One-pot stereoselective synthesis of 2-acylaziridines and 2-acylpyrrolidines from N-(propargylic)hydroxylamines

メタデータ 言語: eng 出版者: 公開日: 2017-10-03 キーワード (Ja): キーワード (En): 作成者: メールアドレス: 所属: URL https://doi.org/10.24517/00010573

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

DOI: 10.1002/asia.200((will be filled in by the editorial staff))

One-pot Stereoselective Syntheses of 2-Acylaziridines and 2-Acylpyrrolidines from N-(Propargylic)hydroxylamines

Yoshiaki Miyamoto, Norihiro Wada, Takahiro Soeta, Shuhei Fujinami, Katsuhiko Inomata, and Yutaka Ukaji*^[a]

Abstract: A stereoselective direct transformation of *N*-(propargylic)hydroxylamines into *cis-2*-acylaziridines was realized by the combined use of AgBF₄ and CuCl. Copper salts were confirmed to promote the transformation of the

intermediary 4-isoxazolines to 2-acylaziridines. Both 3-aryl and 3-alkyl substituted 2-acylaziridines could be prepared by this method. Furthermore, subsequent 1,3-dipolar cycloaddition of azomethine ylides generated in situ from the intermediary 2-acylaziridines with maleimides was achieved by one-

pot procedure to afford the corresponding 2-acylpyrrolidines consisting of an octahydropyrrolo[3,4-c]pyrrole skeleton stereoselectively.

Keywords: 2-acylaziridine • 2-acylpyrrolidine • 4-isoxazoline • rearrangement • azomethine ylide

Introduction

2-Acylaziridines are versatile synthetic intermediates for a wide range of important nitrogen-containing chemicals, for example via ring-opening reactions, [1] and some of them have biological activities. [2] General procedure to prepare 2-acylaziridines includes metal catalyzed addition of nitrene to alkenes, [3] metal catalyzed carbene addition to imine functions, [4] Micheal addition-elimination of hydroxylamine and hydrazine derivatives to enones, [5] ringclosure of 2-azido-3-hydroxy ketones, [6] and nucleophilic reaction of amines to α,β -dibromoketones.^[7] Although *trans*-2-acylaziridines could be readily prepared, stereoselective synthesis of cis-2acylaziridines is rather difficult. Only a few methods for preparation of cis-3-alkyl substituted 2-acylaziridines were reported. [4a,b,d] Baldwin rearrangement of 4-isoxazolines was known to afford 2acylaziridines, however, the reaction conditions were drastic and the diastereoselectivity was not always good. [8] Although cobaltmediated rearrangement of 4-isoxazolines also gave the corresponding 2-acylaziridines, stereoselectivity was not so high. [8i]

[a] Y. Miyamoto, N. Wada, Dr. T. Soeta, Dr. S. Fujinami, Prof. Dr. K. Inomata. Prof. Dr. Y. Ukaii

Division of Material Sciences, Graduate School of Natural Science and Technology

Kanazawa University

Kakuma, Kanazawa, Ishikawa 920-1192, Japan

Fax: (+81)76-264-5742

E-mail: ukaji@staff.kanazawa-u.ac.jp

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/asia.200xxxxxx.((Please delete if not appropriate))

Recently, microwave-assisted rearrangement was reported, however, the methods was limited to 3-aryl substituted acylaziridines.^[8m]

Recently, we have reported a one-pot reaction consisting of an enantioselective nucleophilic addition of alkynylzinc reagents to nitrones and a subsequent cyclization to give the corresponding 4isoxazolines with high enantioselectivity. [9] In order to prepare 4more efficiently, the cyclization isoxazolines of N-(propargylic)hydroxylamines to 4-isoxazolines was investigated in the presence of a metal salt, and AgBF₄ was found to be a catalyst of choice for the cyclization.^[10] During the investigation of the metal catalyzed ring closure of N-(propargylic)hydroxylamines, cis-2acylaziridines were found to be produced diastereoselectively in the presence of a copper salt at rt. Herein, we wish to report the details about one-pot preparation of 2-acylaziridines from N-(propargylic)hydroxylamines via ring closure to 4-isoxazolines and the successive Baldwin rearrangement in the presence of AgBF₄ and a copper salt. [11] Furthermore, one-pot stereoselective synthesis of 2acylpyrrolidines via 1,3-dipolar cylcloaddition of azomethine ylides generated from the 2-acylaziridines is also described.

Results and Discussion

The cyclization of N-benzyl-N-(1,3-diphenylprop-2-ynyl)hydroxylamine (1a) was examined in the presence of various kinds of metal salts without an amine, and it was found that $AgBF_4$ was a good catalyst for cyclization to 4-isoxazolines. [10] During the survey of metal salts, it was found that not only 4-isoxazoline 2a but also a cis-2-acylaziridine $3a^{[8i,12]}$ was produced with complete diastereoselectivity when CuCl was used in CH_2Cl_2 at rt (Table 1, Entry 1). Then, direct transformation of 1a to 2-acylaziridine 3a was intensively investigated and the results were summarized in Table 1.

The reaction by the use of 1.0 equiv of CuCl₂ or CuI was messy and the 2-acylaziridine **3a** was not obtained (Entries 2 and 3). The use of cationic copper salts afforded the *cis*-2-acylaziridine **3a** as a major product (Entries 4–7), however, the chemical yield was not high. By monitoring the reaction using TLC, it was observed that the 4-isoxazoline was once produced and gradually consumed. In order to promote the cyclization step to 4-isoxazoline, *N*-

(propargylic)hydroxylamine was firstly treated with 0.1 equiv AgBF₄ for 7 h and then CuCl was added to the reaction mixture: The chemical yield of **3a** was improved (Entry 8). The treatment with AgBF₄ together with CuCl further increased the yield of **3a** (Entry 9). By the use of 0.2 equiv of AgBF₄ and 1.0 equiv of CuCl, the reaction proceeded rather smoothly to afford **3a** in more than 80% yield (Entries 10 and 11). Solvent effect was examined in the reaction using 0.2 equiv of AgBF₄ and 1.0 equiv of CuCl, and CH₂Cl₂ was found to be best among the examined solvents (Entries 11–16). Although combination of 0.2 equiv of AgBF₄ and 1.0 equiv of several cationic copper salts were examined, the reactions were not so clean and resulted in decrease of the chemical yields of **3a** (Entries 17–20).

In order to explore the possibilities reducing the amount of copper salt, the reaction using 0.2 equiv of CuCl with 0.2 equiv of AgBF₄ was carried out: The transformation proceeded a little sluggishly to afford **3a**, but still in comparably good yield (Entries 21 and 22). In the present one-pot reaction, the active copper species was presumed to be CuBF₄ accompanied with generation of AgCl. Then the reaction in the presence of only 0.2 equiv of CuBF₄(CH₃CN)₂ was again examined to give the *cis*-2-acylaziridine **3a** in good yield (Entry 23), although the use of 1.0 equiv of CuBF₄(CH₃CN)₄ made the reaction rather complicated (Entry 6). Further addition of AgCl slightly decreased the yield (Entry 24). The use of 0.2 equiv of CuOTf(C₆H₆)_{0.5} was also effective to give **3a** in good yield (Entry 25). Consequently, the combined use of 0.2 equiv of AgBF₄ and 1.0 equiv of CuCl was the best for the sequential cyclization and Baldwin rearrangement.

