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The method of orbital interaction describing the intermolecular interaction is reformulated in terms of Green’s
function.  The eigen-values and eigen-vectors for individual molecules obtained by block diagonalization of the original
Hamiltonian, are sufficient to predict the next step of the reaction.  The polarizabilities in the ordinary perturbation treat-
ment is also effectively used. This procedure is further clarified by defining the effective coupling.  The method is applied
to a molecular compound between ethylene and H

 

2

 

.

 

There are various types of chemical reactivity

 

1,2,3

 

.  If any
perturbation 

 

v

 

 is put on a system described by the Hamiltonian

 

H

 

0

 

, the expected reaction can be presented in terms of 

 

H

 

0

 

 and

 

v

 

. In the course of theory, indices useful for indicating reactivi-
ty are offered: the charge density, bond order and polarizability
in Coulson’s theory, the HOMO and LUMO orbitals in Fukui’s
theory, and symmetry conservation in Woodward–Hoffmann’s
theory.  In order to synthesize a new compound from 

 

A

 

 and 

 

B

 

,
the theory of chemical reactivity turns to the theory of orbital
interaction

 

2,4

 

.  Namely, the Hamiltonians for 

 

A

 

 and 

 

B

 

 are al-
ready diagonalized, and their eigen-values and eigen-functions
are prepared; if some interaction between 

 

A

 

 and 

 

B

 

 is supposed,
the problem is what reaction can be expected.  The mechanism
responsible to this reaction must be described by couplings be-
tween eigenfunctions of 

 

A

 

 and 

 

B

 

.
In this paper, Coulson’s theory is reformulated in terms of

Green’s function. Because Coulson’s theory is, itself, an old
fashioned Green’s function theory, it is now dressed in the lat-
est style.  We have successfully unified this theory with other
theories.

In chapter 1, we briefly sketch our general treatment of the
chemical ractivity

 

11,12

 

.  This is applied in chapter 2 to inter-mo-
lecular interaction, where the elucidated mechanism corre-
sponds to the second-order perturbation theory of the ordinary
perturbation theory, so that the polarizability in Coulson’s the-
ory takes place.  In chapter 3, an effective interaction obtained
by including the molecular interaction is given and facilitates
one to recognize the intermolecular interaction.  In chapter 4,
the problem in the radiation field is treated.  Finally, some ap-
plications are briefly discussed.

 

1.   General

 

Let us consider a problem described by the Hamiltonian 

 

H

 

.
It seems to be almost impossible to solve this eigenvalue prob-
lem exactly.  However, if we divide 

 

H

 

 into two parts,

 

H

 

 

 

=

 

 

 

H

 

0

 

 

 

+

 

 

 

v

 

                                                              (1.1)

the solution for the non-interacting part 

 

H

 

0

 

 is usually given by

 

H

 

0

 

 

 

=

 

 

 

|

 

i

 

>

 

�

 

i

 

<

 

i

 

|

 

.                                                      (1.2)

We define the Green’s operator for 

 

H

 

,

(1.3)

and for 

 

H

 

0

 

(1.4)
                                                                                      

The total energy for 

 

H

 

0

 

 is expressed by

(1.5)

Here, the integration contour, called the Coulson contour,

 

1

 

 en-
closing poles corresponding to the occupied levels, or in recent
many body theory, enclosing the upper half plane which in-
cludes only the hole levels with positive infinitesimal imagi-
nary parts.

 

6

 

  The Einstein convention that the repeated indices
imply summation is adopted.  If the single-particle energy 

 

�

 

i

 

 is
obtained by the HF (Hartree–Fock) approximation, the elec-
tron–electron interaction is doubly counted in the summation
with respect to 

 

i

 

, which however does not matter for a theoreti-
cal investigation, since this extra quantity merely changes the
standard for the energy estimation.  We also disregard the spin
consideration for simplicity.
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We now try the perturbation expansion for 
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(

 

z

 

),
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(1.6)

The relation for the second line is exact, called the Dyson
equation, and the third line is the perturbation expansion.  We
thus have the total energy of

(1.7)

This expression is slightly simplified, if we observe, for exam-
ple,

(1.8)

Substituting this into (1.7) and integrating by parts lead to

(1.9)
In this,

(1.10)

where the last term is the difference between zeros and poles,
and indicates the summation of infinite series implies the exact
solution.  However, this elegant result is almost useless.

