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Abstract 

Solid-phase extraction (SPE) approach was introduced approximately five decades ago, 

and until then development of SPE materials is seamlessly continued. Lately, the SPE-based 

research is increasingly focused in developing more explicit materials to achieve meticulous 

separation of elements from complex solution matrices with high concentrations of 

interfering ions. One group of SPE materials includes those with macrocyclic ligands 

immobilized on a solid-phase, which are capable of selective separation and pre-

concentration of elements, and such selectivity in metal retention is generally termed as 

molecular recognition. In the process, the designed ‘host’ material possesses a high degree of 

recognition to specific elements or groups of elements called ‘guest’, and the recognition 

capability remains effective at the very low concentrations of the ‘guest’ species or when 

those present in complex matrices. The routes to the development of element-selective SPEs, 

the operating principles, applications and limitations are discussed in this review. 
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1.0 Introduction 

Although metals and metalloids are ubiquitous in nature, the environmental 

concentrations of both toxic and essential elements have been largely increased mostly 

pursuant to anthropogenic activities related to the industrial development and improved living 

standards in modern societies. The growing extent of metal pollution also initiated a number 

of legislative measures, such as, the Restriction of Hazardous Substance (RoHS) directive [1], 

End of Life Vehicle (ELV) directive [2] or the European Union Council Directive [3]. The 

RoHS or ELV directive has been imposed to specify the limit of trace elements in the 

industrial products, while the EU directive defined the acceptable concentrations of different 

elements in cultivable soils. 

Sensitive analytical techniques such as, flame atomic absorption spectrometry, 

electrothermal atomic absorption spectrometry, inductively coupled plasma mass 

spectrometry, inductively coupled plasma optical emission spectrometry, and so forth are 

available for precise analysis of trace elements in solution. An overall analytical process 

comprises a number of succeeding steps, including sampling, sample preparation, separation 

and quantification. Among the aforementioned steps, sample preparation is by far the most 

important error source in modern analytical method development due to the low species 

concentration or heterogeneous distribution of the analytes in the matrix as well as the 

complex nature of the sample matrices. Therefore, a clean-up/separation step is often 

recommended before the analytical determination of trace elements in effluent or industrial 

waste waters to avoid the interfering effect from the matrix ions or to facilitate 

preconcentration due to their low concentrations in samples. The techniques commonly used 

for separation of elements from the matrix components are co-precipitation [4, 5], solvent 

extraction or liquid-liquid extraction [6], cloud point extraction [7-10], membrane filtration 
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[11-14], and solid-phase extraction (SPE) [15]. Most of the conventional separation 

approaches undergo slow kinetics and, also, lose effectiveness when the concentration of the 

species to be separated is low, or when several other chemically-similar elements to the target 

species co-exist in the matrix. The SPE-approach coupled with macrocycles of molecular 

recognition capability was introduced as an effectual separation system, which possess 

sufficient specificity and superior affinity for the target element or group of elements over 

other closely related elements, even if these elements are present in high concentration. The 

review covers the background of the development of the SPE-systems with macrocycles, 

including the operating routes. The whys and wherefores of the selectivity behavior have 

been explained, and the application examples are compiled including the limitations in 

developments.  

2.0 Development of SPE materials: activated carbon to macrocycles  

In SPE, analyte(s) is isolated from a solution by their transfer to and retention on a 

solid-phase sorbent packed in any of the following formats: micro-columns, cartridges, 

syringe barrels and disks. Regardless of the format used, SPE operation involves two major 

steps– sample loading and elution. Sample solution containing the analytes is allowed to 

percolate through the solid sorbent material for collection of the analytes in the sample 

loading step while the ‘captured’ analytes are back-extracted upon elution with a suitable 

solvent in the final step. A ‘conditioning’ step is always performed before the sample loading 

step to ensure the removal of any likely impurities contained in the sorbent or the packaging 

of the SPE system. It also allows the wetting of the packing material and the solvation of the 