Table 1. Reaction conditions for direct transformation of 1a into 3a

Entry	n ¹ / equiv	CuX _m	n ² / equiv	solvent	<i>t</i> / h	2a / %	3a / %
1	0	CuCl	1.0	CH ₂ Cl ₂	41	16	2 ^[a]
2	0	$CuCl_2$	1.0	CH_2Cl_2	44		
3	0	CuI	1.0	CH_2Cl_2	44		^[b]
4	0	$CuOTf(C_6H_6)_{0.5}$	1.0	CH_2Cl_2	17	23	58
5	0	$Cu(OTf)_2$	1.0	CH_2Cl_2	48		45
6	0	CuBF ₄ (CH ₃ CN) ₄	1.0	CH_2Cl_2	7		45
7	0	$Cu(BF_4)_2$	1.0	CH_2Cl_2	25		48
8 ^[c]	0.1	CuCl	1.0	CH_2Cl_2	41	24	53
9	0.1	CuCl	1.0	CH_2Cl_2	8	32	61
10	0.2	CuCl	1.0	CH_2Cl_2	8	13	84
11	0.2	CuCl	1.0	CH_2Cl_2	20	4	88
12	0.2	CuCl	1.0	MeCN	20	24	[a]
13	0.2	CuCl	1.0	MeOH	20	12	21
14	0.2	CuCl	1.0	THF	20	23	47
15	0.2	CuCl	1.0	Et_2O	20	22	6 ^[a]
16	0.2	CuCl	1.0	toluene	20	28	13 ^[a]
17	0.2	$CuOTf(C_6H_6)_{0.5}$	1.0	CH_2Cl_2	7		35
18	0.2	$Cu(OTf)_2$	1.0	CH_2Cl_2	8		13
19	0.2	CuBF ₄ (CH ₃ CN) ₄	1.0	CH_2Cl_2	8		42
20	0.2	$Cu(BF_4)_2$	1.0	CH_2Cl_2	8	10	42
21	0.2	CuCl	0.2	CH_2Cl_2	8	10	58
22	0.2	CuCl	0.2	CH_2Cl_2	23		82
23	0	CuBF ₄ (CH ₃ CN) ₄	0.2	CH_2Cl_2	23		74
24	$0.2^{[d]}$	CuBF ₄ (CH ₃ CN) ₄	0.2	CH_2Cl_2	23		65
25	0	$CuOTf(C_6H_6)_{0.5}$	0.2	CH_2Cl_2	41		78

[a] The hydroxylamine **1a** was recovered in 69% (Entry 1), 32% (Entry 12), 65% (Entry 15), and 7% (Entry 16) yields, respectively. [b] Most of the hydroxylamine **1a** was recovered. [c] The hydroxylamine **1a** was firstly treated with AgBF₄ for 7 h, and then CuCl was added to the resulting reaction mixture. [d] 0.2 Equiv of AgCl was used instead of AgBF₄.

Toward the rearrangement from 4-isoxazoline to 2-acylaziridine, evaluation of copper salts was separately performed, that is, the 4-isoxazoline 2a was treated with copper salts as shown in the Table 2.

Although the reaction was rather sluggish when only CuCl was used, addition of $AgBF_4$ again promoted the rearrangement (Entries 1 and 2). Cationic Cu(I) salts, especially CuOTf(C_6H_6)_{0.5}, were found to be effective as a promoter for this rearrangement (Entries 3 and 5), whereas Cu(II) salts were not effective (Entries 4 and 6).

Table 2. Evaluation of copper salts for Baldwin rearrangement

[a] The 4-isoxazoline $\bf 2a$ was recovered in 68% yield. [b] In addition to CuCl, 0.2 equiv of AgBF₄ was also added to the reaction.

The one-pot cyclization-rearrangement was applied to several N-(propargylic)hydroxylamines 1 bearing aromatic and/or aliphatic substituents by the treatment with AgBF₄ (0.2 equiv) and CuCl (1.0 equiv). As listed in Table 3, the corresponding cis-acylaziridines 3 were produced stereoselectively.[12] A cis-2-heptanoyl-3phenylaziridine 3b was obtained in reasonable chemical yield (Entry 2). In the case of 2-pivaloylaziridine 3c, a small amount of transisomer was furnished (Entry 3). Although transformation of propylsubstituted hydroxylamine 1d was not so clean and a small amount of the corresponding trans-isomer and a dehydrated imine 4d were formed, cis-2-benzoyl-3-propylaziridine 3d was predominantly produced (Entry 4). In the case of cyclohexyl-substituted N-(propargylic)hydroxylamine 1e, increase of the amount of AgBF₄ could improve the chemical yield (Entries 5 and 6). The reaction of a hydroxylamine 1f, in which both R¹ and R² were alkyl groups, afforded cis-2-acylaziridine 3f stereoselectively (Entry 7).

Table 3. Direct transformation of N-(propargylic)hydroxylamines into 2-acylaziridines

	Bn N OH				Bn N	-R ²
Entry	R ¹	R ²		<i>t</i> / h	2a / %	3a / %
1	Ph	Ph	a	20	4	88
2	Ph	nHex	b	27		63
3	Ph	<i>t</i> Bu	c	24		72 ^[a]
4	nPr	Ph	d	41		$49^{[a,b]}$
5	cHex.	Ph	e	25	14	64
6 ^[c]				24	7	76
7	Me	nHex	f	23		58

[a] The corresponding *trans*-isomer of **3** was obtained in 6% (Entry 3) and 10% (Entry 4) yields, respectively. [b] An imine, 1-phenyl-N-(1-phenylhex-1-yn-3-ylidene)methanamine (**4d**), was obtained in 28 % yield. [c] The amount of AgBF₄ was 0.3 equiv.

In the case of $Co_2(CO)_8$ (0.5 equiv) mediated rearrangement of 4-isoxazoline, a radical pathway was proposed to give 2.8/1 mixture of *cis/trans*-2-acylaziridines starting from $\mathbf{1a}$. When $\mathbf{1a}$ was treated with 1.0 equiv of $CuOTf(C_6H_6)_{0.5}$ under a similar conditions (in $ClCH_2CH_2Cl$ at 80 °C for 0.5 h), $\mathbf{3a}$ was obtained in 80% yield and the diastereoselectivity was still high ($\mathbf{3a}/trans$ -isomer = 20/1, determined by 1H NMR spectrum of the crude products), different from the result of the reaction catalyzed by $Co_2(CO)_8$. Furthermore, addition of galvinoxyl free radical did not affect the reaction from

2a to **3a** (according to Entry 3 in Table 2) as a radical inhibitor. These facts might suggest that a radical pathway might be ruled out. Although the precise reaction mechanism of the present rearrangement is not yet clear, [1,3]-sigmatropic rearrangement proposed for original Baldwin rearrangement without metal salts is a probable pathway to afford the *cis*-2-acylaziridine (Figure 1). [8c,d,f] The reaction might be activated by coordination of nitrogen to copper resulting in weakening the N–O bond (Figure 1).

$$\begin{array}{c|c}
C_{s}^{\downarrow} & [_{\sigma}^{2}]_{s} + _{\pi}^{2} \\
R_{s}^{\downarrow} & H
\end{array}$$

Figure 1. [1,3]-Sigmatropic rearrangement proposed for the present transformation

2-Acylaziridines are well-known to generate azomethine ylides via thermal ring-opening, which proceeds through a conrotatory C-C bond-breaking process according to the Woodward-Hoffmann rules. Following 1,3-dioplar cycloaddition of the generated azomethine ylides with electron-deficient olefins afforded 2acylpyrrolidine skeletons, [13,14] some of which were bioactive. [15] For example, the cycloaddition of azomethine ylides generated from cisand/or trans-2-benzoylaziridines with N-phenylmaleinimde gave a diastereomeric mixture of pyrrolidines depends on the reaction conditions. [14d,e] However, cis-2-acylaziridines were not so easy to be prepared and related cycloaddition of azomethine ylides derived from 2-acylaziridines with various substituents including aliphatic groups at C3 position was scarcely reported. Now, we could prepare 2-acylaziridines possessing aromatic and/or aliphatic substitutents in a cis-selective manner. Therefore, we investigated 1,3-dipolar cycloaddition of azomethine ylides generated in situ from the 2acylaziridines via one-pot procedure starting (propargylic)hydroxylamines 1.

