```
ノート
```

熱ルミネセンスのデジタル写真撮影と Java アプリケーションを用いた色の 数値化方法

Thermoluminescence digital color images and their evaluation using a Java-based application

稻垣亜矢子* 長谷部徳子** 遠藤徳孝*** 伊藤一充*

Ayako Inagaki^{*}, Noriko Hasebe^{**}, Noritaka Endo^{***} and Kazumi Ito^{*}

2010年4月3日受付.

2010年6月19日受理.

- * 金沢大学大学院自然科学研究科 Graduate School of Natural Science and Technology, Kanazawa Univ.
- ** 金沢大学環日本海域環境研究センター Institute of Nature and Environmental Technology, Kanazawa Univ.
- *** 金沢大学理工学研究域自然システム学系 College of Science and Engineering, Kanazawa Univ.

Corresponding author; A. Inagaki

Abstract: Luminescence dating involves the observation of naturally accumulated radiation damage, caused by radioisotopes such as U and Th, in the form of the glow stimulated by heating or exposure to light.

The emission color of luminescence varies among samples. A thermoluminescence color image (TLCI) can be recorded using a digital camera after irradiation with gamma rays, which results in significant radiation damage, thereby enhancing the luminescence. A new application was developed to handle RGB (red-greenblue) information for each pixel. The application enables the automatic plotting of pixel data on a CIE (Commission Internationale de l'Eclairoge) chromaticity diagram and counting of the number of pixels within a color zone, as defined by dividing the color space into five color zones. The application helps to handle many digital TLCIs in a short time and is useful for statistical color analyses.

Key words: Thermoluminescence, color images, Java, Lake Hovsgol

はじめに

熱ルミネセンス(熱発光, thermoluminescence; TL)とは, 加熱された物質が熱放射とは別に光を放出する現象である. 電磁波や放射線などによって,基底状態にあった電子が励起 され準安定状態になる.この不安定な電子が熱により活性化 して解放され,再び基底状態に戻る際にエネルギー準位の差 に相当するエネルギーを光(ルミネセンス)として発する. 鉱物では石英や長石などの白色鉱物で確認されており、光の 量は受けた放射線量(蓄積線量)に比例するので年代の関数 となる.この特性を利用し、一般的には石英を用いて土器な どの考古資料や、火山噴出物、堆積物の年代が測定されてい る(兼岡,1998).

鉱物の天然TL 強度は非常に微弱である. そのため, 測定 には光電子増倍管 (PMT) を装したTL 高感度測定装置が必 要であるが、一般的にこれでは色を判別することはできな い. そこで、Hashimoto et al. (1989) はX 線照射により石 英のTL 強度を強調させ、一般用カメラでルミネセンスカ ラー画像(Thermoluminescence Color Images; TLCI)を撮 影し, 簡便にTL による石英の色認識を可能にする手法を提 唱した. マンセル表色系のカラーチャートによる区分や、国 際照明委員会 (Commission Internationale de l'Eclairoge; CIE)の規定したCIE 表色系のCIE 色度ダイアグラム上でTL 色を分類し、広域風成層とテフラに識別に成功した例もある (雁澤・窪北, 2001). フィルムに撮影された画像には石英粒 子それぞれのTL が記録されるので、個々の粒子の発光色が 異なっていても、粒子ごとの発光色を識別できる特徴があ り、この点は光電子増倍管を用いる手法が鉱物全体の光量し か測定できない点と比べ、極めて優れている(雁澤・窪北, 2001).

粒子ごとの解析により,例えば地球表層を広く覆う風成塵 が大陸地殻上部のどのような岩石に由来するのかという議論 (Taylor et al., 1983 など)や,日本に分布するローム層や風 成粘土層の起源について,新たな情報を提供することが期待 できる.さらに写真をコンピュータによりデジタル画像とし て読み取り,パソコンによる撮影写真のTLCIスペクトル解 析を行うことにより,より客観的な発光色の評価が可能であ る (Hashimoto et al., 1989).

TLCIをフィルムで撮影したHashimoto et al. (1989)や雁 澤・窪北 (2001),およびデジタルカメラで撮影した島田ほ か (2008)を参考に、本研究ではデジタル TLCIを得た.島 田ほか (2008)では試料の放つルミネセンス色を定性的に 評価するのみであったが、本研究ではデジタルデータである 利点を利用し、画像ファイルから得られるRGBの色情報に 基づいて定量的な評価を行った.そのためにCIE 色度ダイア グラムを利用し、Java アプリケーションを制作・実用して 自動処理による数値化をはかった.より簡便に短時間で多く の画像データの解析を行うことで、データの統計的取り扱い が可能となった.

