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Tridiagonal pairs and the quantum
affine algebra Uq(ŝl2)

∗

Tatsuro Ito and Paul Terwilliger

Abstract

Let K denote an algebraically closed field and let q denote a nonzero scalar in K that
is not a root of unity. Let V denote a vector space over K with finite positive dimension
and let A, A∗ denote a tridiagonal pair on V . Let θ0, θ1, . . . , θd (resp. θ∗0 , θ∗1, . . . , θ∗d)
denote a standard ordering of the eigenvalues of A (resp. A∗). We assume there exist
nonzero scalars a, a∗ in K such that θi = aq2i−d and θ∗i = a∗qd−2i for 0 ≤ i ≤ d.
We display two irreducible Uq(ŝl2)-module structures on V and discuss how these are
related to the actions of A and A∗.

1 The quantum affine algebra Uq(ŝl2)

Throughout this paper K will denote an algebraically closed field. We fix a nonzero scalar
q ∈ K that is not a root of unity. We will use the following notation.

[n]q =
qn − q−n

q − q−1
, n = 0, 1, . . . (1)

We now recall the definition of Uq(ŝl2).

Definition 1.1 [3, p. 262] The quantum affine algebra Uq(ŝl2) is the unital associative K-
algebra with generators e±i , K±1

i , i ∈ {0, 1} and the following relations:

KiK
−1
i = K−1

i Ki = 1, (2)

K0K1 = K1K0, (3)

Kie
±
i K−1

i = q±2e±i , (4)

Kie
±
j K−1

i = q∓2e±j , i �= j, (5)

[e+
i , e−i ] =

Ki − K−1
i

q − q−1
, (6)

[e±0 , e∓1 ] = 0, (7)

∗Keywords. q-Racah polynomial, Leonard pair, tridiagonal pair, quantum group, Askey-Wilson poly-
nomials.
2000 Mathematics Subject Classification. Primary: 20G42. Secondary: 33D80, 05E35, 33C45, 33D45.
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(e±i )3e±j − [3]q(e
±
i )2e±j e±i + [3]qe

±
i e±j (e±i )2 − e±j (e±i )3 = 0, i �= j. (8)

We call e±i , K±1
i , i ∈ {0, 1} the Chevalley generators for Uq(ŝl2).

Remark 1.2 The equations (8) are called the q-Serre relations.

2 A presentation of Uq(ŝl2)

In order to state our main result we introduce an alternate presentation of Uq(ŝl2). This
presentation is given below.

Theorem 2.1 The quantum affine algebra Uq(ŝl2) is isomorphic to the unital associative
K-algebra with generators y±

i , k±1
i , i ∈ {0, 1} and the following relations:

kik
−1
i = k−1

i ki = 1, (9)

k0k1 is central, (10)

qy+
i ki − q−1kiy

+
i

q − q−1
= 1, (11)

qkiy
−
i − q−1y−

i ki

q − q−1
= 1, (12)

qy−
i y+

i − q−1y+
i y−

i

q − q−1
= 1, (13)

qy+
i y−

j − q−1y−
j y+

i

q − q−1
= k−1

0 k−1
1 , i �= j, (14)

(y±
i )3y±

j − [3]q(y
±
i )2y±

j y±
i + [3]qy

±
i y±

j (y±
i )2 − y±

j (y±
i )3 = 0, i �= j. (15)

An isomorphism with the presentation in Definition 1.1 is given by:

k±
i → K±

i ,

y−
i → K−1

i + e−i ,

y+
i → K−1

i − q(q − q−1)2K−1
i e+

i .

The inverse of this isomorphism is given by:

K±
i → k±

i ,

e−i → y−
i − k−1

i ,

e+
i → 1 − kiy

+
i

q(q − q−1)2
.

Proof: One readily checks that each map is a homomorphism of K-algebras and that the
maps are inverses. It follows each map is an isomorphism of K-algebras. �

Definition 2.2 With reference to Theorem 2.1 we call y±
i , k±1

i , i ∈ {0, 1} the alternate

generators of Uq(ŝl2).
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3 Tridiagonal pairs

We now recall the notion of a tridiagonal pair [7], [12]. We will use the following terms.
Let V denote a vector space over K with finite positive dimension. Let A : V → V denote
a linear transformation and let W denote a subspace of V . We call W an eigenspace of A
whenever W �= 0 and there exists θ ∈ K such that

W = {v ∈ V | Av = θv}.
We say A is diagonalizable whenever V is spanned by the eigenspaces of A.

Definition 3.1 [7, Definition 1.1] Let V denote a vector space over K with finite positive
dimension. By a tridiagonal pair on V , we mean an ordered pair A, A∗ where A : V → V
and A∗ : V → V are linear transformations that satisfy the following four conditions.

(i) Each of A, A∗ is diagonalizable.

(ii) There exists an ordering V0, V1, . . . , Vd of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d), (16)

where V−1 = 0, Vd+1 = 0.

(iii) There exists an ordering V ∗
0 , V ∗

1 , . . . , V ∗
δ of the eigenspaces of A∗ such that

AV ∗
i ⊆ V ∗

i−1 + V ∗
i + V ∗

i+1 (0 ≤ i ≤ δ), (17)

where V ∗
−1 = 0, V ∗

δ+1 = 0.

(iv) There does not exist a subspace W of V such that AW ⊆ W , A∗W ⊆ W , W �= 0,
W �= V .

Note 3.2 According to a common notational convention, A∗ denotes the conjugate trans-
pose of A. We are not using this convention. In a tridiagonal pair A, A∗ the linear transfor-
mations A and A∗ are arbitrary subject to (i)–(iv) above.

Our interest in tridiagonal pairs evolved from our interest in the following special case.
A tridiagonal pair for which the Vi, V

∗
i all have dimension 1 is called a Leonard pair [11].

There is a natural correspondence between the Leonard pairs and a family of orthogonal
polynomials consisting of the q-Racah polynomials [1], [6] and some related polynomials in
the Askey-scheme [9], [18]. This correspondence follows from the classification of Leonard
pairs [11], [18]. We remark that this classification amounts to a linear algebraic version of a
theorem of D. Leonard [2], [10] concerning the q-Racah polynomials. See [8], [12], [13], [14],
[15], [16], [17], [19], [20] for more information about Leonard pairs.

Given these comments on Leonard pairs, it is natural to attempt a classification of the
tridiagonal pairs. At present we do not have this classification; however we do have a result
that might lead to one. In order to state the result we recall a few basic facts about tridiagonal
pairs. Let A, A∗ denote a tridiagonal pair on V and let d, δ be as in Definition 3.1(ii), (iii).
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By [7, Lemma 4.5] we have d = δ; we call this common value the diameter of A, A∗. An
ordering of the eigenspaces of A (resp. A∗) will be called standard whenever it satisfies (16)
(resp. (17)). We comment on the uniqueness of the standard ordering. Let V0, V1, . . . , Vd

denote a standard ordering of the eigenspaces of A. Then the ordering Vd, Vd−1, . . . , V0 is
standard and no other ordering is standard. A similar result holds for the eigenspaces of
A∗. An ordering of the eigenvalues of A (resp. A∗) will be called standard whenever the
corresponding ordering of the eigenspaces of A (resp. A∗) is standard. Let θ0, θ1, . . . , θd

(resp. θ∗0, θ
∗
1, . . . , θ

∗
d) denote a standard ordering of the eigenvalues of A (resp. A∗). The

θi, θ
∗
i satisfy a number of equations [12, Theorem 4.3] that have been solved in closed form

[12, Theorem 4.4]. In a special case of interest, there exist nonzero scalars a, a∗ in K such
that θi = aq2i−d and θ∗i = a∗qd−2i for 0 ≤ i ≤ d [7, Example 1.7], [8].

We now state our main result.