After treatment of N-(propargylic)hydroxylamines 1a with 0.2 equiv of AgBF₄ and 1.0 equiv of CuCl for 24 h at rt in CH₂Cl₂, Nmethylmaleimide (5A) was added to the reaction mixture. When the reaction was carried out at rt, the desired product was not obtained. However, the expected 1,3-dipolar cycloaddition proceeded at 75 °C in ClCH₂CH₂Cl, after exchanging the solvent from CH₂Cl₂, to give a 2-acylpyrrolidine 6aA consisting of an octahydropyrrolo[3,4c pyrrole skeleton diastereoselectively in 33% yield (Table 4, Entry 1). Cycloaddition to N-benzylmaleimide (5B) afforded the corresponding cycloadduct 6aB in a similar chemical yield (Entry 2). Due to easy handling of N-benzylmaleimide (5B) and its product 6aB especially for their relatively high solubility, 1,3-dipolar cycloaddition was further examined using 5B. When the reaction temperature was increased, the chemical yield was improved (Entry 3). The cycloadduct 6aB was obtained in 60% yield when cycloaddition was carried out at 145 °C in xylene (Entry 4). When the reaction was performed under more condensed conditions, the chemical yield was further improved up to 85% yield (Entry 5).

One-pot synthesis of substituted pyrrolidines was then investigated starting from N-(propargylic)hydroxylamines $\mathbf{1}$ possessing not only aromatic but also aliphatic substituents. Phenyl-substituted pyrrolidines $\mathbf{6bB}$ and $\mathbf{6cB}$ ($\mathbf{R}^1 = \mathbf{Ph}$) were obtained in ca 60% yields with complete diastereoselectivity (Entries 6 and 7). It was revealed that 1,3-dipolar cycloaddition of azomethine ylides via 2-acylaziridines $\mathbf{3d-f}$ bearing an aliphatic substituent at C3 position ($\mathbf{R}^1 = \mathbf{alkyl}$) afforded the corresponding pyrrolidines stereoselectively although total chemical yields were not good enough (Entries 8–11). In the case of 5-cylohexyl-substituted pyrrolidines $\mathbf{6eA}$ and $\mathbf{6eB}$, chemical yields were still over 50%

yields after 3 step-reaction consisting of ring-closure, Baldwin rearrangement, and 1,3-dipolar cycloaddition (Entries 9 and 10).

Table 4. One-pot preparation of 2-acylpyrrolidines from N (propargylic)hydroxylamines

Bn N OH AgBF₄ (0.2 equiv)
$$CuCl$$
 (1.0 equiv) CH_2Cl_2 , rt, t^1 h CH_2Cl_2 , rt, t^1 h CH_2Cl_2 rt, t^2 h CH_2Cl_2 rt, t^3 h CH_2Cl_2 rt, t^4 rt, $t^$

Entry	\mathbb{R}^1	\mathbb{R}^2	R	t^I/h	solvent	T/ °C	t^2/h	6	Yield / %
1	Ph	Ph	Me	24	ClCH ₂ CH ₂ Cl ^[a]	75	24	6aA	33
2	Ph	Ph	Bn	24	ClCH ₂ CH ₂ Cl ^[a]	75	24	6aB	32
3				24	toluene ^[a]	110	6		53
4				27	xylene ^[a]	145	1		60
5				24	xylene ^[b]	145	2		85
6	Ph	nHex	Bn	31	xylene ^[b]	145	3	6bB	56
7	Ph	<i>t</i> Bu	Bn	31	xylene ^[b]	145	1	6cB	66
8	<i>n</i> Pr	Ph	Bn	48	xylene ^[b]	145	2	6dB	39
9 ^[c]	cHex	Ph	Me	27	xylene ^[b]	145	3	6eA	52
$10^{[c]}$	cHex	Ph	Bn	27	xylene ^[b]	145	3	6eB	53
11	Me	nHex	Bn	24	xylene ^[b]	145	1.5	6fB	27

[a] Concentration was 0.06 mmol mL⁻¹. [b] Concentration was 0.25 mmol mL⁻¹.

[c] Amount of AgBF₄ was 0.3 equiv.

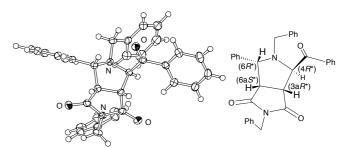


Figure 2. X-ray structure of 6aB

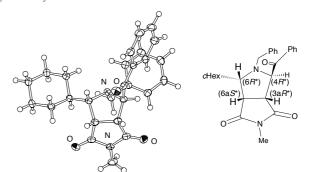


Figure 3. X-ray structure of **6eA**

Relative stereochemistry of the product 6aB and 6eA was determined to be $3aR^*,4R^*,6R^*,6aS^*$ by X-ray crystallographic analyses of their single crystals (Figures 2 and 3). The stereochemistry of other cycloadducts was tentatively assigned to be also $3aR^*,4R^*,6R^*,6aS^*$, since the coupling constants J_{3a-4} and J_{6-6a} between the methine protons in their ¹H NMR spectra were in accordance with those of 6aB and 6eA, the stereochemistry of which was determined by X-ray crystallography. Based on this assignment, 1,3-dipolar cycloaddition was considered to proceed via exo-mode with S-shaped azomethine ylide 7 and/or endo-mode with S-shaped azomethine ylide 7 and/or 7 endo-mode with S-shaped azomethine ylide 7 and/or

the isolated *trans*-isomer of **3c** with **5B** gave **6cB** stereoselectively at 145 °C in xylene in 84% yield (eq. 1).^[17] These results suggested existence of the equilibrium between *W*-dipole **9**, which might be favorable than *U*-dipole, and *S*-dipole **7** and/or **8** under high temperature even in the case of 3-alkyl substituted 2-acylaziridine **3d**. Therefore, the *trans*-2-acylaziridine also afforded **6** via 1,3-dipolar cycloaddition through *S*-dipole **7** and/or **8**.

Bn
$$R^2$$
 R^2
 R^2
 R^2
 R^3
 R^4
 R

Scheme 1. Proposed pathway of 1,3-dipolar cycloaddition

Conclusion

As described above, a direct transformation of *N*-(propargylic)hydroxylamines into *cis*-2-acylaziridines has been developed. Furthermore, one-pot stereoselective preparation of 2-acylpyrrolidine consisting of an octahydropyrrolo[3,4-*c*]pyrrole skeleton was achieved via 1,3-dipolar cycloaddition of azomethine ylides, generated in situ by thermal ring-opening of the intermediary 2-acylaziridines, in the presence of maleimides. The present methods would be quite useful for the synthesis of a wide range of nitrogen containing biologically active compounds because *cis*-2-acylaziridines and 2-acylpyrrolidines are versatile synthons for such chemicals.

Experimental Section

General Remarks: The 1 H NMR spectra were recorded on a JEOL ECS 400 NMR (400 MHz) spectrometer in CDCl₃ and the chemical shifts were determined in the δ -scale relative to TMS (δ = 0 ppm) as an internal standard. The 13 C NMR spectra were measured on a JEOL ECS 400 NMR (100 MHz) spectrometer in CDCl₃ and the chemical shifts were determined in the δ -scale relative to CDCl₃ (δ = 77.0 ppm) as an internal standard. The IR spectra were performed on a JASCO FT/IR-230 spectrometer. All measurements for X-ray crystallographic analyses were made on a Rigaku/MSC Mercury diffractometer with graphite monochromated Mo-Kα radiation. Elemental analyses were carried out on a Yanaco CHN Corder MT-5 elemental analyzer. The MS spectra were recorded with JEOL JMS-SX102A and JMS-700 mass spectrometers. All solvents were distilled and stored over drying agents. Merck silica gel 60 PF254 (Art. 7749) and Cica silica gel 60N spherical neutral (37563-84) were used for thin-layer chromatography (TLC) and flash column chromatography, respectively. All of the melting points were determined with a micro melting apparatus (Yanagimoto-Seisakusho) and are uncorrected.