モンゴル国のフブスグル湖沼堆積物を例に、撮影結果・数

©The Geological Society of Japan 2010

実験準備

1. 試料

実験試料にはモンゴル国に位置するフブスグル湖で採取されたボーリングコアを用いた(北緯 50°56′52″, 東経 100°25′28″, 本誌口絵参照). HDP08 という全長 1792.5 cm コアの, 105~115 cm の部分を使用した. その部分は ¹⁴C 年代 測定により, 5000BP より若く, MIS 1 の間氷期に堆積した と考えられている(Watanabe et al., 2007).

2. 薬品処理

湖沼堆積物試料は、主に有機物、炭酸塩鉱物、粘土鉱物、 石英・長石類で構成されている.薬品を使ってこれらの主要 物質を順々に除去し、TL 色の変化を観察する.薬品処理の 手順はStokes et al. (2003)を参考にした(Fig. 1).

未処理の試料約25gを50℃に設定した乾燥機に入れ,5 時間以上乾燥させ完全に水分を飛ばしたものをステップA (未処理試料)とする.

TLCI用に一部分取した後、有機物の除去を行う.ステッ プA試料1gに対して、10%のH₂O₂を40 ml用い、60 ℃の ウォーター・バス内で1時間,室温で1日放置する.気体 の発生がなくなったことで反応が終わったことを確認し、残 渣の溶液除去のために試料溶液を遠沈管に入れて超音波洗浄 機にかけた後、3000 rpm で20分間,遠心分離器にかける. 遠沈管に沈殿した試料の上澄みの溶液を捨て、代わりにイオ ン交換水を入れ再び超音波洗浄機・遠心分離器にかける.同 様に上澄みの溶液を捨て、70 ℃の乾燥機で乾燥させた後、 メノウ乳鉢で軽くすり潰し、ステップB(有機物除去試料) とする.

次に炭酸塩鉱物の除去を行う. 試料1gに付き5MのHCl を約40ml用いた. 室温に置き,気体の発生反応がなくなっ たら(約1~2日間),先ほどと同様に試料溶液を遠沈管に 入れ超音波洗浄・遠心分離を3回繰り返した. 乾燥させた 後にすり潰し,ステップC(炭酸塩鉱物除去試料)とする.

次に石英と長石類以外の物質を除去するために、ステップ C 試料に 40 %のH₂SiF₆ を試料に被るくらい加え、室温で1 週間反応させる.その後同様に遠沈管に入れ超音波洗浄・遠 心分離を 2 回繰り返し、乾燥・すり潰した後にステップ D (石英と長石類以外除去試料)とする.

最後に、ステップD 試料を石英のみにするために、12% のHF を用いて長石類を除去する。HF は長時間反応させる と長石類だけでなく石英も溶かすため、正確に1時間のみ 反応させる.遠沈管に入れ、超音波洗浄・遠心分離を2回 行い、乾燥・すり潰した後にステップE 試料(石英試料) とした.

なお,上記の除去される物質は主要なものであり,他の含 有物質も対応する薬品処理段階で同時に除去されている.化 学反応によって新たな物質(酸化鉄など)が生成されている 可能性は否めないが,粉末X線回折測定(XRD)では確認 はできなかった.

調製した試料は、それぞれ薬包紙に包んだ後にアルミホイ

 ${\bf Fig.}$ 1. Flow diagram of the chemical treatment employed in this study.

ルで覆い,以後光曝をしないようにした.

放射線照射

京都大学原子炉実験所の⁶⁰Co由来のガンマ線源を利用し, 試料にガンマ線照射を行った. 蓄積された線量によっても TL 色が異なるという報告もある(Hashimoto et al., 1987) ので,完全に飽和させるために 36 kGy を照射した.

不安定なサイトに由来する発光のフェーディング効果を考 慮し,暗室内で約1ヶ月保管した後TL撮影を行った.

撮 影 方 法

TLCIの撮影装置は加熱部(ホットプレート)と、その真 上に取り付けたカメラ(Fig. 2)からなる. 一般に市販され ているデジタルー眼レフカメラ(Canon EOS Kiss Digital N) に近接撮影用のマクロレンズ(Canon EF 50 mm f/2.5 Compact-Macro)を取り付けて使用した. カメラの設定は、色 空間をAdobe RGB, ISO 感度を 100 にした. ISO 感度はカ メラの性能上 1400 まで上げることが可能だが、感度が高す ぎると撮影写真にノイズが多く入ってしまい正確な撮影がで きないと考えたため、標準的な値である 100 の値を採用し た.

