapping of the unit ball B^{n} must be a biholomorphic automorphism of B^{n}. This is just a well-known theorem of Alexander [1].

In Section 1, by making use of Rudin's extension theorem [21; p. 311] on holomorphic mappings defined near boundary points of B^{n}, we show some properties of generalized complex ellipsoids $E(k, \alpha)$, which will be a key step to the proofs of our theorems. After this preparation, Theorems 1 and 2 will be proved in Sections 2 and 3 , respectively. Our proofs here are based on some extension theorems on proper holomorphic mappings and CR-mappings obtained by Forstnerič and Rosay [7], Pinchuk [18], [19], Bell [3], and also on the existence of Webster's CR-invariant metrics
on strictly pseudoconvex real analytic hypersurfaces in C^{n} without umbilical points [22], [23].

The author would like to express his thanks to Professors Junjiro Noguchi and Kang-Tae Kim for their useful comments on the subject of this paper.

1. A key lemma. For later purpose, we prove some facts on the structure of the model spaces $E(k, \alpha)$ with arbitrary real numbers $\alpha>0$.

Throughout the rest of this paper, we use the following notation: For a point $z=\left(z_{1}, \ldots, z_{n}\right) \in \boldsymbol{C}^{n}$ and for a domain $E(k, \alpha)$, we set $z^{\prime}=\left(z_{1}, \ldots, z_{k}\right), z^{\prime \prime}=\left(z_{k+1}, \ldots, z_{n}\right)$, $E=E(k, \alpha)$ and

$$
\partial^{*} E=\left\{\left(z^{\prime}, z^{\prime \prime}\right) \in \boldsymbol{C}^{k} \times C^{n-k}\left|z^{\prime \prime} \neq 0,\left|z^{\prime}\right|^{2}+\left|z^{\prime \prime}\right|^{2 \alpha}=1\right\}\right.
$$

which is an open dense subset of ∂E. Then, by using the facts in the previous paper [11; Section 1], the following assertions are easily proved:
(1.1) $\partial^{*} E$ is a connected, strictly pseudoconvex, real analytic hypersurface in C^{n}; moreover, it is simply connected if $k \leqq n-2$ [9; p. 346].
(1.2) $\operatorname{Aut}(E)$ can be regarded as a subgroup of $\operatorname{Aut}\left(B^{k} \times C^{n-k}\right)$.
(1.3) $\operatorname{Aut}(E) \cdot \partial^{*} E=\partial^{*} E$ and $\operatorname{Aut}(E)$ acts transitively on $\partial^{*} E$ as a real analytic CR-automorphism group of $\partial^{*} E$.

The following lemma will play a crucial role in our proofs of Theorems 1 and 2.
Lemma. Let $E=E(k, \alpha)$ be a generalized complex ellipsoid in C^{n} with $k \leqq n-2$ and let $p \in \partial^{*} E$. Assume that there are an open neighborhood U of p in C^{n} and a biholomorphic mapping f from U into C^{n} such that

$$
U \cap \partial E=U \cap \partial^{*} E, f\left(U \cap \partial^{*} E\right)=f(U) \cap \partial B^{n} \quad \text { and } \quad f(U \cap E)=f(U) \cap B^{n} .
$$

Then f extends to a biholomorphic mapping $F: E \rightarrow B^{n}$. In particular, we have $\alpha=1$.
Proof. Since $\partial^{*} E$ is a connected, strictly pseudoconvex, real analytic hypersurface in C^{n} by (1.1), it follows from a result of Pinchuk [18], [19; p. 193] that f can be continued along any path lying in $\partial^{*} E$ as a locally biholomorphic mapping. Since $\partial^{*} E$ is now simply connected by our assumption $k \leqq n-2$, the monodromy theorem guarantees that f extends to a locally biholomorphic mapping F defined on some connected open neighborhood V of $\partial^{*} E$ in C^{n} such that $F\left(\partial^{*} E\right) \subset \partial B^{n}$ and $F(V \cap E) \subset B^{n}$. Now we will proceed in several steps.
(1) F extends to a holomorphic mapping \tilde{F} from E into B^{n}. To prove this, take an arbitrary r with $0<r<1$ and put

$$
K_{r}=\left\{\left(z^{\prime}, z^{\prime \prime}\right) \in C^{k} \times C^{n-k}| | z^{\prime}\left|\leqq r,\left|z^{\prime}\right|^{2}+\left|z^{\prime \prime}\right|^{2 \alpha}=1\right\} .\right.
$$