Theorem 3.3 Let V denote a vector space over K with finite positive dimension and let
A, A∗ denote a tridiagonal pair on V . Let θ0, θ1, . . . , θd (resp. θ∗0, θ

∗
1, . . . , θ

∗
d) denote a standard

ordering of the eigenvalues of A (resp. A∗). We assume there exist nonzero scalars a, a∗ in
K such that θi = aq2i−d and θ∗i = a∗qd−2i for 0 ≤ i ≤ d. Then with reference to Definition

2.1, there exists a unique Uq(ŝl2)-module structure on V such that ay−
1 acts as A and a∗y−

0

acts as A∗. Moreover there exists a unique Uq(ŝl2)-module structure on V such that ay+
0 acts

as A and a∗y+
1 acts as A∗. Both Uq(ŝl2)-module structures are irreducible.

The proof of Theorem 3.3 appears in Sections 13, 14 below.

Remark 3.4 The finite dimensional irreducible modules for Uq(ŝl2) are described in [3]. In
a future paper we hope to use [3] to obtain a classification of the tridiagonal pairs that satisfy
the assumptions of Theorem 3.3. See Lemma 15.1 and Problem 16.1 below for a discussion
of the issues involved.

Remark 3.5 Theorem 3.3 extends some work of Curtin and Al-Najjar [4], [5]. They give

a Uq(ŝl2)-action for those tridiagonal pairs that satisfy the assumptions of Theorem 3.3 and
for which the dimensions of the Vi, V

∗
i are all at most 2.

4 Six decompositions

In this section and the next we collect some results about tridiagonal pairs which we will
use to prove Theorem 3.3.

We will use the following notation. Let V denote a vector space over K with finite positive
dimension. Let d denote a nonnegative integer. By a decomposition of V of length d, we
mean a sequence U0, U1, . . . , Ud consisting of nonzero subspaces of V such that

V = U0 + U1 + · · · + Ud (direct sum).

We do not assume each of U0, U1, . . . , Ud has dimension 1. For 0 ≤ i ≤ d we call Ui the ith
subspace of the decomposition. For notational convenience we define U−1 := 0 and Ud+1 := 0.

We will refer to the following setup.
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Definition 4.1 Let V denote a vector space over K with finite positive dimension and let
A, A∗ denote a tridiagonal pair on V . Let V0, V1, . . . , Vd (resp. V ∗

0 , V ∗
1 , . . . , V ∗

d ) denote a
standard ordering of the eigenspaces of A (resp. A∗). For 0 ≤ i ≤ d let θi (resp. θ∗i ) denote
the eigenvalue of A (resp. A∗) associated with Vi (resp. V ∗

i ).

With reference to Definition 4.1, we are about to define six decompositions of V . In order to
keep track of these decompositions we will give each of them a name. Our naming scheme
is as follows. Let Ω denote the set consisting of the four symbols 0, D, 0∗, D∗. Each of the
six decompositions will get a name [u] where u is a two-element subset of Ω. We now define
the six decompositions.

Lemma 4.2 With reference to Definition 4.1, for each of the six rows in the table below,
and for 0 ≤ i ≤ d, let Ui denote the ith subspace described in that row. Then the sequence
U0, U1, . . . , Ud is a decomposition of V .

name ith subspace of the decomposition

[0D] Vi

[0∗D∗] V ∗
i

[0∗D] (V ∗
0 + · · · + V ∗

i ) ∩ (Vi + · · · + Vd)
[0∗0] (V ∗

0 + · · · + V ∗
i ) ∩ (V0 + · · · + Vd−i)

[D∗0] (V ∗
d−i + · · · + V ∗

d ) ∩ (V0 + · · · + Vd−i)
[D∗D] (V ∗

d−i + · · · + V ∗
d ) ∩ (Vi + · · · + Vd)

Proof: We consider each of the six rows of the table.
[0D]: Recall V0, V1, . . . , Vd are the eigenspaces of A and that A is diagonalizable.
[0∗D∗]: Recall V ∗

0 , V ∗
1 , . . . , V ∗

d are the eigenspaces of A∗ and that A∗ is diagonalizable.
[0∗D]: Define Ui = (V ∗

0 + · · · + V ∗
i ) ∩ (Vi + · · · + Vd) for 0 ≤ i ≤ d. Then the sequence

U0, U1, . . . , Ud is a decomposition of V by [7, Theorem 4.6].
[0∗0]: Apply the present Lemma, row [0∗D], with Vi replaced by Vd−i for 0 ≤ i ≤ d.
[D∗0]: Apply the present Lemma, row [0∗D], with Vi replaced by Vd−i and V ∗

i replaced by
V ∗

d−i for 0 ≤ i ≤ d.
[D∗D]: Apply the present Lemma, row [0∗D], with V ∗

i replaced by V ∗
d−i for 0 ≤ i ≤ d. �

The six decompositions from Lemma 4.2 are related to each other as follows.

Lemma 4.3 Adopt the assumptions of Definition 4.1 and let U0, U1, . . . , Ud denote any one
of the six decompositions of V given in Lemma 4.2. Then for 0 ≤ i ≤ d the sums U0+· · ·+Ui

and Ui + · · · + Ud are given as follows.

name U0 + · · · + Ui Ui + · · · + Ud

[0D] V0 + · · · + Vi Vi + · · · + Vd

[0∗D∗] V ∗
0 + · · · + V ∗

i V ∗
i + · · · + V ∗

d

[0∗D] V ∗
0 + · · · + V ∗

i Vi + · · · + Vd

[0∗0] V ∗
0 + · · · + V ∗

i V0 + · · · + Vd−i

[D∗0] V ∗
d−i + · · · + V ∗

d V0 + · · · + Vd−i

[D∗D] V ∗
d−i + · · · + V ∗

d Vi + · · · + Vd
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Proof: We consider each of the six rows of the table.
[0D]: Immediate from Lemma 4.2, row [0D].
[0∗D∗]: Immediate from Lemma 4.2, row [0∗D∗].
[0∗D]: Let U0, U1, . . . , Ud denote the decomposition [0∗D]. By [7, Theorem 4.6] we find
U0 + · · · + Ui = V ∗

0 + · · · + V ∗
i and Ui + · · · + Ud = Vi + · · · + Vd for 0 ≤ i ≤ d.

[0∗0]: Apply the present Lemma, row [0∗D], with Vi replaced by Vd−i for 0 ≤ i ≤ d.
[D∗0]: Apply the present Lemma, row [0∗D], with Vi replaced by Vd−i and V ∗

i replaced by
V ∗

d−i for 0 ≤ i ≤ d.
[D∗D]: Apply the present Lemma, row [0∗D], with V ∗

i replaced by V ∗
d−i for 0 ≤ i ≤ d. �

We have a comment.

Lemma 4.4 [7, Corollary 5.7, Corollary 6.6] Adopt the assumptions of Definition 4.1 and
let U0, U1, . . . , Ud denote any one of the six decompositions of V given in Lemma 4.2. For
0 ≤ i ≤ d let ρi denote the dimenension of Ui. Then the sequence ρ0, ρ1, . . . , ρd is independent
of the decomposition. Moreover the sequence ρ0, ρ1, . . . , ρd is unimodal and symmetric; that
is ρi = ρd−i for 0 ≤ i ≤ d and ρi−1 ≤ ρi for 1 ≤ i ≤ d/2.

Referring to Lemma 4.4, we call the sequence ρ0, ρ1, . . . , ρd the shape of the tridiagonal pair.
As we indicated in Section 2, a tridiagonal pair of shape 1, 1, . . . , 1 is the same thing as a
Leonard pair [7].

5 The action of A and A∗ on the six decompositions

With reference to Definition 4.1, in this section we describe the actions of A and A∗ on each
of the six decompositions given in Lemma 4.2.