The extra energy 

 

∆

 

E

 

 due to the perturbation is evaluated by
using the third line of (1.9), up to the second order with respect
to 

 

v

 

 which is independent of 

 

z

 

.  Note that 

 

G

 

0

 

 is usually labeled
by level indices, while 

 

v

 

 is labeled by site indices in the quan-
tum chemistry.  Let us begin with the first-order correction:

(1.11)

where 

 

q

 

ba

 

 is the bond order between sites 

 

b

 

 and 

 

a

 

, defined
by

(1.12)

In the last term, the LCAO coefficients in ordinary quantum
chemistry are introduced, and the matrix character of the bond
order is clearly given.  Note that the charge density is the diag-
onal element of this matrix.  Hereafter we call the bond order
including the so called bond order and charge density.  We now
have the first order correction of the stabilization energy in
terms of the bond orders and the interaction terms.

The second-order term is evaluated in a similar way as

(1.13)

In the last line, 

 

π

 

ab

 

;

 

cd

 

 is the bond-bond polarizability,

 

1

 

 which is
the most general among various polarizabilities.  This is under-
stood as a kind of correlation function telling how the interac-
tions 

 

v

 

ab

 

 and 

 

v

 

cd

 

 coherently effect to the energy.  In the present
expression,

(1.14)

The polarizability is a super matrix, each element of which is
composed of a matrix; it is almost impossible to print out all of
them.

 

8

 

  We would like to emphasize the present simple deriva-
tion, compared with the ordinal perturbation theory explicitly
using the wave functions.

Numerous illustrative examples can be found in the litera-
ture.

 

9

 

  Here, we give a simple example. Imagine a ring polyene
having ten members.  If a bond resulting in naphthalene is
formed, naphthalene is stable due to the first-order effect using
the bond order, while in the case of azulene, this bond forming
has no effect in the first order, but azulene gets a little stabiliza-
tion through the second-order effect which is written in terms
of the polarizability.

 

2.   Inter-Molecular Interaction

 

The method developed in the previous chapter is now ap-
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plied to the intermolecular interaction; however in the present
case the intermolecular interaction implies the ordinary chemi-
cal bonds constructed between molecules, and does not imply
the dipole–dipole interaction between molecules.

The treatment of molecular interaction is carried out in two
steps, depending upon how to select the non-interacting sys-
tems.  Now, two molecules, 

 

A

 

 and 

 

B

 

, approach each other.
When a bond is formed, two molecules are no longer regarded
as independent system, but the combined system is regarded as
a new 

 

H

 

0

 

 system.  The eigenvalue problem for this new system
is solved.  The resulting bond order matrix suggests the sec-
ondly arising bond in such a way that a preferable combination
of the bond order and the coupling term arises to yield stabili-
zation; at the same time the geometry of the molecular com-
pound is determined.  This approach has been tried by T. Kano
et al.

 

11

 

  However this method requires a new 

 

H

 

0

 

 problem.  At
present we present another way to avoid this complexity, in
analogy with the method of orbital interaction.

 

2,4,5

 

If we look at (1.8), even if only one bond is formed between

 

A

 

 and 

 

B

 

, as is seen in biphenyl, the second order-procedure is
required due to the Tr operation:

(2.1)

This is a familiar result from the second-order perturbation
theory.  One may argue that this is an interaction between the
partial charges, 

 

|

 

<

 

A

 

1

 

|Aj>|2 and |<B1|Bi>|2.  However, we
must notice that combining two couplings and two propagators
makes a circle that starts from A and terminates at A.  Stabili-
zation occurs mainly from mixture of the wave functions of A
and B through couplings.  A solid line representing a local
chemical bond between two molecules gives little informa-
tions.

We next encounter a more general case where two bonds are
formed between two molecules.  If the two bonds are con-
structed at a distance, two molecules rigidly combine with
each other.  The calculation is entirely the same as that previ-
ously done:

(2.2)

Although the last result is rather complicated, the second line
of (2.2) is appealing because of a clear-cut representation of
the interaction scheme.  A rectangle can be drawn with verti-
ces, A1, B1, Bn and Ak.  The lines  and  are couplings,
while lines  and  represent propagators.  By imitat-
ing the result of (1.13), we may define a sort of polarizabilty,

∆EAB 
 (2) = (vA1,B1)πA1,B1;Bn,Ak(vBn,Ak), (2.3)

with

(2.4)

The similar discussion as that after (2.1) is presented.  It must
be stressed that (2.4) is constructed only from the terms HA

0

and HB
0.

3.   Effective Interaction

The Dyson equation for Green’s function is

G = G0 + G0vG
= G0 + G0vG0 + G0vG0vG0 + G0vG0vG0vG0 + ....