Since $K_{r} \subset \partial^{*} E \subset V$ and K_{r} is compact in V, one can choose a small $\varepsilon=\varepsilon(r)>0$ in such a way that

$$
U_{r, \varepsilon}:=\left\{\left(z^{\prime}, z^{\prime \prime}\right) \in \boldsymbol{C}^{k} \times \boldsymbol{C}^{n-k}| | z^{\prime}\left|<r, 1-\varepsilon<\left|z^{\prime}\right|^{2}+\left|z^{\prime \prime}\right|^{2 \alpha}<1+\varepsilon\right\} \subset V .\right.
$$

Clearly, $U_{r, \varepsilon}$ is a bounded Reinhardt domain in C^{n}. Moreover, since $k \leqq n-2$, we have $U_{r, \varepsilon} \cap\left\{z \in C^{n} \mid z_{j}=0\right\} \neq \varnothing$ for $j=1, \ldots, n$. Hence, by a well-known fact [16; p. 15] every component function F_{j} of F has a holomorphic extension F_{j}^{r} to the domain

$$
\hat{U}_{r, \varepsilon}=\left\{\left(z^{\prime}, z^{\prime \prime}\right) \in \boldsymbol{C}^{k} \times \boldsymbol{C}^{n-k}| | z^{\prime}\left|<r,\left|z^{\prime}\right|^{2}+\left|z^{\prime \prime}\right|^{2 \alpha}<1+\varepsilon\right\},\right.
$$

the smallest complete Reinhardt domain in C^{n} containing $U_{r, \varepsilon}$. In particular, putting

$$
E_{r}=\left\{\left(z^{\prime}, z^{\prime \prime}\right) \in C^{k} \times C^{n-k}| | z^{\prime}\left|<r,\left|z^{\prime}\right|^{2}+\left|z^{\prime \prime}\right|^{2 \alpha}<1\right\},\right.
$$

we see that $F=\left(F_{1}, \ldots, F_{n}\right)$ has a holomorphic extension $F^{r}:=\left(F_{1}^{r}, \ldots, F_{n}^{r}\right)$ to $E_{r} \cup V$. Note that $E_{r} \subset E_{s}$ for $0<r<s<1, \bigcup_{0<r<1} E_{r}=E$ and that the holomorphic extensions F^{r} are uniquely determined by the values of F on a small neighborhood of the point $(0, \ldots, 0,1) \in V \cap \partial^{*} E$. Then, by standard argument, one can define a holomorphic extension $\tilde{F}: E \cup V \rightarrow C^{n}$ of $F: V \rightarrow C^{n}$.

Now we wish to show that $\tilde{F}(E) \subset B^{n}$. For this let us fix an arbitrary point $z_{o}=\left(z_{o}^{\prime}, z_{o}^{\prime \prime}\right) \in E$ and set

$$
E\left(z_{o}\right)=\left\{\left(z_{o}^{\prime}, z^{\prime \prime}\right) \in \boldsymbol{C}^{k} \times\left.\boldsymbol{C}^{n-k}| | z_{o}^{\prime}\right|^{2}+\left|z^{\prime \prime}\right|^{2 \alpha}<1\right\},
$$