Lemma 5.1 Adopt the assumptions of Definition 4.1 and let U0, U1, . . . , Ud denote any one
of the six decompositions of V given in Lemma 4.2. Then for 0 ≤ i ≤ d the action of A and
A∗ on Ui is described as follows.

name action of A on Ui action of A∗ on Ui

[0D] (A − θiI)Ui = 0 A∗Ui ⊆ Ui−1 + Ui + Ui+1

[0∗D∗] AUi ⊆ Ui−1 + Ui + Ui+1 (A∗ − θ∗i I)Ui = 0
[0∗D] (A − θiI)Ui ⊆ Ui+1 (A∗ − θ∗i I)Ui ⊆ Ui−1

[0∗0] (A − θd−iI)Ui ⊆ Ui+1 (A∗ − θ∗i I)Ui ⊆ Ui−1

[D∗0] (A − θd−iI)Ui ⊆ Ui+1 (A∗ − θ∗d−iI)Ui ⊆ Ui−1

[D∗D] (A − θiI)Ui ⊆ Ui+1 (A∗ − θ∗d−iI)Ui ⊆ Ui−1

Proof: We consider each of the six rows of the table.
[0D]: For 0 ≤ i ≤ d the space Vi is an eigenspace for A with eigenvalue θi. Therefore
(A − θiI)Vi = 0. We have A∗Vi ⊆ Vi−1 + Vi + Vi+1 by (16).
[0∗D∗]: For 0 ≤ i ≤ d we find AV ∗

i ⊆ V ∗
i−1 +V ∗

i +V ∗
i+1 by (17). The space V ∗

i is an eigenspace
for A∗ with eigenvalue θ∗i . Therefore (A∗ − θ∗i I)V ∗

i = 0.
[0∗D]: Let U0, U1, . . . , Ud denote the decomposition [0∗D]. By [7, Theorem 4.6] we find
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(A − θiI)Ui ⊆ Ui+1 and (A∗ − θ∗i I)Ui ⊆ Ui−1 for 0 ≤ i ≤ d.
[0∗0]: Apply the present Lemma, row [0∗D], with Vi replaced by Vd−i for 0 ≤ i ≤ d.
[D∗0]: Apply the present Lemma, row [0∗D], with Vi replaced by Vd−i and V ∗

i replaced by
V ∗

d−i for 0 ≤ i ≤ d.
[D∗D]: Apply the present Lemma, row [0∗D], with V ∗

i replaced by V ∗
d−i for 0 ≤ i ≤ d. �

6 The linear transformations B, B∗, K, K∗

In the previous two sections we discussed general tridiagonal pairs. For the rest of this paper
we restrict our attention to the special case mentioned in Theorem 3.3. We will refer to the
following setup.

Definition 6.1 Let V denote a vector space over K with finite positive dimension and let
A, A∗ denote a tridiagonal pair on V . Let V0, V1, . . . , Vd (resp. V ∗

0 , V ∗
1 , . . . , V ∗

d ) denote a
standard ordering of the eigenspaces of A (resp. A∗). For 0 ≤ i ≤ d let θi (resp. θ∗i ) denote
the eigenvalue of A (resp. A∗) associated with Vi (resp. V ∗

i ). We assume there exist nonzero
scalars a, a∗ in K such that

θi = aq2i−d, θ∗i = a∗qd−2i (0 ≤ i ≤ d). (18)

Let b and b∗ denote nonzero scalars in K.

Definition 6.2 Adopt the assumptions of Definition 6.1.

(i) We let B : V → V denote the unique linear transformation such that for 0 ≤ i ≤ d,

(V ∗
0 + · · · + V ∗

i ) ∩ (V0 + · · · + Vd−i) (19)

is an eigenspace of B with eigenvalue bq2i−d. We remark (19) is the ith subspace of
the decomposition [0∗0] from Lemma 4.2.

(ii) We let B∗ : V → V denote the unique linear transformation such that for 0 ≤ i ≤ d,

(V ∗
d−i + · · · + V ∗

d ) ∩ (Vi + · · · + Vd) (20)

is an eigenspace of B∗ with eigenvalue b∗qd−2i. We remark (20) is the ith subspace of
the decomposition [D∗D] from Lemma 4.2.

(iii) We let K : V → V denote the unique linear transformation such that for 0 ≤ i ≤ d,

(V ∗
0 + · · · + V ∗

i ) ∩ (Vi + · · · + Vd) (21)

is an eigenspace of K with eigenvalue q2i−d. We remark (21) is the ith subspace of the
decomposition [0∗D] from Lemma 4.2.
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(iv) We let K∗ : V → V denote the unique linear transformation such that for 0 ≤ i ≤ d,

(V ∗
d−i + · · · + V ∗

d ) ∩ (V0 + · · · + Vd−i) (22)

is an eigenspace of K∗ with eigenvalue q2i−d. We remark (22) is the ith subspace of
the decomposition [D∗0] from Lemma 4.2.

Remark 6.3 With reference to Definition 6.1 and Definition 6.2, the following (i), (ii) hold.

(i) If we replace (A, A∗, Vi, V
∗
i , a, a∗, B, B∗, b, b∗, K, K∗, q) by (A∗, A, V ∗

d−i, Vd−i, a
∗, a, B∗, B,

b∗, b, K−1, K∗−1, q) then the requirements of Definition 6.1 and Definition 6.2 are still
satisfied.

(ii) If we replace (A, A∗, Vi, V
∗
i , a, a∗, B, B∗, b, b∗, K, K∗, q) by (A, A∗, Vd−i, V

∗
d−i, a, a∗, B∗, B,

b∗, b, K∗−1, K−1, q−1) then the requirements of Definition 6.1 and Definition 6.2 are still
satisfied.

We will use Remark 6.3 to streamline a few proofs later in the paper.

7 Some relations involving A, A∗, B, B∗

In this section we give four relations involving the tridiagonal pair A, A∗ from Definition 6.1
and the elements B, B∗ from Definition 6.2.

Theorem 7.1 With reference to Definition 6.1 and Definition 6.2,

qAB − q−1BA

q − q−1
= abI, (23)

qBA∗ − q−1A∗B
q − q−1

= a∗bI, (24)

qA∗B∗ − q−1B∗A∗

q − q−1
= a∗b∗I, (25)

qB∗A − q−1AB∗

q − q−1
= ab∗I. (26)

Proof: We first show (23). Let U0, U1, . . . , Ud denote the decomposition [0∗0] from Lemma
4.2. We show qAB− q−1BA− ab(q− q−1)I vanishes on Ui for 0 ≤ i ≤ d. Let i be given. By
Definition 6.2(i) we find B − bq2i−dI vanishes on Ui so

(A − aqd−2i−2I)(B − bq2i−dI) (27)

vanishes on Ui. From the table of Lemma 5.1, row [0∗0], and using (18), we find (A −
aqd−2iI)Ui ⊆ Ui+1. Therefore

(B − bq2i+2−dI)(A − aqd−2iI) (28)

vanishes on Ui. Subtracting q−1times (28) from q times (27) we find qAB − q−1BA− ab(q−
q−1)I vanishes on Ui. Line (23) follows. To get (25) use (23) and the involution given in
Remark 6.3(i). To get (26) use (23) and the involution given in Remark 6.3(ii). To get (24)
use (25) and the involution given in Remark 6.3(ii). �
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8 The action of B and B∗ on the six decompositions

In this section we describe how the elements B, B∗ from Definition 6.2 act on the six decom-
positions given in Lemma 4.2.