We now rewrite this relation as 
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defining an effective interaction �.  At a glance we recognize
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This is solved formally as
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However, from the viewpoint of chemical reactivity, the pertur-
bative expansion is preferable for us,

(3.4)

If we multiply this by G0
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where �AH is the energy of the highest occupied level of A and
�BL is that of the lowest vacant level of B.  Then, the original in-
teraction vAk,Al is modified by an effect due to the additional in-
termolecular interaction, as

(3.5)

Here, by the way, we introduced the effective bond order in
view of the correlation feature,

(3.6)

However, this would physically refer to the polarizability.
We then multiply (3.5) by the bond order qAl,Ak, giving the

stabilization energy,

∆E = qAl,Ak ∆vAk,Al.                                                   (3.7)

Let us investigate a simple example, a molecular compound
between ethylene and H2, which are denoted A and B, respec-
tively (see Fig. 1).  First, we note

(3.8)

In this case, (3.5) is written as

(3.9)

It is probable that �AH−�BL < 0, and <B2|BL> and <BL|B1> are
out of phase, say <B2|BL><BL|B1><0.  If we consider
aboves, the condition that ∆E be negative or the effective inter-
action ∆vA2,A1 be negative requires vA2,B2 vA1,B1 <0.  Namely,
these are different in sign.  Graphically speaking, as expressed
by Fig. 1, an atom of H2 approaches from the upper side of the
ethyle surface, and the other from the lower side.  The precise
calculation has been made by Motoki.10  It is amusing to point
out that this might be the smallest Möius band.

In a real problem, a synthetic technique to make a specified

bond stronger or weaker, or sometimes to break it, is wanted.
From the viewpoint of an effective interaction, this might be
possible, to some extent, by introducing another perturbation,
<As|v|At>, which effects the bond order, qAl,Ak.  To this end, let
us return to (1.6) and take the first-order effect into account.
The correction of the bond order is given as (for a while we
omit index A, limiting considerations inside A.)

(3.10)

4.   Photo-Chemistry

In this chapter we discuss the chemical reactivity in the radi-
ation field.  The Hamiltonians responsible for this problem are

H0 = �iai
+ ai + ωk ck

+ ck,
Hint = fij;k ai

+ aj(ck
+ + ck),                                         (4.1)

where the usual notations are used.  According to the discus-
sion in the previous chapters, we aim to obtain the bond order
of the molecule in question in the radiation field.  To facilitate
manipulation, we introduce projection operators,

(4.2)

It is obvious that

P + Q = 1,
P2 = P,   Q2 = Q,
PQ = QP = 0. (4.3)

The propagator G is written as

G = (P + Q)G(P + Q) = GP + GQ + GPQ + GQP. (4.4)

We deal with these elements in turn.  When we project out the
perturbation expansion of the propagator,

G = G0 + G0HintG0 + G0HintG0HintG0 + …,

by P for example, since the non-interacting propagator G0 is
diagonal to P and Q, or PG0Q = 0, the term of the lowest order
to Hint begins with the second-order term of Hint.  We then have
the Dyson equation, such as

GP(z) = G0
P(z) + G0

P(z)(Hint)PQG0
Q(z)(Hint)QPGP(z).

This is solved as

GP(z) = [(G0
P(z))−1 − (Hint)PQG0

Q(z)(Hint)QP]−1. (4.5)

Fig. 1.   Molecular compound between ethylene and the H2

molecule.
The arrows represent the 2pπ AOs of carbon atoms, while
the circles the 1s AOs of the hydrogen molecule.  This is
perhaps the smallest Möius band.
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Similarly, we have GQ(z),

GQ(z) = [(G0
Q(z))−1 − (Hint)QPG0

P(z)(Hint)PQ]−1. (4.6)

On the other hand, GPQ is slightly more complicated.  The
Dyson equation for this is

GPQ = G0
P(Hint)PQG0

Q + GP(Hint)PQGQ(Hint)QPGPQ,  (4.7)

from which

GPQ = [(G0
P(Hint)PQG0

Q)−1 − Hint]−1.                       (4.8)

Therefore, because GPQ and GQP have small effects on the total
G compared with GP and GQ, they are neglected in the follow-
ing.

The second term on the right-hand side of (4.6) is called the
self-energy part of GP,

MP(z) = (Hint)PQG0
Q(z)(Hint)QP.                                 (4.9)

We investigate this in detail.  The interaction matrices are as
follows:

(4.10)

where the hole (occupied) and particle (unoccupied) levels are
represented by indices i and l, respectively, and for (Hint)QP the
absorption process is employed, while for (Hint)PQ the emission
process is employed.  Here, we used the relations,

We then have

(4.11)

In the above, because the inside propagator refers to Q (parti-
cle state), �l should be �l − iη, where η a positive infinitesi-
mal.6,7  Precisely speaking, the particle has the boundary con-
dition that it decays in the infinite future (at t = +∞),

e−i(�
l
-iη)t = e−i�

l
te−ηt → 0 (t = +∞).