Representative procedure of direct transformation of N-(propargylic)hydroxylamine 1a to 2-acylaziridine 3a (Table 3, Entry 1): A mixture of N-(propargylic)hydroxylamine 1a (219 mg, 0.7 mmol), AgBF₄ (27 mg, 0.14 mmol) and CuCl (69 mg, 0.7 mmol) in CH₂Cl₂ (20 mL) was stirred at rt under an argon atmosphere. After 20 h, the mixture was filtered through a pad of Celite and the solvent was removed under reduced pressure. The residue was purified by preparative TLC (hexane/AcOEt = 5/1) to give cis-2-acylaziridine 3a (193 mg, 88% yield) and 4-isoxazoline 2a $^{(20)}$ (9 mg, 4% yield).

In a similar manner, 2-acylaziridines **3b–3f** were prepared from the corresponding *N*-(propargylic)hydroxylamines **1b–1f**, respectively.

[($2R^*$, $3R^*$)-1-Benzyl-3-phenylaziridin-2-yl](phenyl)methanone (3a):^[81] $R_f = 0.35$ (hexane/AcOEt = 5/1); a solid; m.p. 94–96 °C (from EtOH/hexane); ¹H NMR δ 3.22 (d, 1H, J = 6.9 Hz), 3.30 (d, 1H, J = 6.9 Hz), 3.71 (d, 1H, J = 14.0 Hz), 3.93 (d, 1H, J = 14.0 Hz), 7.01–7.40 (m, 13 H), 7.77 (d, 2H, J = 6.4 Hz); ¹³C NMR δ 49.6, 51.0, 63.5, 127.0, 127.2, 127.4, 127.7, 127.8, 127.9, 128.2, 132.8, 134.8, 136.7, 137.7, 192.9; IR (KBr) 3027, 1681, 1495, 1449, 1355, 1223, 1056, 935, 747, 737, 707, 696 cm⁻¹.

1-[(2 R^* ,3 R^*)-1-Benzyl-3-phenylaziridin-2-yl]heptan-1-one (**3b**): $R_{\rm f}=0.45$ (hexane/AcOEt = 5/1); an oil; 1 H NMR δ 0.80 (t, 3H, J=7.4 Hz), 0.88–1.30 (m, 8H), 1.88 (ddd, 1H, J=7.4, 8.2, 6.4 Hz), 2.20 (ddd, 1H, J=17.4, 8.2, 6.4 Hz), 2.64 (d, 1H, J=7.0 Hz), 3.14 (d, 1H, J=7.0 Hz), 3.69 (d, 1H, J=13.8 Hz), 3.78 (d, 1H, J=13.8 Hz), 7.18–7.43 (m, 10H); 13 C NMR δ 14.0, 22.3, 22.8, 28.5, 31.4, 40.7, 48.6, 52.4, 64.0 127.36, 127.43, 127.8, 128.10, 128.14, 128.4, 135.3 138.0, 207.4; IR (neat) 3062, 3031, 2928, 2857, 1699, 1604, 1496, 1454, 1376, 1204, 1067, 1029, 738, 699 cm $^{-1}$; HRMS (EI $^+$) (M $^+$), Found: m/z 321.2087; Calcd for C₂₂H₂₇NO: 321.2093.

1-[(2R*,3R*)-1-Benzyl-3-phenylaziridin-2-yl]-2,2-dimethylpropan-1-one (**3c**): $R_{\rm f}$ = 0.45 (hexane/AcOEt = 5/1); a solid; m.p. 85–88 °C (from EtOH/hexane); ¹H NMR δ 0.96 (s, 9H), 3.05 (d, 1H, J = 6.8 Hz), 3.12 (d, 1H, J = 6.8 Hz), 3.67 (d, 1H, J = 14.0 Hz), 3.94 (d, 1H, J = 14.0 Hz), 7.19–7.41 (m, 10H); ¹³C NMR δ 25.7, 43.2, 49.4, 50.0, 63.4, 126.8, 127.1, 127.4, 127.5, 128.1, 134.9, 137.7, 206.6; IR (KBr) 3027, 2973, 1703, 1604, 1495, 1455, 1378, 1312, 1265, 1091, 1027, 840, 758, 732 cm⁻¹; Found: C, 81.81; H, 7.79; N, 4.79%; Calcd for C₂₀H₂₃NO: C, 81.87; H, 7.90; N, 4.77%.

1-[($2S^*$, $3R^*$)-1-Benzyl-3-phenylaziridin-2-yl]-2,2-dimethylpropan-1-one (*trans*-isomer of **3c**): $R_{\rm f} = 0.50$ (hexane/AcOEt = 5/1); an oil; $^{\rm i}$ H NMR δ 1.04 (s, 9H), 3.15 (d, 1H, J = 2.5 Hz), 3.37 (d, 1H, J = 2.5 Hz), 3.93 (d, 1H, J = 13.8 Hz), 4.20 (d, 1H, J = 13.8 Hz), 7.19–7.41 (m, 10H); $^{\rm i3}$ C NMR δ 25.7, 44.6, 45.9, 49.7, 54.0, 126.3, 126.9, 128.2, 128.4, 128.5, 138.9, 139.3, 210.2; IR (neat) 3038, 2966, 1683, 1541, 1507, 1457, 1395, 1362, 1073, 752, 698 cm⁻¹; HRMS (El⁺) (M⁺), Found: m/z 293.1774; Calcd for $C_{20}H_{23}$ NO: 293.1780.

[(2 R^* ,3 R^*)-1-Benzyl-3-propylaziridin-2-yl](phenyl)methanone (3**d**): $R_{\rm f}=0.40$ (hexane/AcOEt = 4/1); an oil; ¹H NMR δ 0.80 (t, 3H, J=7.3 Hz), 1.18–1.52 (m, 4H), 2.21 (q, 1H, J=6.4 Hz), 3.08 (d, 1H, J=6.9 Hz), 3.61 (d, 1H, J=13.7 Hz), 3.77 (d, 1H, J=13.7 Hz), 7.22–7.56 (m, 8H), 8.00 (d, 2H, J=8.2 Hz); ¹³C NMR δ 13.7, 20.6, 29.6, 47.4, 48.9, 64.1, 127.1, 128.0, 128.1, 128.3, 128.5, 133.1, 137.3, 137.9, 195.2; IR (neat) 3059, 2954, 2869, 1673, 1596, 1578, 1496, 1449, 1389, 1361, 1228, 1067, 1020, 930, 737, 700, 661 cm⁻¹; HRMS (EI⁺) (M⁺), Found: m/z 279.1621; Calcd for $C_{19}H_{21}NO$: 279.1623

[(2*S**, 3*R**)-1-Benzyl-3-propylaziridin-2-yl](phenyl)methanone (*trans*-isomer of **3d**): $R_{\rm f}=0.45$ (hexane/AcOEt = 4/1); an oil; NMR showed the presence of two isomers (ratio = 3.5/1), which might be a sort of diastereomers in equilibrium as depicted below. ²¹ Major isomer: ¹H NMR δ0.86 (t, 3H, J=7.3 Hz), 1.30–1.37 (m, 2H), 1.48–1.56 (m, 2H), 2.59 (dt, 1H, J=2.7, 6.0 Hz), 3.40 (d, 1H, J=2.7 Hz), 3.78 (d, 1H, J=13.3 Hz), 3.86 (d, 1H, J=13.3 Hz), 7.18–7.59 (m, 8H), 7.92–7.95 (m, 2H); ¹³C NMR δ13.8, 20.4, 34.9, 44.2, 48.1, 55.3, 126.9, 128.2, 128.3, 128.5, 128.6, 133.1, 138.4, 139.1, 196.1; Minor isomer: ¹H NMR δ 0.99 (t, 3H, J=7.3 Hz), 1.47–1.91 (m, 4H), 2.66 (dt, 1H, J=2.7, 7.4 Hz), 2.87 (d, 1H, J=2.7 Hz), 3.72 (d, 1H, J=14.2 Hz), 4.10 (d, 1H, J=14.2 Hz), 7.18–7.59 (m, 8H), 7.92–7.95 (m, 2H); ¹³C NMR δ 14.0, 21.5, 28.0, 47.6, 48.3, 127.6. 128.1, 128.4, 128.5, 133.0, 138.9, 196.6 (Three signals might be overlaped with those of major isomer); IR (neat) 3061, 2959, 2929, 2871, 1667, 1538, 1449, 1379, 1265, 1070, 1026, 695 cm⁻¹; HRMS (EI*) (M*), Found: m/z 279.1627; Calcd for C₁₉H₂₁NO: 279.1623.