Theorem 8.1 Adopt the assumptions of Definition 6.1 and let U0, U1, . . . , Ud denote any one
of the six decompositions of V given in Lemma 4.2. Let the maps B, B∗ be as in Definition
6.2. Then for 0 ≤ i ≤ d the action of B and B∗ on Ui is described as follows.

name action of B on Ui action of B∗ on Ui

[0D] (B − bqd−2iI)Ui ⊆ Ui−1 (B∗ − b∗qd−2iI)Ui ⊆ Ui+1

[0∗D∗] (B − bq2i−dI)Ui ⊆ Ui−1 (B∗ − b∗q2i−dI)Ui ⊆ Ui+1

[0∗D] (B − bq2i−dI)Ui ⊆ Ui−1 (B∗ − b∗qd−2iI)Ui ⊆ Ui+1

[0∗0] (B − bq2i−dI)Ui = 0 B∗Ui ⊆ Ui−1 + Ui + Ui+1

[D∗0] (B − bq2i−dI)Ui ⊆ Ui+1 (B∗ − b∗qd−2iI)Ui ⊆ Ui−1

[D∗D] BUi ⊆ Ui−1 + Ui + Ui+1 (B∗ − b∗qd−2iI)Ui = 0

Proof: We first give the action of B for each of the six rows in the table.
[0D]: Let U0, U1, . . . , Ud denote the decomposition [0D]. From Lemma 5.1, row [0D], and
using (18), we find that for 0 ≤ i ≤ d, Ui is an eigenspace for A with eigenvalue aq2i−d. We
show (B − bqd−2iI)Ui ⊆ Ui−1 for 0 ≤ i ≤ d. To do this, it suffices to show

(A − aq2i−2−dI)(B − bqd−2iI) (29)

vanishes on Ui for 0 ≤ i ≤ d. Let i be given. Observe A − aq2i−dI vanishes on Ui so

(B − bqd−2i+2I)(A − aq2i−dI) (30)

vanishes on Ui. Using (23) we find

qAB − q−1BA − ab(q − q−1)I (31)

vanishes on Ui. Adding (30) to q times (31) we find (29) vanishes on Ui. We conclude
(B − bqd−2iI)Ui ⊆ Ui−1 for 0 ≤ i ≤ d.
[0∗D∗]: Let U0, U1, . . . , Ud denote the decomposition [0∗D∗]. From Lemma 5.1, row [0∗D∗],
and using (18), we find that for 0 ≤ i ≤ d, Ui is an eigenspace for A∗ with eigenvalue a∗qd−2i.
We show (B − bq2i−dI)Ui ⊆ Ui−1 for 0 ≤ i ≤ d. To do this, it suffices to show

(A∗ − a∗qd−2i+2I)(B − bq2i−dI) (32)

vanishes on Ui for 0 ≤ i ≤ d. Let i be given. Observe A∗ − a∗qd−2iI vanishes on Ui so

(B − bq2i−d−2I)(A∗ − a∗qd−2iI) (33)

vanishes on Ui. Using (24) we find

qBA∗ − q−1A∗B − a∗b(q − q−1)I (34)
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vanishes on Ui. Subtracting (33) from q−1 times (34) we find (32) vanishes on Ui. We
conclude (B − bq2i−dI)Ui ⊆ Ui−1 for 0 ≤ i ≤ d.
[0∗D]: Let U0, U1, . . . , Ud denote the decomposition [0∗D]. We show (B − bq2i−dI)Ui ⊆ Ui−1

for 0 ≤ i ≤ d. Let i be given. We have

(B − bq2i−dI)Ui ⊆ (B − bq2i−dI)(U0 + · · · + Ui)

= (B − bq2i−dI)(V ∗
0 + · · · + V ∗

i ) (by Lemma 4.3, row [0∗D])

⊆ V ∗
0 + · · · + V ∗

i−1 (by present Theorem, row [0∗D∗])

= U0 + · · · + Ui−1 (by Lemma 4.3, row [0∗D])

and also

(B − bq2i−dI)Ui ⊆ (B − bq2i−dI)(Ui + · · · + Ud)

= (B − bq2i−dI)(Vi + · · · + Vd) (by Lemma 4.3, row [0∗D])

⊆ Vi−1 + · · · + Vd (by present Theorem, row [0D])

= Ui−1 + · · · + Ud (by Lemma 4.3, row [0∗D]).

Combining these observations we obtain (B − bq2i−dI)Ui ⊆ Ui−1 for 0 ≤ i ≤ d.
[0∗0]: Let U0, U1, . . . , Ud denote the decomposition [0∗0]. Then (B − bq2i−dI)Ui = 0 for
0 ≤ i ≤ d by Definition 6.2(i).
[D∗0]: Let U0, U1, . . . , Ud denote the decomposition [D∗0]. We show (B − bq2i−dI)Ui ⊆ Ui+1

for 0 ≤ i ≤ d. Let i be given. We have

(B − bq2i−dI)Ui ⊆ (B − bq2i−dI)(U0 + · · · + Ui)

= (B − bq2i−dI)(V ∗
d−i + · · · + V ∗

d ) (by Lemma 4.3, row [D∗0])

⊆ V ∗
d−i−1 + · · · + V ∗

d (by present Theorem, row [0∗D∗])

= U0 + · · · + Ui+1 (by Lemma 4.3, row [D∗0])

and also

(B − bq2i−dI)Ui ⊆ (B − bq2i−dI)(Ui + · · · + Ud)

= (B − bq2i−dI)(V0 + · · · + Vd−i) (by Lemma 4.3, row [D∗0])

⊆ V0 + · · · + Vd−i−1 (by present Theorem, row [0D])

= Ui+1 + · · · + Ud (by Lemma 4.3, row [D∗0]).

Combining these observations we obtain (B − bq2i−dI)Ui ⊆ Ui+1 for 0 ≤ i ≤ d.
[D∗D]: Let U0, U1, . . . , Ud denote the decomposition [D∗D]. We show BUi ⊆ Ui−1 +Ui +Ui+1

for 0 ≤ i ≤ d. Let i be given. We have

BUi ⊆ B(U0 + · · · + Ui)

= B(V ∗
d−i + · · · + V ∗

d ) (by Lemma 4.3, row [D∗D])

⊆ V ∗
d−i−1 + · · · + V ∗

d (by present Theorem, row [0∗D∗])

= U0 + · · · + Ui+1 (by Lemma 4.3, row [D∗D])
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and also

BUi ⊆ B(Ui + · · · + Ud)

= B(Vi + · · · + Vd) (by Lemma 4.3, row [D∗D])

⊆ Vi−1 + · · · + Vd (by present Theorem, row [0D])

= Ui−1 + · · · + Ud (by Lemma 4.3, row [D∗D]).

Combining these observations we find BUi ⊆ Ui−1 + Ui + Ui+1 for 0 ≤ i ≤ d.
We have now given the action of B on each of the six decompositions. Using this and the
involution from Remark 6.3(i), we find B∗ acts on the six decompositions as claimed. �

9 The pair B, B∗ is a tridiagonal pair

In this section we show that the linear transformations B, B∗ from Definition 6.2 form a
tridiagonal pair.

Theorem 9.1 Adopt the assumptions of Definition 6.1 and let the maps B, B∗ be as in
Definition 6.2. Then the pair B, B∗ is a tridiagonal pair on V . The sequence bq2i−d (0 ≤
i ≤ d) is a standard ordering of the eigenvalues of B and the sequence b∗qd−2i (0 ≤ i ≤ d) is
a standard ordering of the eigenvalues of B∗.

Proof: For the duration of this proof let U0, . . . , Ud (resp. U∗
0 , . . . , U∗

d ) denote the decompo-
sition [0∗0] (resp. [D∗D]) from Lemma 4.2. We show the pair B, B∗ is a tridiagonal pair on
V . To do this we show B, B∗ satisfies conditions (i)–(iv) in Definition 3.1.
Proof that B, B∗ satisfies Definition 3.1(i): Each of U0, . . . , Ud is an eigenspace of B by Def-
inition 6.2(i) and these eigenspaces span V so B is diagonalizable. Each of U∗

0 , . . . , U∗
d is an

eigenspace of B∗ by Definition 6.2(ii) and these eigenspaces span V so B∗ is diagonalizable.
Proof that B, B∗ satisfies Definition 3.1(ii): From the construction U0, . . . , Ud is an ordering
of the eigenspaces of B. By Theorem 8.1, row [0∗0] we find B∗Ui ⊆ Ui−1 + Ui + Ui+1 for
0 ≤ i ≤ d.
Proof that B, B∗ satisfies Definition 3.1(iii): From the construction U∗