SPE material. An optional washing step using a solvent having low elution strength is 

sometimes involved between the sample treatment and elution step to eliminate the unwanted 

matrix components without displacing the target analytes. The flow rates of the sample 
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loading and elution steps are required to be optimized to attain the quantitative separation 

performance [16-18]. The progress and developments in solid phase extraction (SPE) 

technique over the decades were discussed in a number of review articles [15, 18, 19], book 

sections [16, 17] and books [20-22]. Therefore, a detailed discussion on every single SPE-

type is not included in this review. Instead, a timeline-based approach has been used to 

highlight the property-based development of SPE materials.  

The first experimental application of SPE started approximately five decades ago with 

the application of granular activated carbon for the concentration of organic compounds from 

raw and filtered surface waters [15, 23]. An attempt to find the more suitable SPE material 

was started in the late 1960s to overcome the limiting factors of activated carbon due to its 

heterogeneous nature [15]. Riley and Taylor [24] introduced a cross-linked polystyrene resin, 

Amberlite XAD-1 for SPE separation of organic compounds from aqueous samples. The 

study stimulated the interest about Amberlite polymeric resins among other researchers in the 

1970s. Consequently, other styrene-divinylbenzene Amberlites (XAD-2, XAD-4) and 

ethylene-dimethacrylate resins (XAD-7 and XAD-8) were introduced [25-32]. Other 

copolymers such as, Porapaks [33-35], Chromosorbs [36-41] and Tenax (2,6-diphenyl-p-

phenylene oxide) [42-45] were also used for SPE procedures along with Amberlites. The 

search for the most appropriate SPE material includes the application of polyurethanes either 

as open-pore polyurethane [46, 47] or as polyurethane foam [48-57], polypropylene [58-60],  

polytetrafluoroethylene [61-64] or ion-exchange resins [65-68] etc.  

There are too many aspects of the resin standardization that had to be considered prior 

to the analytical use of macroreticular resins, which initiated the evaluation of other types of 

SPE materials [15]. Applicability of bonded phases for SPE process was introduced in the 

middle of 1970s [15, 69]. Later, well standardized and relatively stable commercial SPE 

products with bonded silica became available, which resulted in the extensive use of these 
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materials in SPE procedures [15]. Although SPE procedures with different alkyl- or aryl- 

groups bonded with silica were reported, octadecyl-bonded silica is the most popular phase 

among the bonded phase employing silica’s [15, 70-76].  

During the search for the best SPE material, it became apparent that there was no 

universal material suitable for all purposes. It was observed that some of the SPE materials 

have the capability to interact with a variety of metal ions, while others are fairly specific for 

a particular ion [77-82]. Lately, there has been increasing interest in developing more explicit 

materials to use in the meticulous separation of ions from solutions containing complex 

matrices with high concentrations of interfering ions. Simultaneously, efforts to design more 

effective SPE systems besides the development of classical types of SPE materials were 

continued. Membrane extraction disks consisting of a fibrillated PTFE matrix enmeshed with 

bonded silica, polymers or ion exchangers were designed to achieve higher sample flow rate 

and selectivity in the separation process [83-85]. Selective affinity of SPE materials towards 

target substances can also be achieved with the use of molecularly imprinted polymers 

(MIPs). In MIPs, a chosen target molecule is used as a template through a casting procedure 

which is extracted afterwards, thus leaving complementary cavities behind. In the process, 

MIPs show a certain chemical affinity for the original molecule and were successfully used 

for selective extraction [86, 87]. Solid phase microextraction (SPME) is another new 

interesting SPE technique, which involves the use of a fiber coated with an extracting phase, 

that can be a liquid (polymer) or a solid (sorbent), which extracts different kinds of analytes 

from liquid or gas phase [88-91].  

