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Abstract 

Being inorganic arsenicals predominant, methylarsenicals also occur in anaerobic paddy soils. 

Therefore, this study investigated the influence of Fe2+ concentrations and arsenic speciation (arsenate; 

As(V) and dimethylarsinate; DMA) in paddy soils on arsenic uptake in rice plant. Rice seedlings were 

grown in soil irrigated with a Murashige and Skoog (MS) growth solution containing As(V) or DMA 

with or without 1.8 mM Fe2+ in excess to the background concentration of total Fe (0.03 mM) in the 

soil. Arsenic concentration in rice roots increased initially and then decreased gradually when the 

seedlings were grown with excess Fe2+ and As(V). In contrast, arsenic concentration in the roots 

increased steadily (P < 0.01) when the seedlings were grown without excess Fe2+ and As(V). When the 

form of the arsenic was DMA, total arsenic (tAs) concentration in rice roots increased gradually (P < 

0.01), and was not affected by the addition of excess Fe2+ in the soil. When rice seedling was grown 

with As(V), tAs concentration in rice roots and shoots increased steadily (P < 0.01) for gradual 

increase of Fe2+ concentrations in soil. However, tAs concentration in roots and shoots was 

independent of Fe2+ concentrations in soil when the form of arsenic was DMA. The tAs concentrations 

in rice shoots also increased significantly (P < 0.01) with increasing exposure time for both As(V) and 

DMA. Thus, Fe2+ concentrations in soil affects arsenic uptake in rice plant depending on the speciation 

of arsenic. 
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Introduction 

Arsenic is a toxic environmental pollutant that has chronic and epidemic effect on humans 

through widespread water and crop contamination from geogenic sources in Bangladesh (Hossain, 

2006; Smith et al., 2000) and West Bengal (India) (Chowdhury et al., 2000). Arsenic-contaminated 

groundwater is used not only for drinking purpose but also for crop irrigation in arsenic-affected Asian 

countries (Meharg and Rahman, 2003; Ninno and Dorosh, 2001). Groundwater is used extensively to 

irrigate paddy rice in Bangladesh, particularly during the dry season, and about 75% of the total 

cropped area is given over to rice cultivation in the country (Meharg and Rahman, 2003). Background 

levels of arsenic in paddy soils range from 4 to 8 mg kg-1, and can reach up to 57 mg kg-1 in areas 

where the crop land has been irrigated with arsenic-contaminated groundwater (Alam and Sattar, 2000). 

A recent study has been reported that groundwater irrigated paddy fields in Bangladesh are the net 

sinks of arsenic from groundwater, and very little arsenic delivered by irrigation returns to the aquifer 

(Neumann et al., 2011). In Bangladesh, it is estimated that irrigation removes up	 to	 1400 tons of 

arsenic from the aquifer each year and deposits this arsenic onto paddy fields (Ali et al., 2003). Arsenic 

levels in soil can also be increased by the use of arsenical chemicals such as lead arsenate (PbHAsO4) 

and calcium arsenate (Ca3(AsO4)2) in agriculture (Murphy and Aucott, 1998). Increasing arsenic levels 

in agricultural soils leads to the elevation of arsenic in rice, vegetables, and other food crops (Meharg 

and Rahman, 2003; Williams et al., 2006). 

Currently, the mechanisms involved in arsenic accumulation by rice are still poorly understood. 

Therefore, it is important to understand the environmental, nutritional, and internal/external factors of 

rice that may play important roles in arsenic uptake. Iron (Fe) is an important nutrient for plants. The 

precipitation of ferric oxides/hydroxides (Fe-plaques) on the roots of wetland and aquatic plants at 

neutral or alkaline pH is a common phenomenon (Emerson et al., 1999; Wang and Peverly, 1999). 



4 | P a g e  

 

Fe(III)-oxides/hydroxides on soil particulate or root surfaces of wetland plants adsorb As(V) strongly 

(Zhao et al., 2010). Due to the formation of Fe-oxides/hydroxides on rice root surface and sequestration 

of As(V) in the Fe-oxides/hydroxides (Blute et al., 2004; Liu et al., 2006), concentration of Fe2+ in the 

growth medium may affect the As(V) uptake in rice root and subsequent translocation to shoots of rice 

plant and in grains. Zhao et al. (2010) have recently reviewed the interactions between inorganic 

arsenic (iAs) and Fe(III)-oxides/hydroxides in uptake by rice plant. However, methylated arsenic 

compounds such as dimethylarsinate (DMA), monomethylarsonic acid (MMAA) and trimethylarsine 

oxide (TMAO) are also found in soil as minor components (Huang and Matzner, 2006; Takamatsu et 

al., 1982). These methylated arsenicals in paddy soils is supposed to be produced from iAs through 

biomethylation by some soil microorganisms or algae (Bentley and Chasteen, 2002; Takamatsu et al., 

1982). Most of the previous studies related to arsenic-Fe interactions in plant uptake have focused on 

As(V) and arsenite (AsIII) since these are the predominant species in aerobic and flooded (anaerobic) 

paddy soils, respectively (Meharg and Jardine, 2003; Takahashi et al., 2004). Little is known about the 

effect of interactions of Fe and methylarsenic species in plant uptake. Therefore, it is imperative and 

relevant to investigate the uptake of methylarsenic species in rice plant in relation to the Fe 

concentrations in soil. 