0 , . . . , U∗
d is an ordering

of the eigenspaces of B∗. By Theorem 8.1, row [D∗D] we find BU∗
i ⊆ U∗

i−1 + U∗
i + U∗

i+1 for
0 ≤ i ≤ d.
Proof that B, B∗ satisfies Definition 3.1(iv): We let W denote an irreducible (B, B∗)-
submodule of V and show W = V . To obtain W = V we will show AW ⊆ W and
A∗W ⊆ W . We first show AW ⊆ W . We define W̃ := {w ∈ W |Aw ∈ W} and show
W̃ = W . Using (23) we routinely find BW̃ ⊆ W̃ . Using (26) we routinely find B∗W̃ ⊆ W̃ .
We claim W̃ �= 0. To prove the claim, We define Wi = W ∩Ui for 0 ≤ i ≤ d. From the table
of Lemma 4.3, row [0∗0] we find both

W0 + · · · + Wi ⊆ V ∗
0 + · · · + V ∗

i (0 ≤ i ≤ d), (35)

Wi + · · · + Wd ⊆ V0 + · · · + Vd−i (0 ≤ i ≤ d). (36)

11



The nonzero spaces among W0, . . . , Wd are the eigenspaces of B on W so W =
∑d

i=0 Wi. By
this and since W �= 0 we find W0, . . . , Wd are not all 0. Define r = max{i|0 ≤ i ≤ d, Wi �= 0}.
We define W ∗

i = W ∩ U∗
i for 0 ≤ i ≤ d. From the table of Lemma 4.3, row [D∗D] we find

W ∗
0 + · · · + W ∗

i ⊆ V ∗
d−i + · · · + V ∗

d (0 ≤ i ≤ d), (37)

W ∗
i + · · · + W ∗

d ⊆ Vi + · · · + Vd (0 ≤ i ≤ d). (38)

The nonzero spaces among W ∗
0 , . . . , W ∗

d are the eigenspaces of B∗ on W so W =
∑d

i=0 W ∗
i . By

this and since W �= 0 we find W ∗
0 , . . . , W ∗

d are not all 0. Define t = min{i|0 ≤ i ≤ d, W ∗
i �= 0}.

Suppose for the moment that r + t < d. Setting i = r in (35) and using W0 + · · ·+ Wr = W
we find W ⊆ V ∗

0 + · · · + V ∗
r . Setting i = t in (37) we find W ∗

t ⊆ V ∗
d−t + · · · + V ∗

d . Of course
W ∗

t ⊆ W so

W ∗
t = W ∩ W ∗

t

⊆ (V ∗
0 + · · · + V ∗

r ) ∩ (V ∗
d−t + · · · + V ∗

d )

= 0

for a contradiction. Therefore r + t ≥ d. Setting i = r in (36) we find Wr ⊆ V0 + · · ·+ Vd−r .
Setting i = t in (38) and using W ∗

t + · · · + W ∗
d = W we find W ⊆ Vt + · · · + Vd. Of course

Wr ⊆ W so

Wr = Wr ∩ W

⊆ (V0 + · · · + Vd−r) ∩ (Vt + · · · + Vd).

By this and since r + t ≥ d we find r + t = d and then Wr ⊆ Vd−r . Recall Vd−r is an
eigenspace for A so AWr ⊆ Wr. Therefore AWr ⊆ W so Wr ⊆ W̃ . Consequently W̃ �= 0 as
desired. We have shown W̃ is nonzero and invariant under each of B, B∗. Therefore W̃ = W
since W is irreducible as a (B, B∗)-module. We have now shown AW ⊆ W . Using this and
the involution in Remark 6.3(i) we find A∗W ⊆ W . Applying Definition 3.1(iv) to A, A∗ we
find W = V .
We have now shown the pair B, B∗ satisfies conditions (i)–(iv) of Definition 3.1. Therefore
B, B∗ is a tridiagonal pair on V . From the construction U0, . . . , Ud is a standard ordering
of the eigenspaces of B. For 0 ≤ i ≤ d the scalar bq2i−d is the eigenvalue of B associated
with Ui. Therefore the sequence bq2i−d (0 ≤ i ≤ d) is a standard ordering of the eigenvalues
of B. From the construction U∗

0 , . . . , U∗
d is a standard ordering of the eigenspaces of B∗.

For 0 ≤ i ≤ d the scalar b∗qd−2i is the eigenvalue of B∗ associated with U∗
i . Therefore the

sequence b∗qd−2i (0 ≤ i ≤ d) is a standard ordering of the eigenvalues of B∗. �

10 Some relations involving A, A∗, B, B∗, K, K∗

In this section we give some relations involving the tridiagonal pair A, A∗ from Definition
6.1, the tridiagonal pair B, B∗ from Definition 6.2, and the elements K, K∗ from Definition
6.2.
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Theorem 10.1 With reference to Definition 6.1 and Definition 6.2,

qK−1A − q−1AK−1

q − q−1
= aI, (39)

qBK−1 − q−1K−1B

q − q−1
= bI, (40)

qKA∗ − q−1A∗K
q − q−1

= a∗I, (41)

qB∗K − q−1KB∗

q − q−1
= b∗I. (42)

Proof: We first show (39), (40). Let U0, U1, . . . , Ud denote the decomposition [0∗D] from
Lemma 4.2. Concerning (39), we show qK−1A − q−1AK−1 − a(q − q−1)I vanishes on Ui

for 0 ≤ i ≤ d. Let i be given. Observe K − q2i−dI vanishes on Ui by Definition 6.2 so
K−1 − qd−2iI vanishes on Ui; from this we find

(A − aq2i−d+2I)(K−1 − qd−2iI) (43)

vanishes on Ui. From the table of Lemma 5.1, row [0∗D], and using (18), we find (A −
aq2i−dI)Ui ⊆ Ui+1. Therefore

(K−1 − qd−2i−2I)(A − aq2i−dI) (44)

vanishes on Ui. Subtracting q−1times (43) from q times (44) we find qK−1A−q−1AK−1−a(q−
q−1)I vanishes on Ui. Line (39) follows. Concerning (40), we show qBK−1−q−1K−1B−b(q−
q−1)I vanishes on Ui for 0 ≤ i ≤ d. Let i be given. We mentioned earlier that K−1 − qd−2iI
vanishes on Ui so

(B − bq2i−d−2I)(K−1 − qd−2iI) (45)

vanishes on Ui. From the table of Lemma 8.1, row [0∗D], we find (B − bq2i−dI)Ui ⊆ Ui−1.
Therefore

(K−1 − qd−2i+2I)(B − bq2i−dI) (46)

vanishes on Ui. Subtracting q−1times (46) from q times (45) we find qBK−1 − q−1K−1B −
b(q − q−1)I vanishes on Ui. Line (40) follows. To obtain (41), (42) apply (39), (40) and the
involution given in Remark 6.3(i). �

Theorem 10.2 With reference to Definition 6.1 and Definition 6.2,

qAK∗ − q−1K∗A
q − q−1

= aI. (47)

qK∗−1B − q−1BK∗−1

q − q−1
= bI, (48)

qA∗K∗−1 − q−1K∗−1A∗

q − q−1
= a∗I, (49)

qK∗B∗ − q−1B∗K∗

q − q−1
= b∗I, (50)
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Proof: Use Theorem 10.1 and the involution given in Remark 6.3(ii). �

11 The actions of K, K−1, K∗, K∗−1 on the six decom-

positions

In this section we describe how the elements K, K−1, K∗, K∗−1 from Definition 6.2 act on
the six decompositions from Lemma 4.2. We begin with K and K−1.