1-Phenyl-*N*-(1-phenylhex-1-yn-3-ylidene)methanamine (**4d**): $R_{\rm f}=0.20$ (hexane/AcOEt = 5/1); a solid; m.p. 77–78 °C (from AcOEt/hexane); ¹H NMR δ 0.93 (t, 3H, J = 7.3 Hz), 1.57–1.68 (m, 2H), 2.55 (t, 2H, J = 7.8 Hz), 5.31 (s, 2H), 7.23–7.31 (m, 6 H), 7.37–7.40 (m, 2H), 7.44 (d, 2H, J = 7.8 Hz); ¹³C NMR δ 13.7, 18.8, 32.4, 66.6, 82.9, 104.2, 121.5, 128.3, 128.5, 128.6, 129.3, 131.0, 133.9, 134.0; IR (KBr) 3058, 2955, 2870, 1517, 1485, 1438, 1303, 1250, 1176, 1164, 935, 759 cm⁻¹; HRMS (FAB⁺) (M⁺ + H), Found: m/z 262.1592; Calcd for $C_{19}H_{20}N$: 262.1596.

[(2 R^* ,3 R^*)-1-Benzyl-3-cyclohexylaziridin-2-yl](phenyl)methanone (3 \mathbf{c}): $R_{\rm f}=0.40$ (hexane/AcOEt = 5/1); a solid; m.p. 113–115 °C (from hexane/EtOH); ¹H NMR δ 0.92–1.26 (m, 6H), 1.40–1.76 (m, 5H), 1.96 (dd, 1H, J = 8.7, 6.9 Hz), 3.10 (d, 1H, J = 6.9 Hz), 3.60 (d, 1H, J = 13.7 Hz), 3.73 (d, 1H, J = 13.7 Hz), 7.23–7.58 (m, 8H), 8.01 (d, 2H, J = 7.3 Hz); ¹³C NMR δ 25.27, 25.29, 26.0, 30.2, 31.2, 35.5, 47.3, 55.1, 64.5, 127.1, 128.0, 128.17, 128.19, 128.4, 132.9, 137.3, 137.8, 195.0; IR (KBr) 3031, 2924, 2849, 1683, 1598, 1448, 1225, 1049, 1023, 915, 738, 688 cm²¹; Found: C, 82.72; H, 7.89; N, 4.38%; Calcd for $C_{22}H_{25}$ NO: C, 82.41; H, 7.94; N, 4.42%.

1-[(2 R^* ,3 R^*)-1-Benzyl-3-methylaziridin-2-yl]heptan-1-one (3f): $R_{\rm f}=0.45$ (hexane/AcOEt = 4/1); an oil; 1 H NMR δ 0.86 (t, 3H, J=5.5 Hz), 1.19 (d, 3H, J=5.5 Hz), 1.19–1.30 (m, 6H), 1.46–1.56 (m, 2H), 2.05 (dq, 1H, J=6.9, 5.5 Hz), 2.32 (d, 1H, J=6.9 Hz), 2.38–2.53 (m, 2H), 3.43 (d, 1H, J=13.7 Hz), 3.69 (d, 1H, J=13.7 Hz), 7.21–7.36 (m, 5H); 13 C NMR δ 13.3, 14.0, 22.4, 23.5, 28.9, 31.5, 42.3, 43.4, 49.1, 63.9, 127.1, 127.8, 128.3, 138.2, 207.8; IR (neat) 3030, 2956, 2928, 2858, 1699, 1496, 1454, 1413, 1354, 1142, 1121, 1073, 1030, 733, 698 cm $^{-1}$; HRMS (EI') (M°), Found: m/z 259.1937; Calcd for C₁₇H₂₅NO: 259.1936.

Representative procedure of one-pot synthesis of 2-acylpyrrolidine 6aB starting from N-(propargylic)hydroxylamine 1a (Table 4, Entry 5): A mixture of N-(propargylic)hydroxylamine 1a (157 mg, 0.5 mmol), AgBF₄ (19 mg, 0.1 mmol) and CuCl (50 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) was stirred at rt under an argon atmosphere. After 24 h, N-benzylmaleimide (5B) (112 mg, 0.6 mmol) in xylene (2 mL) was added to the reaction mixture and CH₂Cl₂ was evaporated under the reduced pressure. The resulting mixture in xylene was heated at 145 °C for 2 h and cooled to rt. The insoluble substance was filtered off through a pad of Celite and the solvent was removed under reduced pressure. The residue was purified by preparative TLC (hexane/Et₂O = 1/1) to give 6aB (215 mg, 85% yield).

In a similar manner, other 2-acylpyrrolidines **6aA**, **6eA**, and **6bB-6fB** were prepared from the corresponding *N*-(propargylic)hydroxylamines **1a–1f**, respectively.

 $\begin{array}{l} (3aR^*,4R^*,6R^*,6aS^*)\text{--}4\text{-}Benzoyl\text{--}5\text{-}benzyl\text{--}2\text{-}methyl\text{--}6\text{-}phenyltetrahydropyrrolo}[3,4-c]pyrrole\text{--}1,3(2H,3aH)\text{-}dione $(\mathbf{6aA})$: $R_f=0.30$ (hexane/Et_2O=1/1)$; a solid; m.p. 164–165 °C (from AcOEt/hexane)$; 1H NMR δ 2.94 (s, 3H), 3.24 (d, 1H, $J=7.8$ Hz), 3.63 (d, 1H, $J=13.7$ Hz), 3.70 (dd, 1H, $J=9.6$, 7.8$ Hz), 3.77 (d, 1H, $J=13.7$ Hz), 5.15 (d, 1H, $J=9.6$ Hz), 5.24 (s, 1H), 7.04–7.12 (m, 2H), 7.19–7.22 (m, 3H), 7.29–7.41 (m, 7H), 7.56 (t, 1H, $J=7.3$ Hz), 7.80 (dd, 2H, $J=8.3$, 0.9$ Hz); ^{13}C NMR δ 25.0, 48.5, 50.2, 51.1, 62.4, 68.2, 127.2, 128.1, 128.30, 128.31, 128.4, 128.6, 128.7, 133.8, 135.0, 137.8, 137.9, 175.7, 177.3, 200.7; IR (KBr) 3031, 2876, 1773, 1697, 1668, 1591, 1494, 1434, 1381, 1323, 1284, 1230, 1115, 1069, 1001, 870, 755, 731, 697 cm$^{-1}$; Found: C, 76.25; H, 5.82; N, 6.57%; Calcd for $C_{27}H_{24}N_{2}O_{3}$: C, 76.39; H, 5.70; N, 6.60%. \end{tabular}$