The efforts done in aiming for an optimum material for a particular application with the 

classical-type SPE application are also not stopped. Analyte-antibody interactions were used 

to design immunosorbent, which can be used as a classical SPE material. In this approach 

antibody produced against a target compound is immobilized on a solid phase to achieve 
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selective extraction [92-97]. One group of classical-type SPE system includes the use of 

macrocyclic chelants, such as crown ethers, immobilized on a silica or polymer support 

which was designed to attain selectivity in the separation process [98-107].  

A timeline view of the development in SPE materials until the introduction of 

macrocycle-containing SPEs is illustrated in Figure 1. 

3.0  Operating route of macrocycles in metal separation 

Macrocyclic compounds have a considerable potential to be used as metal-selective 

reagents in the separation science due to their ability to form stable complexes with metal 

ions [108-110]. An enormous number of macrocyclic reagents with a variety of donor atoms, 

ring sizes, and ligand geometries have been prepared [111]. The foremost group of 

macrocyclic compounds is crown ethers, and the first crown ether was dibenzo-18-crown-6 

[112]. In addition to the crown ethers, other kinds of macrocyclic ligands, e.g., macrocyclic 

polyamines, polysulphides, cyclic peptides, calixarenes, cyclophanes, and cyclodextrins are 

available as parent macro-rings [113-115]. A comparison of the parent macrocycles 

characteristics is summarized in Table 1. Among the parent macrocycles, crown ethers 

possess excellent structural diversity followed by superior guest selectivity, and are 

particularly effective for binding hard metal ions [113].  

Crown ethers contain oxygen, sulfur and nitrogen as donor atoms. The number of donor 

atoms in the crown ether unit determines the stability of the macrocycle-metal complex while 

the types of donor atoms decide the ion selectivity of the crown ethers [116]. The metal ion 

binding strength and selectivity can be strengthened by the introduction of one or more side 

arms into the crown ether unit, and the derivative is known as lariat ether [113, 117, 118]. 

Complexes containing species incorporated in the macrocyclic cavity are known as inclusion 

complexes, and different types of complexation between the macrocycle structure and the 
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target metal ions are likely [115]. Some possible types of complexation between K+ with 

diaza-18-crown-6, lariat ether and double armed crown ether as reported by Gandour et al. 

[119] and reproduced by Tsukube [113] are shown in Fig. 2a. Figure 2b shows the schematic 

illustration of the cation binding process with the armed macrocycles [113]. As shown in Fig. 

2a, accommodation of K+ ion in a circular cavity of the parent macrocycle diaza-18-crown-6 

1 is observed. The K+ ion is coordinated to donor atoms of both crown ring and sidearm in 

the complex of lariat ether 2, while it is completely accommodated in a three-dimensional 

cavity in the double armed crown ether 3 complex [113, 119]. Frequent use of the varying 

numbers of the sidearms by the armed macrocycles to bind the cations is observed as 

illustrated in Fig. 2b [113].  Hence, it can be briefly concluded that the selective separation of 

elements by macrocycles is managed either by the accommodation of ions within their 

circular cavity or in the three-dimensional cavity-like structures formed between the macro-

ring and the sidearms. It also provides the advantage of designing a single macrocycle 

structure with a diverse selectivity option for target elements of distinctive ionic characters 

[120, 121] or a multiple-site receptor for different target species  [122] as shown in Fig. 3.  

Macrocycles have been employed for selective separation of metal ions from mixtures 

in bulk liquid membrane and/ or solvent extraction systems [116, 123, 124]. However, 

separation of metal ions using extraction or membrane systems is not considered as a cost-

effective option due to the gradual loss of the expensive macrocyclic compounds from the 

organic membrane or layer [125]. The shortcoming was minimized by attaching the 

macrocyclic compounds to silica gel using a stable hydrocarbon-ether linkage 

[99, 100, 106, 125]. The efficiency of such systems lead to the development of new 

separation systems with the use of solid supported macrocycles, which are capable of high 