Theorem 11.1 Adopt the assumptions of Definition 6.1 and let U0, U1, . . . , Ud denote any
one of the six decompositions of V given in Lemma 4.2. Let the map K be as in Definition
6.2. Then for 0 ≤ i ≤ d the action of K and K−1 on Ui is described as follows.

name action of K on Ui action of K−1 on Ui

[0D] (K − q2i−dI)Ui ⊆ Ui+1 + · · · + Ud (K−1 − qd−2iI)Ui ⊆ Ui+1

[0∗D∗] (K − q2i−dI)Ui ⊆ Ui−1 (K−1 − qd−2iI)Ui ⊆ U0 + · · · + Ui−1

[0∗D] (K − q2i−dI)Ui = 0 (K−1 − qd−2iI)Ui = 0
[0∗0] (K − q2i−dI)Ui ⊆ U0 + · · · + Ui−1 (K−1 − qd−2iI)Ui ⊆ Ui−1

[D∗0] KUi ⊆ U0 + · · · + Ui+1 K−1Ui ⊆ Ui−1 + · · · + Ud

[D∗D] (K − q2i−dI)Ui ⊆ Ui+1 (K−1 − qd−2iI)Ui ⊆ Ui+1 + · · · + Ud

Proof: We consider each of the six rows of the table.
[0D]: Let U0, U1, . . . , Ud denote the decomposition [0D]. From Lemma 5.1, row [0D], and
using (18), we find that for 0 ≤ i ≤ d, Ui is an eigenspace for A with eigenvalue aq2i−d. We
show (K−1 − qd−2iI)Ui ⊆ Ui+1 for 0 ≤ i ≤ d. To do this, it suffices to show

(A − aq2i+2−dI)(K−1 − qd−2iI) (51)

vanishes on Ui for 0 ≤ i ≤ d. Let i be given. Observe A − aq2i−dI vanishes on Ui so

(K−1 − qd−2i−2I)(A − aq2i−dI) (52)

vanishes on Ui. Using (39) we find

qK−1A − q−1AK−1 − a(q − q−1)I (53)

vanishes on Ui. Subtracting (52) from q−1 times (53) we find (51) vanishes on Ui. We conclude
(K−1 − qd−2iI)Ui ⊆ Ui+1 for 0 ≤ i ≤ d. From this we find (K − q2i−dI)Ui ⊆ Ui+1 + · · · + Ud

for 0 ≤ i ≤ d.
[0∗D∗]: Use the present Theorem, row [0D] and the involution given in Remark 6.3(i).
[0∗D]: Let U0, U1, . . . , Ud denote the decomposition [0∗D]. From Definition 6.2 we find
(K − q2i−dI)Ui = 0 for 0 ≤ i ≤ d. It follows (K−1 − qd−2iI)Ui = 0 for 0 ≤ i ≤ d.
[0∗0]: Let U0, U1, . . . , Ud denote the decomposition [0∗0]. From Definition 6.2 we find that for
0 ≤ i ≤ d, Ui is an eigenspace for B with eigenvalue bq2i−d. We show (K−1−qd−2iI)Ui ⊆ Ui−1

for 0 ≤ i ≤ d. To do this, it suffices to show

(B − bq2i−2−dI)(K−1 − qd−2iI) (54)
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vanishes on Ui for 0 ≤ i ≤ d. Let i be given. Observe B − bq2i−dI vanishes on Ui so

(K−1 − qd−2i+2I)(B − bq2i−dI) (55)

vanishes on Ui. Using (40) we find

qBK−1 − q−1K−1B − b(q − q−1)I (56)

vanishes on Ui. Adding (55) to q times (56) we find (54) vanishes on Ui. We conclude
(K−1 − qd−2iI)Ui ⊆ Ui−1 for 0 ≤ i ≤ d. It follows (K − q2i−dI)Ui ⊆ U0 + · · · + Ui−1 for
0 ≤ i ≤ d.
[D∗0]: Let U0, U1, . . . , Ud denote the decomposition [D∗0]. We show KUi ⊆ U0 + · · · + Ui+1

for 0 ≤ i ≤ d. Let i be given. We have

KUi ⊆ K(U0 + · · · + Ui)

= K(V ∗
d−i + · · · + V ∗

d ) (by Lemma 4.3, row [D∗0])

⊆ V ∗
d−i−1 + · · · + V ∗

d (by present Theorem, row [0∗D∗])

= U0 + · · · + Ui+1 (by Lemma 4.3, row [D∗0]).

Next we show K−1Ui ⊆ Ui−1 + · · · + Ud for 0 ≤ i ≤ d. Let i be given. We have

K−1Ui ⊆ K−1(Ui + · · · + Ud)

= K−1(V0 + · · · + Vd−i) (by Lemma 4.3, row [D∗0])

⊆ V0 + · · · + Vd−i+1 (by present Theorem, row [0D])

= Ui−1 + · · · + Ud (by Lemma 4.3, row [D∗0]).

[D∗D]: Use the present Theorem, row [0∗0] and the involution given in Remark 6.3(i). �

We now describe the action of K∗ and K∗−1 on each of the six decompositions from Lemma
4.2.

Theorem 11.2 Adopt the assumptions of Definition 6.1 and let U0, U1, . . . , Ud denote any
one of the six decompositions of V given in Lemma 4.2. Let the map K∗ be as in Definition
6.2. Then for 0 ≤ i ≤ d the action of K∗ and K∗−1 on Ui is described as follows.

name action of K∗ on Ui action of K∗−1 on Ui

[0D] (K∗ − qd−2iI)Ui ⊆ Ui−1 (K∗−1 − q2i−dI)Ui ⊆ U0 + · · · + Ui−1

[0∗D∗] (K∗ − qd−2iI)Ui ⊆ Ui+1 + · · · + Ud (K∗−1 − q2i−dI)Ui ⊆ Ui+1

[0∗D] K∗Ui ⊆ Ui−1 + · · · + Ud K∗−1Ui ⊆ U0 + · · · + Ui+1

[0∗0] (K∗ − q2i−dI)Ui ⊆ Ui+1 + · · · + Ud (K∗−1 − qd−2iI)Ui ⊆ Ui+1

[D∗0] (K∗ − q2i−dI)Ui = 0 (K∗−1 − qd−2iI)Ui = 0
[D∗D] (K∗ − q2i−dI)Ui ⊆ Ui−1 (K∗−1 − qd−2iI)Ui ⊆ U0 + · · · + Ui−1

Proof: Use Theorem 11.1 and the involution given in Remark 6.3(ii). �
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12 The q-Serre relations

In this section we give two relations involving the tridiagonal pair A, A∗ from Definition 6.1,
and two relations involving the tridiagonal pair B, B∗ from Definition 6.2.

Theorem 12.1 With reference to Definition 6.1 and Definition 6.2,

A3A∗ − [3]qA
2A∗A + [3]qAA∗A2 − A∗A3 = 0, (57)

A∗3A − [3]qA
∗2AA∗ + [3]qA

∗AA∗2 − AA∗3 = 0, (58)

B3B∗ − [3]qB
2B∗B + [3]qBB∗B2 − B∗B3 = 0, (59)

B∗3B − [3]qB
∗2BB∗ + [3]qB

∗BB∗2 − BB∗3 = 0. (60)

Proof: We first show (57). let U0, U1, . . . , Ud denote the decomposition [0D] from Lemma
4.2. By Lemma 5.1, row [0D], and using (18), we find that for 0 ≤ i ≤ d the space Ui is an
eigenspace for A with eigenvalue aq2i−d. Abbreviate Ψ = A3A∗ − [3]qA

2A∗A + [3]qAA∗A2 −
A∗A3. We show Ψ = 0. To do this we show ΨUi = 0 for 0 ≤ i ≤ d. Let i be given
and pick v ∈ Ui. Observe A∗v ∈ Ui−1 + Ui + Ui+1 by Lemma 5.1, row [0D]. Observe
(A − aq2i−2−dI)Ui−1 = 0, (A − aq2i−dI)Ui = 0, and (A − aq2i+2−dI)Ui+1 = 0. By these
comments

(A − aq2i−2−dI)(A − aq2i−dI)(A − aq2i+2−dI)A∗v = 0.

We may now argue

Ψv = (A3A∗ − [3]qA
2A∗A + [3]qAA∗A2 − A∗A3)v

= (A3A∗ − [3]qA
2A∗aq2i−d + [3]qAA∗a2q4i−2d − A∗a3q6i−3d)v

= (A − aq2i−2−dI)(A − aq2i−dI)(A − aq2i+2−dI)A∗v

= 0.