which can be regarded as an open ball in C^{n-k}. Consider the non-constant, continuous plurisubharmonic function $\psi: z^{\prime \prime} \mapsto-1+\left|\tilde{F}\left(z_{o}^{\prime}, z^{\prime \prime}\right)\right|^{2}$ defined on some open neighborhood of the closure $\overline{E\left(z_{o}\right)}$ of $E\left(z_{o}\right)$ in C^{n-k}. Then $\psi\left(\partial E\left(z_{o}\right)\right)=0$ and $\psi\left(z^{\prime \prime}\right)<0$ on $E\left(z_{o}\right) \cap V$. This, combined with the maximum principle for plurisubharmonic functions, guarantees that $\psi\left(z_{o}^{\prime \prime}\right)<0$, i.e., $\tilde{F}\left(z_{o}\right) \in B^{n}$ and accordingly $\tilde{F}(E) \subset B^{n}$.
(2) There exists a locally injective, real analytic homomorphism $\Phi: \operatorname{Aut}(E) \rightarrow$ $\operatorname{Aut}\left(B^{n}\right)$ such that $\Phi(\sigma) \circ \tilde{F}=\tilde{F} \circ \sigma$ on E for all $\sigma \in \operatorname{Aut}(E)$. Indeed, take an arbitrary $\sigma \in$ $\operatorname{Aut}(E)$. By virtue of (1.2) and (1.3), one can choose an open neighborhood W of the point $p \in \partial^{*} E$ so small that $W \cup \sigma(W) \subset V$ and \widetilde{F} is injective on W and on $\sigma(W)$. Let us consider the biholomorphic mapping $\Psi:=\tilde{F} \circ \sigma \circ(\tilde{F} \mid W)^{-1}: \tilde{F}(W) \rightarrow \tilde{F}(\sigma(W))$. By an extension theorem due to Rudin [21; p. 311] we obtain an element $\tilde{\Psi} \in \operatorname{Aut}\left(B^{n}\right)$ such that $\tilde{\Psi}(z)=\Psi(z)$ for all $z \in \tilde{F}(W \cap E)$. Note that $W \cap E$ and $\tilde{F}(W \cap E)$ are non-empty open subsets of E and B^{n}, respectively. Then, by the principle of analytic continuation, we have that $\tilde{\Psi} \circ \tilde{F}=\tilde{F} \circ \sigma$ on E and $\tilde{\Psi}$ is uniquely determined by σ. Accordingly, one can define a mapping

$$
\Phi: \operatorname{Aut}(E) \rightarrow \operatorname{Aut}\left(B^{n}\right)
$$

by setting $\Phi(\sigma)=\widetilde{\Psi}$ so that $\Phi(\sigma) \circ \tilde{F}=\widetilde{F} \circ \sigma$ on E for all $\sigma \in \operatorname{Aut}(E)$.
It is easy to check that Φ is a group homomorphism. Once it is shown that Φ is continuous at the identity element id_{E} of $\operatorname{Aut}(E)$, it follows that Φ is real analytic on $\operatorname{Aut}(E)$ (cf. [9; p. 117]). Since the topology of $\operatorname{Aut}(E)$ satisfies the second axiom of countability, we have only to show that Φ is sequentially continuous at id_{E}. For this let us take an arbitrary sequence $\left\{\sigma_{v}\right\}$ in $\operatorname{Aut}(E)$ which converges to id_{E} and assume that $\left\{\Phi\left(\sigma_{\mathrm{v}}\right)\right\}$ does not converge to the identity element $\mathrm{id}_{B^{n}}$ of $\operatorname{Aut}\left(B^{n}\right)$. Passing to a
subsequence, we may assume that there is a neighborhood O of $\operatorname{id}_{B^{n}}$ in $\operatorname{Aut}\left(B^{n}\right)$ such that $\Phi\left(\sigma_{v}\right) \notin O$ for all v. Pick an arbitrary point $x \in E$. Then $\lim _{v \rightarrow \infty} \Phi\left(\sigma_{v}\right)(\tilde{F}(x))=$ $\lim _{v \rightarrow \infty} \tilde{F}\left(\sigma_{v}(x)\right)=\tilde{F}(x) \in B^{n}$, which implies that $\left\{\Phi\left(\sigma_{v}\right)(\tilde{F}(x))\right\}$ lies in a compact subset of B^{n}. Hence, after taking a subsequence if necessary, we may assume that $\left\{\Phi\left(\sigma_{v}\right)\right\}$ converges to some element $g \in \operatorname{Aut}\left(B^{n}\right)$ (cf. [16; p. 82]). Since $g \neq O$, we see that $g \neq \mathrm{id}_{B^{n}}$. On the other hand, we have $g(\tilde{F}(z))=\lim _{v \rightarrow \infty} \Phi\left(\sigma_{v}\right)(\tilde{F}(z))=\lim _{v \rightarrow \infty} \tilde{F}\left(\sigma_{v}(z)\right)=\widetilde{F}(z)$ for all $z \in W \cap E$; consequently, $g=\mathrm{id}_{B^{n}}$ by analytic continuation. This ia a contradiction. Therefore, Φ is continuous at id_{E}, as desired.