In views of the adsorption of As(V) by Fe(III)-oxides/hydroxides on rice roots (Zhao et al., 2010), 

the occurrence of DMA in anaerobic paddy soils from microbial methylation (Takahashi et al., 2004), 

and the existence of both As(V) and DMA in rice tissues (Abedin et al., 2002; Marin et al., 1993), the 

objective of this study was to investigate the effect of Fe2+ on As(V) and DMA uptake in rice roots and 

their translocation to shoots. This study will help out in understanding the role of Fe nutrient on the 

uptake of iAs and methylarsenicals in rice shoots and grain. 
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Materials and Methods 

Seed sterilization 

Rice seeds of BRRI dhan28 verity were collected from the Bangladesh Rice Research Institute, 

Gazipur-1700, Bangladesh. The seeds were surface-sterilized before use in the experiment. For surface 

sterilization, about 100 g seeds were soaked in 200 mL of 1% methyl-1-butylcarbamoyl-2-

benzimidazole carbonate solution for 10 min. Seeds were then washed with deionized (DI) water and 

soaked in DI water at 20 ºC for 24 h, and then at 45 and 52 ºC for 2 and 10 min, respectively.  

 

Experimental setup and chemical treatments 

Sterilized rice seeds were then soaked in DI water for 48 h, and were germinated on moistened 

filter paper placed in Petri-dishes. After 10 d when the germinated seeds produced sufficient roots and 

about 2 cm of shoots, they were transplanted in 500-mL polystyrene test vessels 

(130mm×90mm×70mm) containing 200 g soil. The chemical composition of the soil was: SiO2 

(95.5%), Al2O3 (2.3%), Fe2O3 (0.2%), CaO (0.02%), MgO (0.08%). In the soil, the background 

concentration of phosphorus was 5.8 mg kg-1 and arsenic concentration was below the instrumental 

limit of detection (0.01 µg L-1 in water). The particle size of the soil was 0.42-0.60 mm (24%) and 

0.30-0.42 mm (60%). Before seedling transplantation, the soil was flooded with modified Murashige 

and Skoog (MS) nutrient solution (Murashige and Skoog, 1962) without Fe nutrition (Table 1). The 

medium was then autoclaved in order to ensure that there was not microorganism in the medium, and 

microbial methylation/demethylation did not occurred during the growing period of the rice seedlings. 

The background concentration of Fe in the soil was 0.03 mM. About 20 germinated seeds of 10 d were 

transplanted in each vessel, and the seedlings were allowed to grow for 10 d. Seed germination, growth 

of rice seedlings and subsequent steps of the experiments were performed in Japan in the laboratory. 
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The conditions in the plant growth chamber were set to 14:10 h light/dark schedule and 100-125 µE m-2 

s-1 light intensity at 22(±2) ºC. 

After growing rice seedlings for 10 d in test vessels, the seedlings were about 10 cm with 

sufficient root systems. To investigate the effects of exposure time and Fe2+ concentrations on As(V) 

and DMA uptake in rice, seedlings were grown in soil irrigated with MS culture solution modified in 

Fe and phosphate concentrations. About 1.08, 2.16 and 4.32 mM of iron was added to the modified MS 

culture medium for concentration-dependant uptake experiment, while its concentration in the MS 

solution was 1.80 mM for time-dependant uptake experiment. Phosphate was not used in this study so 

that it could not influence arsenic uptake. The pH of the soil was maintained to 6.5 using buffer 

solution.  

To investigate the effect of Fe2+ on time-dependent arsenic uptake, rice seedlings of 10 d were 

continued to grow in the test vessels with (1.80 mM) or without excess Fe2+ (in addition to its 

background concentration in soil) in the soil. As(V) and DMA of 0.3 mM were applied to the soil by 

dissolving Na2HAsO4·7H2O and (CH3)2AsO2Na·3H2O, respectively, in the MS solution. Samples were 

collected every 2 h with three replications. Arsenic concentrations in rice roots was determined over a 

10-h period, and the samples were collected every 2 h. Total arsenic in roots was measured on a dry 

weight (d. wt.) basis. 

In concentration-dependent uptake experiment, rice seedlings of 10 d were continued to grow in 

the test vessels by adding 0 (control), 1.08, 2.16 and 4.32 mM of Fe2+ to the soil by dissolving 

FeSO4·7H2O in the MS solution. 0.3 mM of As(V) or DMA was applied to the soil by dissolving salts 

or the respective species in the MS solution. 

 

Extraction of Fe-plaque from rice root surfaces 
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After growing the rice seedling in this condition for 5 d, samples were collected randomly with 

three replications (3 seedlings from 3 vessels of same treatments). Rice seedlings were uprooted by 

hand and the plants were washed by DI water to remove all the external particles from the root surface. 