We have now shown ΨUi = 0 for 0 ≤ i ≤ d. We conclude Ψ = 0 and (57) follows. To get
(58) use (57) and the involution in Remark 6.3(i). To get (59), (60) apply (57), (58) to the
tridiagonal pair B, B∗. �

13 Two modules for Uq(ŝl2)

In this section we prove the existence part of Theorem 3.3. We begin with two theorems.

Theorem 13.1 Adopt the assumptions of Definition 6.1. Let B, B∗, K be as in Definition
6.2. Then V is an irreducible Uq(ŝl2)-module on which the alternate generators act as follows.

generator y+
0 y+

1 y−
0 y−

1 k0 k1 k−1
0 k−1

1

action on V b∗−1B∗ b−1B a∗−1A∗ a−1A K K−1 K−1 K
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Proof: To see that the above action on V gives a Uq(ŝl2)-module, compare the equations in

Theorem 7.1, Theorem 10.1, and Theorem 12.1 with the defining relations for Uq(ŝl2) given

in Theorem 2.1. The Uq(ŝl2)-module V is irreducible by Definition 3.1(iv). �

Theorem 13.2 Adopt the assumptions of Definition 6.1. Let B, B∗, K∗ be as in Definition
6.2. Then V is an irreducible Uq(ŝl2)-module on which the alternate generators act as follows.

generator y+
0 y+

1 y−
0 y−

1 k0 k1 k−1
0 k−1

1

action on V a−1A a∗−1A∗ b∗−1B∗ b−1B K∗ K∗−1 K∗−1 K∗

Proof: To see that the above action on V gives a Uq(ŝl2)-module, compare the equations in

Theorem 7.1, Theorem 10.2, and Theorem 12.1 with the defining relations for Uq(ŝl2) given

in Theorem 2.1. The Uq(ŝl2)-module V is irreducible by Definition 3.1(iv). �

It is now a simple matter to prove the existence part of Theorem 3.3.

Proof of Theorem 3.3 (existence): By Theorem 13.1 there exists an irreducible Uq(ŝl2)-
module structure on V such that ay−

1 acts as A and a∗y−
0 acts A∗. By Theorem 13.2 there

exists an irreducible Uq(ŝl2)-module structure on V such that ay+
0 acts as A and a∗y+

1 acts
as A∗. �

14 Uniqueness

In this section we prove the uniqueness part of Theorem 3.3.

We begin with a comment concerning finite dimensional irreducible Uq(ŝl2)-modules.

Lemma 14.1 Let V denote a finite dimensional irreducible Uq(ŝl2)-module. Then there
exist nonzero scalars ε0, ε1 in K and there exists a decomposition U0, U1, . . . , Ud of V such
that both

(k0 − ε0q
2i−dI)Ui = 0, (k1 − ε1q

d−2iI)Ui = 0 (0 ≤ i ≤ d). (61)

The sequence ε0, ε1; U0, U1, . . . , Ud is unique. Moreover for 0 ≤ i ≤ d we have

(ε0y
+
0 − qd−2iI)Ui ⊆ Ui+1, (ε1y

−
1 − q2i−dI)Ui ⊆ Ui+1, (62)

(ε0y
−
0 − qd−2iI)Ui ⊆ Ui−1, (ε1y

+
1 − q2i−dI)Ui ⊆ Ui−1. (63)

Proof: By the construction V has finite positive dimension. Since k0k1 is central in Uq(ŝl2)
and since K is algebraically closed, there exists α ∈ K such that (k0k1 −αI)V = 0. Observe
α �= 0 since each of k0, k1 is invertible on V . For θ ∈ K we define V (θ) = {v ∈ V |k0v = θv}.
We observe V (θ) �= 0 if and only if θ is an eigenvalue of k0 on V , and in this case V (θ) is
the corresponding eigenspace. For nonzero θ ∈ K we find using (11), (12) that

(y+
0 − θ−1I)V (θ) ⊆ V (q2θ), (y−

1 − θα−1I)V (θ) ⊆ V (q2θ), (64)

(y−
0 − θ−1I)V (θ) ⊆ V (q−2θ), (y+

1 − θα−1I)V (θ) ⊆ V (q−2θ). (65)
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Since K is algebraically closed and since V has finite positive dimension, there exists θ ∈ K

such that V (θ) �= 0. We observe θ �= 0 since k0 is invertible on V . Since q is not a root of unity
the scalars θ, q−2θ, q−4θ, . . . are mutually distinct. These scalars cannot all be eigenvalues of
k0 on V ; consequently there exists a nonzero η ∈ K such that V (η) �= 0 and V (q−2η) = 0.
Similarly the scalars η, q2η, q4η, . . . are mutually distinct so they are not all eigenvalues of
k0 on V ; consequently there exists a nonnegative integer d such that V (q2iη) is nonzero for
0 ≤ i ≤ d and zero for i = d + 1. We abbreviate Ui = V (q2iη) for 0 ≤ i ≤ d. From the
construction

(k0 − q2iηI)Ui = 0, (k1 − αq−2iη−1I)Ui = 0 (0 ≤ i ≤ d). (66)

Define ε0, ε1 so that η = ε0q
−d and ε0ε1 = α. Observe ε0, ε1 are nonzero. Eliminating

η, α in (66) using the preceeding equations we obtain (61). From (64), (65) and our above
comments we obtain (62), (63), where U−1 = 0 and Ud+1 = 0. We claim V =

∑d
i=0 Ui. From

(61)–(63) we find
∑d

i=0 Ui is invariant under each of the alternate generators for Uq(ŝl2).

Also
∑d

i=0 Ui is nonzero since each of U0, . . . , Ud is nonzero. We conclude V =
∑d

i=0 Ui since

V is irreducible as a Uq(ŝl2)-module. The sum
∑d

i=0 Ui is direct since each of U0, . . . , Ud

is an eigenspace for k0 and the corresponding eigenvalues are mutually distinct. We now
see U0, . . . , Ud is a decomposition of V . It is clear that the sequence ε0, ε1; U0, U1, . . . , Ud is
unique. �

Remark 14.2 We will not use this fact, but it turns out that the scalars ε0, ε1 from Lemma
14.1 are both in {1,−1}. See for example [3, Proposition 3.2]. That proof assumes K = C

but the assumption is unnecessary.

Definition 14.3 Referring to Lemma 14.1, we call the sequence U0, U1, . . . , Ud the weight
space decomposition of V . We call the ordered pair (ε0, ε1) the type of V .

Example 14.4 Adopt the assumptions of Definition 6.1. For the Uq(ŝl2)-module structure
on V given in Theorem 13.1 (resp. Theorem 13.2), the weight space decomposition coincides
with the decomposition [0∗D] (resp. [D∗0]) from Lemma 4.2. Both module structures have
type (1, 1).

Proof: We first consider the Uq(ŝl2)-module structure from Theorem 13.1. Let U0, U1, . . . , Ud

denote the decomposition [0∗D]. By Definition 6.2(iii) we find (K − q2i−dI)Ui = 0 for
0 ≤ i ≤ d. By Theorem 13.1 we find k0, k1 act on V as K, K−1 respectively. Therefore
(k0 − q2i−dI)Ui = 0 and (k1 − qd−2iI)Ui = 0 for 0 ≤ i ≤ d. Define ε0 = 1, ε1 = 1 and observe
these values satisfy (61). By Definition 14.3, V has weight space decompostion U0, U1, . . . , Ud

and type (1, 1). We have now proved our assertions concerning the Uq(ŝl2)-module structure

from Theorem 13.1. The proof for the Uq(ŝl2)-module structure from Theorem 13.2 is similar
and omitted. �

Proof of Theorem 3.3(uniqueness): For 0 ≤ i ≤ d let Vi (resp. V ∗
i ) denote the eigenspace

of A (resp. A∗) associated with θi (resp. θ∗i ). We assume a Uq(ŝl2)-module structure on V
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such that ay−
1 acts as A and a∗y−