Finally we claim that Φ is locally injective. It suffices to prove that Φ is injective in some neighborhood O of id_{E}. To this end, let us select a small open neighborhood W of the point $p \in \hat{\partial}^{*} E$ in C^{n} and non-empty open subsets W_{1}, W_{2} of $W \cap E$ with the properties: \tilde{F} is injective on W, and W_{1} is a relatively compact subset of W_{2}. We claim that $O=\left\{\sigma \in \operatorname{Aut}(E) \mid \sigma\left(\bar{W}_{1}\right) \subset W_{2}\right\}$ is what is required. Indeed, it is clear that O is an open neighborhood of id_{E} in $\operatorname{Aut}(E)$. Moreover, assume that $\Phi\left(\sigma_{1}\right)=\Phi\left(\sigma_{2}\right)$ for $\sigma_{1}, \sigma_{2} \in O$. It follows that $\widetilde{F}\left(\sigma_{1}(z)\right)=\Phi\left(\sigma_{1}\right)(\tilde{F}(z))=\Phi\left(\sigma_{2}\right)(\tilde{F}(z))=\widetilde{F}\left(\sigma_{2}(z)\right)$ for all $z \in E$. Since \tilde{F} is injective on $W_{2} \subset W$ and since $\sigma_{1}(z), \sigma_{2}(z) \in W_{2}$ for all $z \in W_{1}$, this says that $\sigma_{1}=\sigma_{2}$ on W_{1}; and hence $\sigma_{1}=\sigma_{2}$ on E by analytic continuation. Therefore, we have shown that Φ is locally injective on $\operatorname{Aut}(E)$.
(3) $\tilde{F}: E \rightarrow B^{n}$ is locally injective. Set $S=\{z \in E \mid(J \tilde{F})(z)=0\}$, where $(J \tilde{F})(z)$ denotes the holomorphic Jacobian of \widetilde{F} at z. Assume that $S \neq \varnothing$. Then S is a complex analytic subset of E of dimension $n-1$. Once $S \subset\left\{\left(z^{\prime}, z^{\prime \prime}\right) \in \boldsymbol{C}^{k} \times \boldsymbol{C}^{n-k} \mid z^{\prime \prime}=0\right\} \equiv \boldsymbol{C}^{k}$ is shown, we arrive at a contradiction, since $\operatorname{dim} S=n-1>k=\operatorname{dim} C^{k}$ by our assumption. Thus we have only to show that $S \subset C^{k} \times\{0\}$. To this end, take an arbitrary point $x=\left(x^{\prime}, x^{\prime \prime}\right) \in S$ and assume that $x^{\prime \prime} \neq 0$. We may assume that x is a regular point of S. Recall that $\tilde{F} \circ \sigma=\Phi(\sigma) \circ \tilde{F}$ on E for all $\sigma \in \operatorname{Aut}(E)$ by (2). Then

$$
(J \tilde{F})(\sigma(x)) \cdot(J \sigma)(x)=(J \Phi(\sigma))(\tilde{F}(x)) \cdot(J \tilde{F})(x)=0 \quad \text { and } \quad(J \sigma)(x) \neq 0
$$

for all $\sigma \in \operatorname{Aut}(E)$. This means that $\operatorname{Aut}(E) \cdot x$, the $\operatorname{Aut}(E)$-orbit passing through the point x, is contained in S. This is impossible. Indeed, since $x^{\prime \prime} \neq 0$, one can show by using the explicit expression of $\operatorname{Aut}(E(k, \alpha))$ as in [11; Section 1] that the orbit $\operatorname{Aut}(E) \cdot x$ is a real analytic submanifold of E of real dimension $2 n-1$; on the other hand, S near x is a real analytic submanifold of E of real dimension $2 n-2$. Therefore we conclude that $S \subset C^{k} \times\{0\}$, completing the proof of (3).