撮影は暗室内で以下の手順で行う. 直径約10mmのアル ミ製の皿に約10~30mgの試料をできるだけ均質に広げる. これを設定温度(230℃)まで昇温させた加熱部(ホットプ レート)上に置くと同時にカメラのシャッタを30秒間解放

Fig. 2. TLCI (thermoluminescence color image) photography device set up in a darkroom. A digital single-lens reflex camera with a macro lens is placed over the hot plate, on which a disc of sample is heated. When the sample is placed on the hot plate with a temperature fixed at 230 $^{\circ}$ C, the shutter of the camera is released for 30 seconds to record luminescence emission.

し、TLCIを得る(口絵参照).実験は各ステップA~E試料において最低12回ずつ撮影を行った.

色の数値化

1. 数值化手順

撮影されたルミネセンスの写真の色を定量的・数値的に扱 うために、CIE 表色系(CIE color system)を用いた(雁澤・ 窪北, 2001; 本誌口絵参照). まず撮影されたデジタル写真の 必要な部分(試料皿の部分)のトリミングを行う. 範囲は約 $10\times10 \text{ mm}^2$ で、 800×800 ピクセルの電子データとして記 録される. 各ピクセルの色は、*R*、*G*、*B*(赤,緑,青の可視光 三原色)データとしてそれぞれ0~255の256 階調の値で 読み込まれる. しかし、この光の三原色(赤,緑,青)の足 し合わせだけでは人間の可視光領域に表現できない波長帯 (係数に負の値を許可することで可能となる)があり取り扱 いにくいので、*R*、*G*、*B*の値をCIE による次の式を用いて *X*、*Y*、*Z* 値に変換する.

X = 2.7689	R + 1.7517 G + 1.1302 B
Y =	$R\!+\!4.5907~G\!+\!0.0601~B$
Z=	0.0565 G + 5.5943 B

その後,次式を用いて*x-y*の二次元平面座標値に換算し, CIE 色度ダイアグラム上にプロットする.

x = X/(X+Y+Z)y = Y/(X+Y+Z) CIE 色度ダイアグラム上では、短波長から長波長にかけて 青,緑,黄,橙,赤が連続的に表示される.本論では先行研 究にならい、青 (B,450 $\leq B \leq$ 495 nm),緑 (G,495 $\leq G \leq$ 565 nm),黄 (Y,565 $\leq Y \leq$ 580 nm),赤 (R,580 $\leq R \leq$ 700 nm) および、純紫軌跡線と標準白色光間の区域 (gap)の5つの 領域に区分し(口絵参照)、ピクセルがどの領域に属すか分 類する.

2. アプリケーションについて

上記の各ピクセルの色の数値化を全ピクセルに対して行う ために、Java を用いてアプリケーションを作成した. Java は、米国サン・マイクロシステム社によって開発が始められ た、 プラットフォーム (OS) に 依存しない プログラミング 言語であり、その開発環境は無償で入手可能である. ソース コードを配布したり、広く共有する意味で、どのOS上でも コンパイル・実行可能なJava は便利である. アプリケーショ ンの概要は以下の通りである.まず、Java に用意されてい るPixelGrabber メソッド(関数)を用いて画像データを配 列に格納する.この時点で各ピクセルに対してRGB3色の データがセットになっているが、色ごとの値を取り出し、上 で述べた式に従ってx, y 値を計算する. 続いて, 各画像で 得られた 64 万ピクセルの色情報に基づき, 前述のCIE 色度 ダイアグラムにおける青,緑,黄,赤およびgap(純紫軌跡 線と標準白色光の間)の5つの領域に入るピクセルを計数 する. 最後に、結果をテキスト形式のファイルとして書き出 す.

このアプリケーションのソースコードは筆者の所属研究室 ホームページ (http://earth.s.kanazawa-u.ac.jp/chronology/) よりダウンロード可能である.

数値化結果

各ステップにつき12 試料のルミネセンスカラー画像を撮 影し(ステップEのみ13枚),それぞれ数値化を行った. その結果を積み上げ棒グラフとしてFig.3に示す.ピクセル 総数が,各ステップでカウントされた最大値・最小値をとっ た試料を除いた10 試料(ステップEのみ11 試料)分の実 験値を平均化し,カウントされたピクセル総数に対するそれ ぞれの色の比率を円グラフで示す.