0 acts as A∗. We show the alternate generators for Uq(ŝl2)

act on V according to the table of Theorem 13.1. Observe the Uq(ŝl2)-module structure is

irreducible in view of Definition 3.1(iv). Let (ε0, ε1) denote the type of the Uq(ŝl2)-module
structure. We claim (ε0, ε1) = (1, 1). To see this, consider the weight space decomposition
U0, U1, . . . , Ud from Lemma 14.1. By (62) and since ay−

1 acts on V as A we find

(ε1A − aq2i−dI)Ui ⊆ Ui+1 (0 ≤ i ≤ d). (67)

Similarly

(ε0A
∗ − a∗qd−2iI)Ui ⊆ Ui−1 (0 ≤ i ≤ d). (68)

From (67) we find that for 0 ≤ i ≤ d the scalar ε−1
1 aq2i−d is an eigenvalue of A and the

dimension of the corresponding eigenspace has the same dimension as Ui. Apparently the
sequence ε−1

1 aq2i−d (0 ≤ i ≤ d) is an ordering the eigenvalues of A. Recall θi = aq2i−d for
0 ≤ i ≤ d. Therefore the sequence ε−1

1 aq2i−d (0 ≤ i ≤ d) is a permutation of the sequence
aq2i−d (0 ≤ i ≤ d). Since q is not a root of unity we must have ε1 = 1. By a similar
argument we find ε0 = 1. Setting (ε0, ε1) = (1, 1) in (67), (68) we find (A − θiI)Ui ⊆ Ui+1

and (A∗ − θ∗i I)Ui ⊆ Ui−1 for 0 ≤ i ≤ d. By this and [7, Theorem 4.6] we find Ui =
(V ∗

0 + · · ·+V ∗
i )∩ (Vi + · · ·+Vd) for 0 ≤ i ≤ d. In other words U0, . . . , Ud is the decomposition

[0∗D] from Lemma 4.2. By Definition 6.2(iii) we have (K − q2i−dI)Ui = 0 for 0 ≤ i ≤ d.
Comparing this with (61) and recalling (ε0, ε1) = (1, 1) we find k0, k1 act on V as K, K−1

respectively. Apparently k−1
0 , k−1

1 act on V as K−1, K respectively. We show by+
1 acts on V

as B. Define W = {v ∈ V |(by+
1 − B)v = 0}. We show W = V . To do this we show W �= 0,

AW ⊆ W , A∗W ⊆ W . Observe (B − bq−dI)U0 = 0 by Theorem 8.1, row [0∗D]. Observe
(y+

1 − q−dI)U0 = 0 by (63). By these comments by+
1 −B vanishes on U0. Therefore U0 ⊆ W

so W �= 0. By (13) (with i = 1), by (23), and since ay−
1 , A agree on V , we find (by+

1 −B)A,
q2A(by+

1 − B) agree on V . Using this we find AW ⊆ W . By (14) (with i = 1), by (24), and
since a∗y−

0 , A∗ agree on V , we find (by+
1 −B)A∗, q−2A∗(by+

1 −B) agree on V . Using this we
find A∗W ⊆ W . We have now shown W �= 0, AW ⊆ W , A∗W ⊆ W . Now W = V in view
of Definition 3.1(iv). We conclude (by+

1 − B)V = 0 so by+
1 acts on V as B. By a similar

argument we find b∗y+
0 acts on V as B∗. We have now shown y±

i , k±1
i , i ∈ {0, 1} act on

V according to the table of Theorem 13.1. It follows the given Uq(ŝl2)-module structure is

unique. By a similar argument we obtain the uniqueness of the irreducible Uq(ŝl2)-module
structure on V such that ay+

0 acts as A and a∗y+
1 acts as A∗. �

15 Comments

We have a comment on Theorem 3.3.

Lemma 15.1 Let a, a∗ denote nonzero scalars in K. Let A, A∗ denote elements in Uq(ŝl2)
which satisfy

A = ay−
1 , A∗ = a∗y−

0 (69)
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or

A = ay+
0 , A∗ = a∗y+

1 . (70)

Let V denote a finite dimensional irreducible Uq(ŝl2)-module of type (1, 1). Assume V is
irreducible as an (A, A∗)-module. Then the pair A, A∗ acts on V as a tridiagonal pair.
Denoting the diameter of this pair by d, the sequence aq2i−d (0 ≤ i ≤ d) is a standard
ordering of the eigenvalues for A on V and the sequence a∗qd−2i (0 ≤ i ≤ d) is a standard
ordering of the eigenvalues for A∗ on V .

Proof: First assume (69). By (15) and (69) we find both

A3A∗ − [3]qA
2A∗A + [3]qAA∗A2 − A∗A3 = 0, (71)

A∗3A − [3]qA
∗2AA∗ + [3]qA

∗AA∗2 − AA∗3 = 0. (72)

Let U0, U1, . . . , Ud denote the weight space decomposition of V from Definition 14.3. Setting
(ε0, ε1) = (1, 1) in Lemma 14.1 and using (69) we find both

(A − aq2i−dI)Ui ⊆ Ui+1 (0 ≤ i ≤ d), (73)

(A∗ − a∗qd−2iI)Ui ⊆ Ui−1 (0 ≤ i ≤ d). (74)

We draw several conclusions from these lines. From (73) (resp. (74)) the action of A (resp.
A∗) on V is diagonalizable. Also for 0 ≤ i ≤ d the scalar aq2i−d (resp. a∗qd−2i) is an
eigenvalue for this action and the corresponding eigenspace has the same dimension as Ui.
In particular the scalars aq2i−d (0 ≤ i ≤ d) (resp. a∗qd−2i (0 ≤ i ≤ d)) are the eigenvalues
of A (resp. A∗) on V . We are assuming V is irreducible as an (A, A∗)-module. This means
there does not exist a subspace W ⊆ V such that AW ⊆ W , A∗W ⊆ W , W �= 0, W �= V .
We show A, A∗ acts on V as a tridiagonal pair. To do this we apply [7, Example 1.7]. In
order to apply this example we must show neither of A, A∗ is nilpotent on V . We mentioned
above that each of A, A∗ is diagonalizable on V . Neither of A, A∗ is zero on V so neither of
A, A∗ is nilpotent on V . Now by [7, Example 1.7] we find A, A∗ act on V as a tridiagonal
pair. The diameter of this pair is d since each of A, A∗ has d+1 distinct eigenvalues. By [12,
Lemma 4.8] there exists a standard ordering of the eigenvalues of A (resp. A∗) on V of the
form αq2i−d (0 ≤ i ≤ d) (resp. α∗qd−2i (0 ≤ i ≤ d)), where α (resp. α∗) is an appropriate
nonzero scalar in K. Combining this with our above remarks we find α = a and α∗ = a∗.
Therefore the sequence aq2i−d (0 ≤ i ≤ d) is a standard ordering of the eigenvalues for A on
V and the sequence a∗qd−2i (0 ≤ i ≤ d) is a standard ordering of the eigenvalues for A∗ on
V . We have now proved the result for case (69). For the case (70) the proof is similar and
omitted. �

16 Suggestions for further research

In this section we give some open problems. The first problem is motivated by Lemma 15.1.

20



Problem 16.1 Let a, a∗ denote nonzero scalars in K and let A, A∗ denote the elements of
Uq(ŝl2) given in (69) or (70). Let V denote a finite dimensional irreducible Uq(ŝl2)-module
of type (1, 1). Find a necessary and sufficient condition for V to be irreducible as an (A, A∗)-
module.

In order to state the next problem we recall a few terms. Let V denote a vector space over
K with finite positive dimension. Let End(V ) denote the K-algebra consisting of all linear
transformations from V to V . By an antiautomorphism of End(V ) we mean a K-linear
bijection † : End(V ) → End(V ) such that (XY )† = Y †X† for all X, Y ∈ End(V ).

Problem 16.2 Let A, A∗ denote a tridiagonal pair on V . Show there exists an antiauto-
morphism † of End(V ) such that A† = A and A∗† = A∗. We remark that † exists if A, A∗ is
a Leonard pair [19, Theorem 7.1].
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