Before proceeding further, we need some preparation. First, notice that B^{n} is homogeneous and each element $g \in \operatorname{Aut}\left(B^{n}\right)$ extends to a biholomorphic mapping defined in an open neighborhood of \bar{B}^{n}. Thus, shrinking the neighborhood V of $\partial^{*} E$ and replacing \tilde{F} by a suitable mapping of the form $g \circ \tilde{F}$ with some $g \in \operatorname{Aut}\left(B^{n}\right)$, if necessary, we may assume that the holomorphic mapping $\widetilde{F}: E \cup V \rightarrow C^{n}$ satisfies an additional condition $\tilde{F}(o)=o$, where o stands for the orgin of C^{n}. Next, let us consider the toral subgroups T_{E} and $T_{B^{n}}$ of $\operatorname{Aut}(E)$ and $\operatorname{Aut}\left(B^{n}\right)$, respectively, induced by the rotations on C^{n} as follows:

$$
\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\left(\exp \sqrt{-1} \theta_{1}\right) z_{1}, \ldots,\left(\exp \sqrt{-1} \theta_{n}\right) z_{n}\right), \quad\left(\theta_{1}, \ldots, \theta_{n}\right) \in R^{n}
$$

Then $\Phi\left(T_{E}\right)(o)=\Phi\left(T_{E}\right)(\tilde{F}(o))=\tilde{F}\left(T_{E}(o)\right)=\tilde{F}(o)=o$, which says that $\Phi\left(T_{E}\right)$ is contained in the unitary group $U(n)$ of degree n (the isotropy subgroup of $\operatorname{Aut}\left(B^{n}\right)$ at the origin o). Since $\Phi\left(T_{E}\right)$ as well as $T_{B^{n}}$ is now a maximal torus in $U(n)$ by (2), it is well-known that they are conjugate to each other in $U(n)$, that is, there exists an element $\tau \in U(n)$ such that $\tau \cdot \Phi\left(T_{E}\right) \cdot \tau^{-1}=T_{B^{n}}$. Thus, considering $\tau \circ \tilde{F}, \tau \circ \Phi \circ \tau^{-1}$ instead of \tilde{F}, Φ if necessary, we may further assume that $\Phi\left(T_{E}\right)=T_{B^{n}}$. Under these assumptions, we claim the following:
(4) $\tilde{F}: E \rightarrow B^{n}$ is, in fact, a biholomorphic mapping. Thanks to the fact (3) one can choose a small open ball $B_{\rho}=\left\{z \in C^{n}| | z \mid<\rho\right\} \subset E$ on which \tilde{F} is injective. Then, since $\tilde{F}\left(B_{\rho}\right)=\tilde{F}\left(T_{E}\left(B_{\rho}\right)\right)=\Phi\left(T_{E}\right)\left(\tilde{F}\left(B_{\rho}\right)\right)=T_{B^{n}}\left(\tilde{F}\left(B_{\rho}\right)\right)$, we see that $\tilde{F}\left(B_{\rho}\right)$ is a bounded Reinhardt domain in C^{n} with center at $\tilde{F}(o)=o$. Therefore, by a well-known theorem of H. Cartan [21; p. 24], the restriction $\tilde{F} \mid B_{\rho}: B_{\rho} \rightarrow \tilde{F}\left(B_{\rho}\right)$ is a linear transformation. So we may assume that $\tilde{F} \in \operatorname{Aut}\left(C^{n}\right)$. This, combined with the facts that $\tilde{F}\left(\partial^{*} E\right) \subset \partial B^{n}$ and $\partial^{*} E$ is dense in ∂E, guarantees that $\tilde{F}(E)=B^{n}$; and hence $\tilde{F}: E \rightarrow B^{n}$ is a biholomorphic mapping. Finally, the assertion $\alpha=1$ follows from a result of Naruki [17]. This completes the proof of the Lemma.
2. Proof of Theorem 1. The proof is divided into three cases as follows:

Case 1. $\alpha=\beta=1$. We have $E_{1}=B^{n}=E_{2}$ in this case; hence our theorem follows at once from Rudin's result [21; p. 311].