On the other hand, the hole decays at t = −∞, or �i + iη.
Note that the level energies are all set to be positive.  The parti-
cle propagates to the future, while the hole propagates back-
ward in time.  Further an approximation is made: because we
are now interested in the hole states denoted by P, z in (4.12)
may be replaced by �i + nkwk, and the imaginary part is dis-
played as

�i + iη − (�l − iη) = �il + iη,   �il = �i – �l.

We thus have

(4.12)

At this stage, we consider the sum over k, or integration over
ωk with a suitable state density ρ(ωk), leading to

(4.13)

where the principal part integration is neglected, since it causes
only a small level shift.7  Note that MP gives the negative imag-
inary part; if we take this into account in (4.6), it is found that
the hole level gets the negative imaginary part, iπδ(�il +
ωk)nk|fli,k|2, which is physical.  In other words, due to the radia-
tion effect, the hole level i is lifted to an excited level l.

In a similar way we obtain

(4.14)

Note that MQ gets the positive imaginary part instead of the
negative one in MP.

Bond Order.    We are well equipped to evaluate the bond
order in the radiation field.  The bond order qrs is obtained as
the matrix element of G(z),

(4.15)

neglecting GPQ and GQP.  First we evaluate

(4.16)
Here, we observe an interesting result that in the absence of ra-
diation, every hole level has the positive imaginary part, but in
the radiation field, one of these satisfying δ(�i′l′ + ωk) has the
negative imaginary part.  We hereafter call i′ and l′ as H and L,
respectively.  Upon integraton, we enclose the contour on the
upper half half plane of z, which is forced by the hidden con-
vergence factor, exp (−iz0−, z → i∞).

(4.17)

where qrs H is the partial bond order with respect to H.
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We thus have the bond order in the radiation field,

(4.19)
The second term of the above expression is an additional bond
order due to the the radiation field.  We consider that the chem-
ical reactivity in the radiation is determined by this additional
factor,

(4.20)

Fukui2 has discussed the chemical reactivity in the radiation
field only in terms of qrs L ; however, we would rather consider
that L and H contribute with equal weights to the result.  Our
result shows that this is just the case, but with opposite phases.
In the case of alternant hydrocarbons, for the active sites, qrs H =
−qrs L .  Therefore, the present result coincides with Fukui’s as-
sertion.

In discussing the chemical reactivity for the ground state
(thermo-chemistry), we developed a theory that is invariant un-
der the cootdinate transformation in the Hilbert space; howev-
er, in the present case, the result depends upon the specified or-
bitals, H and L.  We now consider the effect of the radiation
field: the polarization of light makes the shapes of orbitals ca-
nonical, and the resonace frequency ωk selects H and L accord-
ing to the condition δ(�L − �H − ωk), so that H and L are now
physical.

5.   Applications

The present theory is based on the energy consideration de-
veloped under the Tr operation.  As is well known, Tr opera-
tion ensures that the result is invariant under any transforma-
tion of orbitals as long as all orbitals take part in.  However, the
theory in the radiation field works with specified orbitals con-
nected by the radiation field.  This problematic point in view of
the previous assertion, however, is properly accepted, since in
the radiation field the so-called canonical orbitals become
physically meaningful.

We now consider the molecular interaction between A and B
molecules.  The quantum mechanical properties of these mole-
cules are determined by themselves, independently.  For both
molecules the eigen-values and eigen-functions are prepared
independently.  We then set some couplings between them, and
carry out calculations pertubatively, or as an eigen-value prob-
lem.  Then if a preferable result to stabilize the whole system is
obtained, we conclude that the reaction in question is likely to
take place.  However, this speculation concerning the reactivity
theory is considerably unsatisfactory.  Look at (2.3) or (3.5).
For example, the first one indicates that the extra energy con-
sists of two parts, the polarizabilty and couplings.  The polariz-
ability is written by using unperturbed terms of the respective

molecules.  Thus if we wish to obtain a new molecule as a sta-
ble substance, the qualitative natures of the couplings are fatal-
ly determined.  We have thus presented an unusual structure
for the ethlene–H2 compound as the smallest Möius band.

An easier analysis of this compound is reviewed by using
the effective interaction.  In this molecule we can define an ef-
fective coupling due to the intermolecular interaction,

The extra energy obtained in dark (thermally) is given as

However, in the radiation field, since the bond order acquires
an additional term qLH

  A1,A2 as is seen in (4.20), the change of the
extra energy ∆Ef amounts to

Considering that qLH
  A2A1 < 0 against qA1A2 > 0, we can conclude

that the end coupling terms, vA2B2 and vA1B1 have the same signs.
Various applications have been made.11,12  It is claimed that

the face-to-face coupling between two benzene molecules is
unlikely, to displace each other by about half width of the sur-
face; a similar displacement between two chain molecules is
also theoretically obtained in accordance with observations in
molecular crystals.
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