selectivity or recognition towards a particular species of metal or metalloid [104, 125].  
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4.0 Selective solid-phase extraction of elements using macrocycle-aided molecular 

recognition 

The process of recognition-based SPEs features steps of designing materials with pre-

determined species-selectivity, attaching these to the supports, and their use to accomplish the 

required chemical separations. The designed ‘host’ materials, mostly containing macrocycles, 

possess a high degree of recognition to specific element or groups of elements called ‘guest’, 

and the recognition capability remains effective at the very low concentrations of the ‘guest’ 

species or when those present in complex matrices [104]. Synthesis of such materials 

includes a combined approach of organic synthesis and the study of cation complexation 

properties of the crown ethers to design and prepare macrocyclic ligands that will possess 

selective affinity to the target ions [102, 126, 127]. A compilation of schemes for synthesis of 

several crown ether varieties e.g thiacrown ethers, diestercrown ethers, proton-ionizable 

crown ethers, chiral crown ethers, azacrown ethers and so forth is available [127]. As an 

example, ion-selective behavior of two 5-chloro-8-hydroxyquinoline (CHQ) substituted 

azacrown ethers (1 and 2 in Fig. 4) is discussed as described by Zhang et al. [128] and 

Bordunov et al. [129]. In the azacrown ether structure 1, two CHQ groups are attached to the 

macro ring through their positions 7 and exhibit selectivity to Mg2+ ion over other alkali and 

alkaline earth metal ions. The stronger affinity of 1 to Mg2+ ion maybe due to the incomplete 

interaction of the OH and quinoline nitrogen atoms in the CHQ groups with a cation bound 

within the macro ring. The quinoline nitrogens are sterically prevented from approaching the 

macro ring by the OH groups. Hence, the CHQ groups remain in the proper positions to 

selectively interact with Mg2+ and the macro ring. The CHQ groups, that are attached through 

their positions 2, in the macrocycle structure 2 exhibit better selectivity for K+ and Ba2+ ions. 

The selectivity behavior can be explained by the formation of a pseudo-cryptand structure 

pursuant to the overlapping of two CHQ groups. Hence, more stable K+–2 and Ba2+–2 in 
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comparison to complexes of 2 with the alkali and alkaline earth cations are facilitating the 

selective collection of those ions [101].  

The SPE materials with specific recognition capability are attached with any of the 

following support options, e.g., silica gel, titania, zirconia or other polymers. Silica gel is 

used mostly among the support materials due to its high hydrophilic character, large number 

of binding sites and substantial inert nature. Other options are adopted only when the silica 

gel cannot be used as the support such as, when the pH of solution is above 10 or when 

extreme purification of water is required, etc. [105, 130]. The silica gel-bound macrocycles 

having different element-selective properties and behaviors can be prepared as shown in the 

Fig. 5 as described in detail by Bradshaw et al. [125]. Macrocycle containing SPE-materials 

possesses a greater concentration of active sites compared to the conventional element-

separation option in solid-phase as attributable to the enmeshed small microporous particles 

into the microfibrous matrix. The approach also eliminates the channeling effect that 

recurrently appeared with packed-bed SPE processes [105, 131].  

5.0 Applications and Limitations of SPEs with molecular recognition plus 

macrocycles in element-separation  

5.1  Applications 

5.1.1  Selective separation of toxic elements 

The macrocycle-immobilized SPEs are used for the separation of a single or a group of 

toxic elements from the solution matrix. Advanced application of such SPE systems for 

inorganic analysis of the harmful elements was discussed elsewhere [132], and, hence, the 

section highlights the other related instances of molecular recognition dependent SPE-

application. 
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The selective separation of lead from a high matrix electroless waste solution was 

achieved with the macrocycle-immobilized SPEs, namely, AnaLig Pb-01 and Pb-02 [133]. 