Case 2. $\alpha \neq 1, \beta=1$ or $\alpha=1, \beta \neq 1$. We claim that this case does not occur. Indeed, assume the contrary. Since $\partial^{*} E_{1}$ and $\partial^{*} E_{2}$ are open dense subsets of ∂E_{1} and ∂E_{2}, respectively, and since $f: U_{1} \rightarrow U_{2}$ is a biholomorphic mapping, we may assume that

$$
p_{1} \in \partial^{*} E_{1}, \quad U_{1} \cap \partial E_{1}=U_{1} \cap \partial^{*} E_{1}, \quad \alpha \neq 1 \quad \text { and } \quad \beta=1 .
$$

In particular, we have $E_{2}=B^{n}$. As an immediate consequence of the Lemma in Section 1 , we now have $\alpha=1$, a contradiction.

Case 3. $\alpha \neq 1, \beta \neq 1$. Without loss of generality, we may assume that $p_{i} \in \partial^{*} E_{i}$ and $U_{i} \cap \partial E_{i}=U_{i} \cap \partial^{*} E_{i}$ for each $i=1,2$. Here, we claim that any strictly pseudoconvex real analytic hypersurface $\partial^{*} E_{i}$ has no umbilical points in the sense of CR-geometry; hence, Webster's CR-invariant Riemannian metric g_{i} can be defined on the whole space $\partial^{*} E_{i}$. (For the notion of umbilical points and Webster's CR-invariant metrics in CR-geometry, see [4]; and also, [22], [23], [24].) To prove our claim, assume that there exists an unbilical point on $\partial^{*} E_{i}$. Then, all the points of $\partial^{*} E_{i}$ are umbilical, since $\operatorname{Aut}\left(E_{i}\right)$ acts transitively on $\partial^{*} E_{i}$ by (1.3). Hence, $\partial^{*} E_{i}$ must be locally biholomorphically equivalent to the sphere ∂B^{n} (see, for example, [22; p. 213]). By the Lemma in Section 1 we conclude that $\alpha=1$ or $\beta=1$ according as $i=1$ or $i=2$. This is a contradiction, as desired. Moreover, we see that $\left(\partial^{*} E_{i}, g_{i}\right)$ is complete as a Riemannian manifold, because $\partial^{*} E_{i}$ is homogeneous under the CR-automorphism group $\operatorname{Aut}\left(E_{i}\right)$. As a result, each $\left(\partial^{*} E_{i}, g_{i}\right)$
is a connected and simply connected, complete real analytic Riemannian manifold. On the other hand, $f: U_{1} \cap \partial^{*} E_{1} \rightarrow U_{2} \cap \partial^{*} E_{2}$ is an isometry with respect to the CR-invariant metrics g_{1} and g_{2}. By a well-known fact in Riemannian geometry [10; p. 256], f can now be uniquely extended to a global isometry $F:\left(\partial^{*} E_{1}, g_{1}\right) \rightarrow\left(\partial^{*} E_{2}, g_{2}\right)$. It is easily seen that $F: \partial^{*} E_{1} \rightarrow \partial^{*} E_{2}$ is a real analytic CR-diffeomorphism. Accordingly, by a result of Pinchuk [18], [19; p. 186] there are open neighborhoods V_{1} of $\partial^{*} E_{1}$ and V_{2} of $\partial^{*} E_{2}$ in C^{n} such that $F: \partial^{*} E_{1} \rightarrow \partial^{*} E_{2}$ and its inverse $G:=F^{-1}: \partial^{*} E_{2} \rightarrow \partial^{*} E_{1}$ extend to locally biholomorphic mappings written in the same notation $F: V_{1} \rightarrow C^{n}$ and $G: V_{2} \rightarrow C^{n}$ satisfying $F\left(V_{1} \cap E_{1}\right) \subset E_{2}$ and $G\left(V_{2} \cap E_{2}\right) \subset E_{1}$. Hence, in exactly the same way as in (1) of the proof of the Lemma in Section 1, it can be shown that F and G extend to holomorphic mappings $\tilde{F}: E_{1} \rightarrow C^{n}$ and $\widetilde{G}: E_{2} \rightarrow C^{n}$. Moreover, replacing $\psi\left(z^{\prime \prime}\right)$ by $\psi_{1}\left(z^{\prime \prime}\right)=\rho_{2}\left(\tilde{F}\left(z_{o}^{\prime}, z^{\prime \prime}\right)\right)$ in (1) of the proof of the Lemma in Section 1, we can prove that $\tilde{F}\left(E_{1}\right) \subset E_{2}$, where ρ_{2} is the continuous plurisubharmonic function on C^{n} defined by $\rho_{2}(z)=-1+\sum_{i=1}^{l}\left|z_{i}\right|^{2}+\left(\sum_{j=1+1}^{n}\left|z_{j}\right|^{2}\right)^{\beta}, z \in C^{n}$. Analogously, we see that $\tilde{G}\left(E_{2}\right) \subset E_{1}$. Since $\tilde{G} \circ \tilde{F}=\mathrm{id}_{E_{1}}$ near $\partial^{*} E_{1}$ and $\tilde{F} \circ \tilde{G}=\mathrm{id}_{E_{2}}$ near $\partial^{*} E_{2}$, we conclude by analytic continuation that $\tilde{G} \circ \tilde{F}=\mathrm{id}_{E_{1}}$ and $\widetilde{F} \circ \tilde{G}=\mathrm{id}_{E_{2}}$; consequently, $\tilde{F}: E_{1} \rightarrow E_{2}$ is a biholomorphic mapping. Finally the assertion $(k, \alpha)=(l, \beta)$ follows now from Naruki [17], completing the proof of Theorem 1 .
3. Proof of Theorem 2. The case $k=n-1$ is contained in our previous paper [13]. Thus it suffices to prove Theorem 2 when $k \leqq n-2$. We have two cases to consider: Case 1. The point $p \in \partial D$ is a strictly pseudoconvex boundary point. Hence D is biholomorphically equivalent to B^{n} by a result of Rosay [20]. Fix a biholomorphic mapping $F: D \rightarrow B^{n}$. Using a theorem on the boundary continuity of proper holomorphic mappings due to Forstnerič and Rosay [7], one sees that F extends to a homeomorphism from a connected open neighborhood M of p in $\partial D \cap \partial E$ onto an open subset M^{\prime} of ∂B^{n}. Accordingly, by results of Bell [3; Theorem 2], Pinchuk [19; p. 186], the CR-homeomorphism $F: M \rightarrow M^{\prime}$ can be extended to a biholomorphism between some open neighborhoods O of M and O^{\prime} of M^{\prime} in C^{n}. Hence, $E=B^{n}$ by the Lemma in Section 1 and F extends to a biholomorphic automorphism Φ of B^{n} by [21; p. 311]. Set $\Psi=\Phi^{-1} \in \operatorname{Aut}\left(B^{n}\right)$. Then, since $\Psi=F^{-1}$ near M^{\prime}, we have that $\Psi=F^{-1}$ on B^{n} by analytic continuation. Thus we obtain that $D=F^{-1}\left(B^{n}\right)=\Psi\left(B^{n}\right)=B^{n}=E$, as desired.