 $(3aR^*,4R^*,6R^*,6aS^*)$ -4-Benzoyl-2,5-dibenzyl-6-phenyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (**6aB**): $R_f = 0.35$ (hexane/Et₂O = 1/1); a solid; m.p. 165–166 °C (from AcOEt/hexane); ¹H NMR δ 3.28 (d, 1H, J = 7.8 Hz), 3.56 (d, 1H, J = 13.7 Hz), 3.62 (dd, 1H, J = 9.6, 7.8 Hz), 3.67 (d, 1H, J = 13.7 Hz), 4.56 (d, 1H, J = 13.8 Hz), 4.65(d, 1H, J = 13.8 Hz), 5.11 (d, 1H, J = 9.6 Hz), 5.19 (s, 1H), 6.93–6.97 (m, 2H), 7.02– 7.12 (m, 2H), 7.13–7.27 (m, 6H), 7.37–7.46 (m, 7H), 7.55 (t, 1H, J = 7.3 Hz), 7.83 (d, 2H, J = 7.8 Hz); ¹³C NMR δ 42.6, 48.0, 49.9, 50.5, 62.6, 68.0, 127.1, 127.8, 128.0, 128.1, 128.3, 128.35, 128.40, 128.5, 128.7, 129.4, 133.7, 135.0, 135.8, 136.9, 138.0, 175.0, 177.3, 200.3. IR (KBr) 3030, 2878, 1772, 1702, 1579, 1494, 1453, 1422, 1396, 1339, 1235, 1175, 1136, 1027, 989, 727, 699 cm⁻¹; Found: C, 79.25; H, 5.65; N, 5.63%; Calcd for $C_{33}H_{28}N_2O_3$: C, 79.18; H, 5.64; N, 5.60%. Crystal data: $C_{33}H_{28}N_2O_3$, $M_r =$ 500.60, monoclinic, $P2_1/n$, a = 11.7284(8), b = 9.1475(5), c = 24.016(2) Å, V = 1.016(2)2528.7(3) Å³, β = 101.057(2)°, Z = 4, D_{calcd} = 1.315 g cm⁻³, R = 0.065 (R_{w} = 0.070) for 5599 reflections with I $\geq 3.00 \mbox{\it o}(I)$ and 343 variable parameters. Crystallographic data for 6aB have been deposited with Cambridge Crystallographic Data Centre as supplementary publication No. CCDC 913503.

(3a*R**,4*R**,6*R**,6a*S**)-2,5-Dibenzyl-4-heptanoyl-6-phenyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2*H*,3a*H*)-dione (**6bB**): $R_{\rm f}$ = 0.30 (hexane/AcOEt = 3/1); an oil; $^{\rm l}$ H NMR δ 1.00–1.31 (m, 5H), 1.52–1.71 (m, 6H), 1.95–2.05 (m, 2H), 3.16 (d, 1H, J = 13.3 Hz), 3.40–3.43 (m, 2H), 3.54 (d, 1H, J = 6.8 Hz), 3.70 (d, 1H, J = 13.3 Hz), 4.68 (d, 1H, J = 13.7 Hz), 4.75 (d, 1H, J = 13.7 Hz), 4.85 (s, 1H), 6.86 (d, 2H, J = 6.8 Hz), 7.16–7.30 (m, 6H), 7.35 (t, 2H, J = 7.3 Hz), 7.42–7.47 (m, 3H), 7.51 (d, 2H, J = 7.4 Hz); $^{\rm l}$ C NMR δ 14,0, 22.4, 23.0, 28.7, 31.5, 42.1, 42.7, 47.2, 49.8, 51.0, 66.5, 68.1, 127.4, 127.9, 128.11, 128.13, 128.50, 128.54, 128.6, 129.5, 135.8, 136.7, 138.0, 175.0, 177.1, 212.7; IR (neat) 3063, 3032, 2929, 2857, 1775, 1713, 1604, 1585, 1495, 1454, 1433, 1398, 1347, 1290, 1215, 1173, 1144, 1074, 1029, 921, 882, 832, 754, 699 cm $^{\rm -1}$; HRMS (FAB*) (M* + H), Found: m/z 509.2808; Calcd for C₃₃H₃₇N₂O₃: 509.2804.

(3a R^* ,4 R^* ,6 R^* ,6a S^*)-2,5-Dibenzyl-4-phenyl-6-pivaloyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (**6cB**): $R_{\rm f}=0.35$ (hexane/Et₂O = 1/1); a solid; m.p. 133–134 °C (from AcOEt/hexane); ¹H NMR δ 0.99 (s, 9H), 3.11 (d, 1H, J = 8.2 Hz), 3.37 (d, 1H, J = 15.1 Hz), 3.55 (dd, 1H, J = 9.6, 8.2 Hz), 3.68 (d, 1H, J = 15.1 Hz), 4.55 (d, 1H, J = 13.7 Hz), 4.62 (d, 1H, J = 13.7 Hz), 4.83 (s, 1H), 5.27 (d, 1H, J = 9.6 Hz), 6.96–7.29 (m, 10H), 7.35–7.41 (m, 3H), 7.43–7.46 (m, 2H); ¹³C NMR δ 26.0, 42.6, 44.9, 48.3, 49.3, 50.4, 61.7, 68.4, 126.9, 127.2, 128.0, 128.1, 128.4, 128.5, 129.5, 135.8, 137.3, 138.2, 175.0, 177.0, 217.8; IR (KBr) 3037, 2977, 1774, 1702, 1493, 1477, 1436, 1394, 1343, 1215, 1172, 1136, 1062, 988, 878, 778, 753, 730, 701 cm⁻¹; Found: C, 77.35; H, 6.80; N, 5.79%; Calcd for C₃₁H₃₂N₂O₃: C, 77.47; H, 6.71; N, 5.83%.

(3a R^* ,4 R^* ,6 S^* ,6a S^*)-4-Benzoyl-2,5-dibenzyl-6-propyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (6dB): R_f = 0.30 (hexane/AcOEt = 4/1); a solid; m.p. 146–147 °C (from AcOEt/hexane); ¹H NMR δ 0,93 (t, 3H, J = 6.9 Hz), 1.33–1.42 (m, 2H), 1.67–1.81 (m, 2H), 3.25 (d, 1H, J = 7.8 Hz), 3.38 (t, 1H, J = 7.8 Hz), 3.71 (d, 1H, J = 14.2 Hz), 3.87–3.96 (m, 1H), 3.94 (d, 1H, J = 14.2 Hz), 4.69 (d, 1H, J = 14.2 Hz), 4.76 (d, 1H, J = 14.2 Hz), 4.88 (s, 1H), 6.92 (d, 2H, J = 6.0 Hz), 7.09–7.18 (m, 3H), 7.29–7.44 (m, 7H), 7.52 (t, 1H, J = 7.3 Hz), 7.84 (d, 2H, J = 8.2 Hz); ¹³C NMR δ 14.4, 19.7, 31.8, 42.6, 47.1, 47.4, 50.8, 63.6, 65.0, 127.0, 127.9, 128.0, 128.4, 128.5, 128.56, 128.64, 128.7, 133.6, 134.9, 135.6, 138.8, 176.2, 177.8, 199.7; IR (KBr) 2960, 2869, 1772, 1702, 1541, 1506, 1490, 1428, 1398, 1340, 1238, 1185, 1135, 1000, 724, 702 cm⁻¹; Found: C, 77.15; H, 6.62; N, 5.96%; Calcd for $C_{30}H_{30}N_{2}O_{3}$: C, 77.23; H, 6.48; N, 6.00%.

(3a R^* ,4 R^* ,6 S^* ,6a S^*)-4-Benzoyl-5-benzyl-6-cyclohexyl-2-methyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (6eA): $R_{\rm f}=0.40$ (hexane/Et₂O = 1/1); a solid. m.p. 142–

143 °C (from AcOEt/hexane); ¹H NMR δ 1.11–1.37 (m, 5H), 1.66–1.78 (m, 4H), 1.94–2.04 (m, 1H), 2.08–2.15 (m, 1H), 3.04 (s, 3H), 3.41–3.53 (m, 4H), 3.85 (d, 1H, J = 13.3 Hz), 4.97 (s, 1H), 7.10–7.14 (m, 2H), 7.21–7.27 (m, 5H), 7.43–7.49 (m, 3H); ¹³C NMR δ 25.3, 26.2, 26.4, 26.5, 29.5, 30.0, 36.1, 47.2, 47.3, 52.2, 65.4, 69.2, 127.5, 128.5 (128.56, 128.65, 129.2, 133.1, 134.8, 137.8, 178.0, 179.0, 198.2. IR (KBr) 2922, 2851, 1769, 1697, 1593, 1432, 1381, 1337, 1277, 1230, 1189, 1131, 1094, 1048, 752, 730, 694 cm⁻¹; Found: C, 75.26; H, 7.11; N, 6.53%; Calcd for C₂₇H₃₀N₂O₃: C, 75.32; H, 7.02; N, 6.51%. Crystal data: C₂₇H₃₀N₂O₃, M_r = 430.55, monoclinic, P21/c, a = 8.4348(7), b = 21.818(2), c = 12.635(1) Å, V = 2231.4(3) Å³, β = 106.338(2)°, Z = 4, Dcalcd = 1.281 g cm⁻³, R = 0.051 (R_w = 0.066) for 3690 reflections with 1 > 3.00 σ (1) and 289 variable parameters. Crystallographic data for **6eA** have been deposited with Cambridge Crystallographic Data Centre as supplementary publication No. CCDC 913504