各ステップで試料ごとに値のばらつきは見られたものの, 色の比率やカウントされたピクセル数にはステップの特徴が 表れている.ステップAからBでの変化は,発光量が増加 しているが色の比率に大きな変化は見られず,これは主に非 結晶鉱物でルミネセンス現象を伴わない有機物が除去されて いるためであると考えられる.炭酸塩鉱物が主に除去された ステップCは,発光量が大幅に減少し,赤,黄の発光がな くなった.この事から,炭酸塩鉱物が顕著に赤や黄色に発光 していたことが分かる.石英・長石類以外の鉱物を除去した ステップDや,石英のみになるステップEでは,石英由来 と考えられる青色の比率が高くなっている.

まとめ

市販されているデジタルカメラを用い, TLCIを簡便に得ることに成功した. この画像を利用すれば, TL 年代測定時

Fig. 3. Results of color evaluation for TLCIs (thermoluminescence color images) for sediment from Lake Hovsgol. The columns show the number of counted pixels of each aliquot; circles show the color ratio. The increase in the number of pixels from step A to step B was caused by the removal of organic matter that does not emit luminescence. In step C, all color emissions (except for blue and green) show a decrease, indicating that the carbonate minerals removed in step C emitted red and yellow luminescence. In steps D and E, blue is dominant, indicating emissions from quartz or feldspar.

に光電子増倍管に取り付ける適切な光学フィルタを簡単に選 択できる. 薬品処理によるステップごとの含有鉱物の除去に よって, 鉱物が特有のTL 色を持ち, TLCI がそれらを捉える ことができるという事実も明らかとなった.

また、TLCIの色の数値変化を自動処理するJavaアプリ ケーションを制作・実用することによって、撮影写真のTL 色の客観的な評価が可能となり、分析をより簡便に、短時間 で行える.加えて、このプログラムはTLCIの以外の画像の 色解析にも用いることができ、汎用性が高い.

本研究手法には誤差や再現性の問題は残るが、今後改良を 進めることによって、有効かつ単純で経済的な手法になりう ることがわかった.

謝 辞

本研究を進めるにあたり, 試料に関して, 日本, モンゴ ル, 韓国, ロシアの国際プロジェクト参加者, とくに金沢大 学柏谷健二教授, 福本寛人氏, 湯本仁亨氏にお世話になっ た. γ線照射は京都大学原子炉実験所で行い, 中野幸廣氏に ご協力いただいた. TL 写真の撮影について, 北海道教育大 学の雁澤好博教授にご教示いただいた. 大阪大学・谷 篤史 氏および島根大学・大平寛人氏からは本稿に対し適切なコメ ントを頂いた. 以上の方々に心から感謝申し上げる.

引用文献

- 雁澤好博・窪北耕治(Ganzawa, Y. and Kubokita, K.), 2001, 石英のカ ラー画像(TLCI)と画像解析(TLCI-CIA)による風成粘土層の期限 推定. 第四紀研究(Quatern. Res.), 40, 403-413.
- Hashimoto, T., Yokosaka, K. and Habuki, H, 1987, Emission properties of thermoluminescence from natural quartz-blue and red TL response to absorbed dose. *Nucl. Tracks*, 13, 57-66.
- Hashimoto, T., Yokosaka, K., Habuki, H. and Hayashi, Y. 1989, Provenance search of dune sands using thermoluminescence colour images (TLCIs) from quartz grains. *Nucl. Tracks*, 16, 3-10.
- 兼岡一郎(Kaneoka, I.), 1998, 年代測定概論[Numerical Dating]*. 東京大学出版会(Univ. Tokyo Press), 38p.
- 島田愛子・高田将志・豊田 新(Shimada, A., Takada, M. and Toyoda, S.), 2008, 異なる火山噴出物から見る石英のESR 信号・TLCI 特性. ESR 応用計測(Advances in ESR Applications. Japan), 26, 20.
- Stokes, S., Ingram, S., Aitken, M. J., Sirocko, F., Anderson, R. and Leuschner, D., 2003, Alternative chronologies for Late Quaternary (Last Interglacial-Holocene) deep sea sediments via optical dating of silt-sized quartz. *Quatern. Sci. Rev.*, **22**, 925-941.
- Taylor, S. R., McLennan, S. M. and McCulloch, M.T., 1983, Geochemistry of loess, continental crustal composition and crustal model ages. *Geochim. Cosmochim. Acta*, 47, 1897-1905.
- Watanabe, T., Nakamura, T. and Kawai, T., 2007, Radiocarbon dating of sediments from large continental lakes (Lakes Baikal, Hovsgol and Erhel). *Nucl. Instr. Meth. Phys. Res.*, B259, 565-570.

*English translation from the original written in Japanese.