Case 2. The point $p \in \partial D$ is not a strictly pseudoconvex boundary point. The point p must be of the form $p=\left(p_{1}, \ldots, p_{k}, 0, \ldots, 0\right)$ by (1.1). Therefore, it follows at once by Theorem K in the introduction that there exists a biholomorphic mapping $F: D \rightarrow E$. In exactly the same way as in the proof of [13; Lemma 3], it can be shown that F extends to a homeomorphism from an open subset of $U \cap \partial^{*} E \cap \partial D$ onto an open subset of $\partial^{*} E$. By the same reasoning as above, one can now find points $p_{1} \in U \cap \partial^{*} E, p_{2} \in \partial^{*} E$, open neighborhoods U_{1} of p_{1}, U_{2} of p_{2} in C^{n} and a biholomorphic extension $\tilde{F}: U_{1} \rightarrow U_{2}$ of F satisfying all the conditions in (2) of Theorem 1. Thus \tilde{F} extends to a biholomorphic automorphism $\tilde{\Phi}$ of E; hence, repeating exactly the same arguments as in Case 1 , we
can show that $D=E$ as sets. This completes the proof of Theorem 2.

References

[1] H. Alexander, Proper holomorphic mappings in C^{n}, Indiana Univ. Math. J. 26 (1977), 137-146.
[2] S. R. Bell, The Bergman kernel function and proper holomorphic mappings, Trans. Amer. Math. Soc. 270 (1982), 685-691.
[3] S. R. Bell, Local regularity of CR homeomorphisms, Duke Math. J. 57 (1988), 295-300.
[4] D. Burns and S. Shnider, Real hypersurfaces in complex manifolds, Proc. Sympos. Pure Math. 30 (1977), 141-168.
[5] G. Dini and A. Selvaggi Primicerio, Localization principle of automorphisms on generalized pseudoellipsoids, to appear in J. Geom. Anal.
[6] G. Dini and A. Selvaggi Primicerio, Localization principle for a class of Reinhardt domains, Seminari di Geometria 1994-1995, Bologna (1996), 117-127.
[7] F. Forstnerič and J. P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), 239-252.
[8] R. E. Greene and S. G. Krantz, Characterizations of certain weakly pseudoconvex domains with non-compact automorphism groups, Lecture Notes in Math. 1268, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris and Tokyo, 1987, 121-157.
[9] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, London, Toronto, Sydney and San Francisco, 1978.
[10] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume I, Interscience Publishers, New York and London, 1963.
[11] A. Kodama, Characterizations of certain weakly pseudoconvex domains $E(k, \alpha)$ in C^{n}, Tôhoku Math. J. 40 (1988), 343-365.
[12] A. Kodama, A characterization of certain domains with good boundary points in the sense of Greene-Krantz, Kodai Math. J. 12 (1989), 257-269.
[13] A. Kodama, A characterization of certain domains with good boundary points in the sense of Greene-Krantz, II, Tôhoku Math. J. 43 (1991), 9-25.
[14] A. Kodama, A characterization of certain domains with good boundary points in the sense of Greene-Krantz, III, Osaka J. Math. 32 (1995), 1055-1063.
[15] A. Kodama, S. G. Krantz and D. Ma, A characterization of generalized complex ellipsoids in C^{n} and related results, Indiana Univ. Math. J. 41 (1992), 173-195.
[16] R. Narasimhan, Several complex variables, Univ. Chicago Press, Chicago and London, 1971.
[17] I. Naruki, The holomorphic equivalence problem for a class of Reinhardt domains, Publ. Res. Inst. Math. Sci., Kyoto Univ. 4 (1968), 527-543.
[18] S. I. Pinchuk, On the analytic continuation of holomorphic mappings, Math. USSR Sb. 27 (1975), 375-392.
[19] S. I. Pinchuk, Holomorphic maps in C^{n} and the problem of holomorphic equivalence, Encyclopaedia of Math. Sciences, Vol. 9, G. M. Khenkin, ed., Several Complex Variables III, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris and Tokyo, 1989, 173-200.
[20] J. P. Rosay, Sur une caractérisation de la boule parmi les domaines de C^{n} par son groupe d'automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), 91-97.
[21] W. Rudin, Function Theory in the Unit Ball of \boldsymbol{C}^{n}, Springer-Verlag, New York, Heidelberg and Berlin, 1980.
[22] A. E. Tumanov, The geometry of CR-manifolds, Encyclopaedia of Math. Sciences, Vol. 9, G. M. Khenkin, ed., Several Complex Variables III, Springer-Verlag, Berlin, Heidelberg, New York,

London, Paris and Tokyo, 1989, 201-222.
[23] S. M. Webster, Pseudo-hermitian structures on a real hypersurface, J. Diff. Geom. 13 (1978), 25-41.
[24] S. M. Webster, On the transformation group of a real hypersurface, Trans. Amer. Math. Soc. 231 (1977), 179-190.
[25] B. Wong, Characterization of the unit ball in C^{n} by its automorphism group, Invent. Math. 41 (1977), 253-257.

Department of Mathematics
Faculty of Science
Kanazawa University
Kanazawa 920-1192
Japan

[^0]: Partly supported by the Japan-US Cooperative Science Program and the Grant-in-Aid for Scientific Research, the Ministry of Education, Science, Sports and Culture, Japan.

 1991 Mathematics Subject Classification. Primary 32F15; Secondary 32H99.