(3a R^* ,4 R^* ,6 S^* ,6a S^*)-4-Benzoyl-2,5-benzyl-6-cyclohexyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (**6eB**): $R_{\rm f}=0.40$ (hexane/Et₂O = 1/1); a solid; m.p. 161–162 °C (from AcOEt/hexane); ¹H NMR δ 1.01–1.31 (m, 5H), 1.62–1.71 (m, 4H), 1.88–1.96 (m, 1H), 1.98–2.15 (m, 1H), 3.16 (d, 1H, J = 12.8 Hz), 3.39–3.43 (m, 2H), 3.52–3.55 (m, 1H), 3.70 (d, 1H, J = 12.8 Hz), 4.68 (d, 1H, J = 13.8 Hz), 4.74 (d, 1H, J = 13.8 Hz), 4.85 (s, 1H), 6.87 (d, 2H, J = 6.4 Hz), 7.16–7.31 (m, 6H), 7.33 (t, 2H, J = 7.8 Hz), 7.41–7.48 (m, 1H), 7.46 (d, 2H, J = 7.3 Hz), 7.51 (d, 2H, J = 7.4 Hz); ¹³C NMR δ 26.2, 26.3, 26.4, 29.6, 30.0, 36.0, 43.0, 47.2, 47.3, 51.8, 65.8, 69.2, 127.3, 128.2, 128.35, 128.41, 128.6, 128.7, 129.0, 129.5, 133.1, 134.75, 134.83, 138.0, 177.4, 178.6, 197.9, 118 (KBr) 3038, 2933, 2853, 1774, 1705, 1673, 1577, 1494, 1396, 1343, 1227, 1172, 1142, 1073, 732, 704 cm⁻¹; Found: C, 78.25; H, 6.78; N, 5.55%; Calcd for C₃₃H₃₄N₂O₃: C, 78.23; H, 6.76; N, 5.53%.

(3a*R**,4*R**,6*S**,6a*S**)-2,5-Dibenzyl-4-heptanoyl-6-methyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2*H*,3a*H*)-dione (**6fB**): $R_{\rm f}=0.35$ (hexane/Et₂O = 1/1); an oil; $^{\rm 1}$ H NMR δ 0.87 (t, 3H, J=6.9 Hz), 1.14 (d, 3H, J=6.4 Hz), 1.13–1.27 (m, 6H), 1.40–1.45 (m, 2H), 2.15 (td, 1H, J=7.4, 17.4 Hz), 2.30 (td, 1H, J=7.8, 17.4 Hz), 3.04 (d, 1H, J=7.8 Hz), 3.24 (t, 1H, J=7.8 Hz), 3.58 (d, 1H, J=13.8 Hz), 3.82–3.89 (m, 1H), 3.84 (d, 1H, J=13.8 Hz), 3.98 (s, 1H), 4.67 (d, 1H, J=14.2 Hz), 4.72 (d, 1H, J=14.2 Hz), 7.00–7.02 (m, 2H), 7.18–7.42 (m, 8H); 13 C NMR δ 14.0, 15.7, 22.3, 23.1, 28.7, 31.4, 41.4, 42.5, 46.5, 48.1, 50.8, 57.9, 68.2, 127.2, 127.9, 128.0, 128.39, 128.41, 128.5, 135.6, 138.4, 176.2, 177.5, 211.9; IR (neat) 3038, 2929, 2857, 1774, 1708, 1496, 1455, 1432, 1397, 1345, 1178, 1078, 732, 700 cm⁻¹; HRMS (FAB⁺) (M⁺ + H), Found: m/z 447.2640; Calcd for C₂₈H₃₅N₂O₃, 447.2648.

1,3-Dipolar cycloaddition of azomethine ylide generated from *trans*-isomer of 3c: A mixture of *trans*-isomer of 3c (26 mg, 0.09 mmol) and *N*-benzylmaleimide (5B) (20 mg, 0.11 mmol) in xylene (0.9 mL) was heated at 145 °C for 1.5 h and cooled to rt. The solvent was removed under reduced pressure. The residue was purified by preparative TLC (hexane/AcOEt = 5/1) to give 6cB (36 mg, 84% yield).

Acknowledgement

The present work was financially supported in part by Grants in-Aid for Scientific Research (B) and (C) from Japan Society for the Promotion of Science (JSPS).

- a) T. Hudlicky, G. Seoane, T. C. Lovelace, J. Org. Chem. 1988, 53, 2094–2099;
 b) I. J. Kim, Y. J. Park, J. I. Kim, K. T. Lee, S. K. Kim, Arch. Pharm. Res. 1997, 20, 476–479;
 c) A. E. Wróblewski, W. Maniukiewicz, W. Karolczak, J. Chem. Soc., Perkin Trans. I, 2000, 1433–1437;
 d) J. M. Yun, T. B. Sim, H. S. Hahm, W. K. Lee, H.-J. Ha, J. Org. Chem. 2003, 68, 7675–7680;
 e) Y. Ogawa, K. Kuroda, T. Mukaiyama, Bull. Chem. Soc. Jpn. 2005, 78, 1309–1333;
 f) G. Chen, M. Sasaki, X. Li, A. K. Yudin, J. Org. Chem. 2006, 71, 6067–6073;
 g) S. Baktharaman, R. Hili, A. K. Yudin, Aldrichimica Acta 2008, 41, 109–119;
 h) L. Wei, J. Zhang, Chem. Commun. 2012, 48, 2636–2638.
- a) M. M. Paz, P. B. Hopkins, J. Am. Chem. Soc. 1997, 119, 5999–6005; b) T. C. Judd, R. M. Williams, Org. Lett. 2002, 4, 3711–3714; c) G. Cardillo, L. Gentilucci, A. Tolomelli, Aldrichimica Acta 2003, 36, 39–50; d) P. Sharma, A. Kumar, S. Upadhyay, V. Sahu, J. Singh, Eur. J. Med. Chem. 2009, 44, 251–259 and references cited therein.
- a) P. Müller, C. Fruit, Chem. Rev. 2003, 103, 2905–2919; b) I. D. G. Watson, L.
 Yu, A. K. Yudin, Acc. Chem. Res. 2006, 39, 194–206; c) I. Saikia, B. Kashyap,
 P. Phukan, Chem. Commun. 2011, 47, 2967–2969 and references cited therein.
- [4] a) Y. Deng, Y. R. Lee, C. A. Newman, W. D. Wulff. Eur. J. Org. Chem. 2007, 2068–2071; b) Y. Zhang, Z. Lu, W. D. Wulff, Synlett 2009, 2715–2739; c) T. Akiyama, T. Suzuki, K. Mori, Org. Lett. 2009, 11, 2445–2447; d) H. Ren, W. D. Wulff, Org. Lett. 2010, 12, 4908–4911; e) J. N. Johnston, H. Muchalski, T. L. Troyer, Angew. Chem., Int. Ed. 2010, 49, 2290–2298; f) T. Hashimoto, H. Nakatsu, K. Yamamoto, K. Maruoka J. Am. Chem. Soc. 2011, 133, 9730–9733 and references cited therein.
- a) I. Coldham, A. J. Collis, R. J. Mould, R. E. Rathmell, *Tetrahedron Lett.* 1995, 36, 3557–3560; b) J. Xu, P. Jiao. *J. Chem. Soc., Perkin Trans. 1* 2002, 1491–1493; c) X. L. Jin, H. Sugihara, K. Daikai, H. Tateishi, Y. Z. Jin, H. Furuno, J. Inanaga, *Tetrahedron* 2002, 58, 8321–8329; d) A. Armstrong, C. A. Baxter, S. G. Lamont, A. R. Pape, R. Wincewicz, *Org. Lett.* 2007, 9, 351–353.
- a) T. Patonay, R. V. Hoffman, J. Org. Chem. 1995, 60, 2368–2377; b) T. Patonay, É. Juhász-Tóth, A. Bényei, Eur. J. Org. Chem. 2002, 285–295.