The AnaLig Pb-02 has also been used for the measurement of precise lead isotope ratio and 

its application to geochemical reference samples [134], or in the scheme of 

spectrophotometric lead determination in solution using 4-(2-pyridylazo)-resorcinol [135]. 

Furthermore, the macrocycle-immobilized Pb-selective SPEs have been successfully applied 

for the separation/preconcentration of lead from biological and environmental samples 

[132, 134, 136-140]. 

A combination of SPEs containing immobilized macrocyclic material, namely AnaLig 

TE-01, AnaLig AN-01 Si and AnaLig As-01 PA, was used for selective separation of water-

soluble arsenic species: arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid 

[141]. A simple flow-based method was also developed for the discerning separation of tri- 

and pentavalent arsenic species from aqueous matrix using another macrocycle-immobilized 

SPE, specifically AnaLig An-02 [142]. The selectivity characteristics of AnaLig TE-01 

towards arsenic [141] and iron-species [143] were further employed to formulate an approach 

for the treatment of spent iron-oxide coated sand from filters used in arsenic removal [144]. 

The application of silica gel-bound macrocycle systems for the selective separation of 

cadmium [145] from the metal-affluent matrix, or hexavalent chromium from the 

wastewaters [146]  and conversion coatings [147] has been reported.  

Selective separation of the ecotoxic transition metal ions (e.g., Co, Ni, Cu, Zn, Cd) from 

aqueous solutions was achieved using immobilized macrocyclic material containing a solid 

phase extraction system, namely AnaLig TE-05 [148, 149]. The AnaLig TE-01 SPE system 

was used for the nondestructive recovery of multiple elements, such as, As(V), Cd(II), Cr(III), 

Pb(II) and Se(IV), from the effluent containing excess aminopolycarboxylate chelant in 

solution [150, 151].  
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5.1.2  Selective separation of rare and precious metals 

There are some non-ferrous metals, which are termed as rare metals due to the 

economic or technological difficulty in acquiring those metals in abundance, that are highly 

essential in a wide range of manufacturing areas, including machineries and electronics 

production. The SPE-systems with molecular recognition capabilities have been used for the 

recovery of rare-termed metals (e.g., indium) from the end-of-life e-waste [152] or from the 

waste effluent from the production process [153]. The macrocycle-immobilized AnaLig PM-

series SPE systems have been used for the selective recovery of the precious metals, such as, 

Pt, Au, Pd [154, 155]. 

5.1.3 Selective separation of radioactive elements 

The application of macrocycle-containing SPE-systems has been used for the separation 

of uranium from nuclear power plant waste [156]. The use of various SPE-systems with the 

selectivity to various radioactive elements, such as, Sr, Tc, Cs and Ra has also been reported 

[157-164] and evaluated for large-scale applications [164-167]. 

5.2 Limitations 

The macrocycle-immobilized SPEs with molecular recognition competence are 

available typically from the commercial sources in recent days. Although the mass 

production approach creates the prospect of cost-minimization in the process of research, the 

patent-obligation decreases the option for detail appraisal of the product and opportunity of 

suggesting any enhancement or further development. Therefore, a particular SPE-system can 

be evaluated for a certain separation application while the working mechanism remained 

unexplained creating the inadequacies of the use of SPEs with selective recognition property 

in element-separation.  

Moreover, the detail potential of the commercial SPE-product that claimed to have 

recognition selectivity towards a single element or group of elements is sometimes either not 
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included in detail in the brochures or seldom verified from the researchers having no 

competing interest. For example, Hasegawa et al. [153] proposed the application of the 

macrocycle-immobilized AnaLig TE 02 SPE for the quantitative separation of the indium or 

tin from the etching waste solution of the flat-panel display fabrication process after a 

comparative evaluation with other similar SPE-types (AnaLig TE 03, AnaLig TE 07, AnaLig 

TE 13 and AnaLig PM 02). The likely application prospect of AnaLig TE 02 SPE does not 

include the possibility of such separation in the product brochure though. 

6.0 Conclusion 

The industrial endeavors are ever-increasing and a simultaneous adoption of stringent 

regulation rules to restrict the likely environmental consequences from the process effluent or 

discards will, therefore, create a huge market-demand for the element-specific separation 

approaches. The SPEs with the advantage of molecular recognition can be better utilized for 

the selective separation of environmentally hazardous or economically viable elements from 

the waste resources. Furthermore, the SPE-technique has the benefit of easy-automation, and 

the process can be coupled with suitable systems to achieve the benefit of recovery and 

recycling. The trends towards the SPE-material development having enhanced selectivity 

features will thus be expected to be continued, and anticipated to be considered as an 

indispensable part of the traditional research and development section of the companies in the 

forthcoming eras. We expect the development of innovative waste-treatment methodologies 

in conjunction with such SPE systems in the future. 
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Table 1: Comparative characteristics of the parent macrocycles 

Macrocycle Major guest Structural diversity a Guest selectivity a 

Crown ether Na+, K+, Ca2+  

Ba2+, Ag+, Pb2+ 

NH4
+, RNH3

+ 

A A 

Macrocyclic polyamine Cu2+, Ni2+, Co2+ 

polyanion 

A B 

Macrocyclic polysulfide Ag+, Pb2+ C A 

Cyclic peptide Ca2+, Ba2+ 

Cu2+, Zn2+ 

C B 

Calixarene Na+, K+, Cs+ 

Organic substrate 

A B 

Cyclophane Organic substrate C C 

Cyclodextrin Organic substrate B C 
a A: excellent, B: fair, C: not good.  

 
 

 

“Reprinted with permission from ‘Tsukube, H., 1993. Talanta 40, 1313–1324’. ©1993, 

Elsevier Limited, UK.” 
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Figure 1. The development in SPEs until the introduction of macrocycle-containing SPEs: A 

timeline view.

28

http://dx.doi.org/10.1016/j.microc.2013.06.006


Microchemical Journal, 110: 485–493, 2013 
The original publication is available at: http://dx.doi.org/10.1016/j.microc.2013.06.006 

(a)

(b)

Figure 2. (a) Crystal structures of KI complexes with diaza-crown ether 1, lariat ether 2, and 

double armed crown ether 3, (b) cation binding of armed macrocycles.

“Reprinted with permission from ‘Gandour et al., 1986. J. Am. Chem. Soc. 108, 4078–4088’.

©1986, American Chemical Society, USA, and ‘Tsukube, H., 1993. Talanta 40, 1313–1324’.

©1993, Elsevier Limited, UK.”
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Figure 3. Macrocyclic compounds with diverse selectivity options: (a) a macrobicycle host 

structure that can accommodate both anion and cation species, (b) a multi-responsive host in 

which three different ion binding sites are arranged in a single structure.

“Reprinted with permission from Mahoney et al., 2001. J. Am. Chem. Soc. 123, 5847–5848 ,

‘Mahoney et al., 2004. Inorg. Chem. 43, 7617–7621, and Nabeshima et al., 2005. J. Am. Chem. 

Soc. 127, 5507–5511. ©2001, 2004 and 2005, American Chemical Society, USA.”
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Figure 4. Scheme for the preparation of 5-chloro-8-hydoxyquinoline-substituted diaza-18-

crown-6 macrocycles. 

 

“Adopted with permission from ‘Bradshaw and Izatt, 1997. Acc. Chem. Res., 30, 338–345’. 

©1997, American Chemical Society, USA 
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Figure 5. Scheme for the preparation of silica gel-bound crown compounds 

 
 
 
 

 

 

 

 

 

 

 

 

 

“Adopted with permission from ‘Bradshaw et al., 1989. J. Incl. Phenom. Macro. 7, 127–136’. 

©1989, Springer Science + Business Media” 
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