- [7] a) N. H. Cromwell, R. D. Babson, C. E. Harris, J. Am. Chem. Soc. 1943, 65, 312–315; b) N. H. Cromwell, J. A. Caughlan, J. Am. Chem. Soc. 1945, 67, 2235–2238; c) J. W. Lown, M. H. Akhtar, Can. J. Chem. 1972, 50, 2236–2248.
- a) J. E. Baldwin, R. G. Pudussery, A. K. Qureshi, B. Sklarz, J. Am. Chem. Soc. [8] 1968, 90, 5325-5326; b) I. Adachi, R. Miyazaki, H. Kano, Chem. Pharm. Bull. 1974, 22, 70-77; c) R. Grée, R. Carrié, J. Am. Chem. Soc. 1977, 99, 6667-6672; d) D. Döpp, A. M. Nour-el-Din, Tetrahedron Lett. 1978, 19, 1463-1466; e) G. Chidichimo, G. Cum, F. Lelj, G. Sindona, N. Uccella, J. Am. Chem. Soc. 1980, 102, 1372-1377; f) K. Tanaka, M. Ohsuga, Y. Sugimoto, Y. Okafuji, K. Mitsuhashi, J. Fluor. Chem. 1988, 39, 39-45; g) D. Seebach, I. M. Lyapkalo, R. Dahinden, Helv. Chim. Acta 1999, 82, 1829-1842; h) W. Friebolin, W. Eberbach, Tetrahedron 2001, 57, 4349-4358; i) T. Ishikawa, T. Kudoh, J. Yoshida, A. Yasuhara, S. Manabe, S. Saito, Org. Lett. 2002, 4, 1907-1910; j) B. Alcaide, P. Almendros, J. M. Alonso, M. F. Aly, C. Pardo, E. Sáez, M. R. Torres, J. Org. Chem. 2002, 67, 7004-7013; k) E. Lopez-Calle, M. Keller, W. Eberbach, Eur. J. Org. Chem. 2003, 1438-1453; l) E. M. Budynina, E. B. Averina, O. A. Ivanova, T. S. Kuznetsova, N. S. Zefirov, Tetrahedron Lett. 2005, 46, 657-659; m) E. Gayon, O. Debleds, M. Nicouleau, F. Lamaty, A. Lee, E. Vrancken, J.-M. Campagne, J. Org. Chem. 2010, 75, 6050-6053.
- a) W. Wei, M. Kobayashi, Y. Ukaji, K. Inomata, Heterocycles 2009, 78, 717–724; b) Y. Ukaji, K. Inomata, Chem. Rec. 2010, 10, 173–187.
- [10] N. Wada, K. Kaneko, Y. Ukaji, K. Inomata, Chem. Lett. 2011, 40, 440–442.
- [11] Preliminary results have been described in ref. 10.
- [12] The *cis* stereochemistry of **3a-f** was confirmed by the coupling constant J_{2-3} (6.4–7.4 Hz) between the methine protons in aziridine rings. [8i,j,m,21]
- [13] a) I. Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765–2809; b) G. Pandey, P. Banerjee, S. R. Gadre, Chem. Rev. 2006, 106, 4484–4517; c) P. Dauban, G. Malik, Angew. Chem., Int. Ed. 2009, 48, 9026–9029.
- [14] a) H. W. Heine, R. Peavy, Tetrahedron Lett. 1965, 6, 3123–3126; b) A. Padwa,
 L. Hamilton, Tetrahedron Lett. 1965, 6, 4363–4367; c) R. Huisgen, W. Scheer,
 G. Szeimies, H. Huber, Tetrahedron Lett. 1966, 7, 397–404; d) E. Vedejs, J. W.

- Grissom, *J. Org. Chem.* **1988**, *53*, 1882–1887; e) K. Tanaka, S. Nagatani, M. Ohsuga, K. Mitsuhashi, *Bull. Chem. Soc. Jpn.* **1994**, *67*, 589–591; f) A. L. Cardoso, R. M. D. Nunes, L. G. Arnaut, T. M. V. D. Pinho e Melo, *Synthesis* **2011**, 3516–3522 and references cited therein.
- [15] a) A. Amal Raj, R. Raghunathan, M. R. Sridevi Kumari, N. Raman, Bioorg. Med. Chem. 2003, 11, 407–419; b) X. Y. Yu, J. Finn, J. M. Hill, Z. G. Wang, D. Keith, J. Silverman. N. Oliver. Bioorg. Med. Chem. Lett. 2004, 14, 1339–1342; c) Z. Duan, J. Bradner, E. Greenberg, R. Mazitschek, R. Foster, J. Mahoney, M. V. Seiden, Mol. Pharmacol. 2007, 72, 1137–1145; d) R. M. Butnariu, I. I. Mangalagiu, Bioorg. Med. Chem. 2009, 17, 2823–2829.
- Both endo-approach and exo-approach were proposed for the 1,3-dipolar cycloaddition of azomethine ylides with maleimides. Examples of endo-approach: a) Ö. Dogan, H. Koyuncu, P. Garner, A. Bulut, W. J. Youngs, M. Panzner, Org. Lett. 2006, 8, 4687–4690; b) J.-W. Shi, M.-X. Zhao, Z.-Y. Lei, M. Shi, J. Org. Chem. 2008, 73, 305–308. An example of exo-approach: c) Y. Oderaotoshi, W. Cheng, S. Fujitomi, Y. Kasano, S. Minakata, M. Komatsu, Org. Lett. 2003, 5, 5043–5046
- [17] In the ¹H NMR spectrum of the crude products, generation of other diastereomers was not observed.
- [18] R. Huisgen, H. Mäder, Angew. Chem., Int. Ed. Engl. 1969, 8, 604-606.
- [19] a) D. Wenkert, S. B. Ferguson, B. Porter, A. Qvarnstrom, A. T. McPhail, J. Org. Chem. 1985, 50, 4114–4119; b) E. Vedejs, J. W. Grissom, J. Am. Chem. Soc. 1988, 110, 3238–3246.
- [20] P. Aschwanden, D. E. Frantz, E. M. Carreira, Org. Lett. 2000, 2, 2331–2333.
 - [1] D. L. Nagel, P. B. Woller, N. H. Cromwell, J. Org. Chem. 1971, 36, 3911–3917.

Received: ((will be filled in by the editorial staff))
Revised: ((will be filled in by the editorial staff))
Published online: ((will be filled in by the editorial staff))

Entry for the Table of Contents (Please choose one layout only)

Layout 1:

Catch Phrase

Author(s), Corresponding
Author(s)* Page – Page

Title Text

((The TOC Graphic should not exceed the size of this area))

Text for Table of Contents, max. 450 characters

Layout 2:

Catch Phrase

Yoshiaki Miyamoto, Norihiro Wada, Takahiro Soeta, Katsuhiko Inomata, and Yutaka Ukaji* Page – Page

One-pot Stereoselective Syntheses of 2-Acylaziridines and 2-Acylpyrrolidines from *N*-(Propargylic)hydroxylamines

A stereoselective direct transformation of *N*-(propargylic)hydroxylamines into *cis*-2-acylaziridines was realized by the combined use of AgBF₄ and CuCl. The subsequent 1,3-dipolar cycloaddition of azomethine ylides generated in situ from the

intermediary 2-acylaziridines with maleimides was achieved by one-pot procedure to afford the corresponding 2-acylpyrrolidines consisting of an octahydropyrrolo[3,4-c]pyrrole skeleton stereoselectively.