Fe-oxides/hydroxides from rice root surfaces were extracted by citrate-bicarbonate-

ethylenediaminetetraacetate (CBE) solution (Rahman et al., 2008a). In CBE-extraction technique, rice 

roots were incubated in 10 mL of CBE solution for 60 min at room temperature, and washed with DI 

water for three times. The CBE solution was prepared from 0.03 M, 0.125 M and 0.050 M of sodium 

citrate, sodium bicarbonate and EDTA, respectively. CBE-extraction of Fe-oxides/hydroxides was 

performed to remove arsenic that was adsorbed on Fe-hydroxides of the rice root surface. 

 

Digestion and chemical analysis of plant samples 

All chemical reagents used were of analytical grade. Glassware and dishes were washed with 

detergent (3 times) followed by 5 M HCl solution (3 times), and rinsed with deionized water (10 times) 

before use them in the experiment. 

The roots were rinsed with DI water, and blotted dry with tissue paper. The roots were then 

excised at the basal node to separate roots from shoots, and the samples were oven dried at 65 ºC for 48 

h. After measuring dry weight (d. wt.) of roots and shoots, the samples (approximately 0.25 g) were 

taken into 50-mL polyethylene digestion tubes. About 3 mL of concentrated (65%) nitric acid (HNO3) 

was added to the samples and they were allowed to stand overnight. The samples were then heated on a 

heating block at 95 ºC for 90 min. After cooling to room temperature, 2 mL of 30% hydrogen peroxide 

(H2O2) was added and heated again at 105 ºC for 30 min. The residues were diluted to 10 mL with DI 

water, and analyzed for total arsenic by graphite-furnace atomic absorption spectrometer (AAnalyst 

600, Perkin Elmer, Germany).  
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QC/QA for arsenic analysis 

In order to check the precision of arsenic analysis in the samples, two reagent blanks and a 

certified standard reference materials (SRM 1573a, tomato leaf from NIST, USA) were included in 

every analytical batch. The certified value of arsenic in SRM was 0.112±0.004 µg g-1 d. wt., while the 

measured value was 0.124±0.006 µg g-1 d. wt. The concentrations detected in all samples were above 

the instrumental limits of detection (≥ 0.01 µg L-1 in water). 

 

Statistical analysis 

Analysis of variance (ANOVA, one-way) on arsenic and Fe concentrations was performed using 

SPSS (v15.0 for windows), and regression analysis of the data was performed by GraphPad Prism (v5.0 

for windows). 

 

Results 

Effect of excess Fe2+ in soil on As(V) and DMA uptake in rice roots 

In short term experiment (10 h), total As (tAs) concentration in rice roots increased initially and 

then decreased gradually (P > 0.01) with growing time when the seedlings were grown with As(V) and 

1.80 mM of Fe2+ in addition to its background concentration in soil (0.03 mM) (Fig. 1A). In contrast, 

when the seedlings were grown with As(V) without excess Fe2+, tAs concentration in rice roots 

increased steadily (P < 0.01) with increasing growing time (Fig. 1A). Despite the addition of excess 1.8 

mM Fe2+ in the soils, tAs concentration in rice roots was increased (P < 0.01) with growing time for 

DMA (Fig. 1B). Results showed that arsenic uptake in rice roots was influenced significantly for the 
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addition of excess Fe2+ and As(V), while arsenic uptake was independent of the addition of excess Fe2+ 

in soils for DMA. 

When the form of arsenic was As(V), the tAs concentration on rice root surfaces was related to 

the amount of Fe-oxides/hydroxides on rice root surfaces (apoplastic Fe). The tAs concentration was 

significantly higher on roots of rice seedlings grown with As(V) and excess Fe2+ than that grown with 

As(V) and without excess Fe2+ (Fig. 2A). In contrast, tAs concentration on rice root surfaces was not 

influenced by the addition of Fe2+ in soil (Fig. 2B). Regardless of the addition of excess Fe2+ in soil, 

concentrations of Fe and arsenic on rice root surfaces increased significantly with growing time for 

As(V) treatment while tAs concentration did not increase for DMA treatment (Fig. 2). Fe 

concentrations were highly correlated (r2 = 0.909 and 0.711 for ‘with excess’ and ‘without excess’ Fe2+, 

respectively; P < 0.01) with tAs concentration on rice root surfaces for As(V) treatment (Figs. 3A, B) 

indicating that the formation of Fe-oxides/hydroxides on rice root surfaces, and that the adsorption of 

As(V) on the Fe-oxides/hydroxides increased with increasing growing time. However, concentrations 

of Fe and tAs on rice root surfaces were not correlated for DMA treatment (r2 = 0.551 and 0.447 for 

‘with excess’ and ‘without excess’ Fe2+, respectively; P > 0.01) (Figs. 3C, D). 

Rice seedlings of 10 d were grown for extended time (5 d) in soils irrigated with MS solution 

containing 0.3 mM of As(V) or DMA and different concentrations of Fe2+ (0, 1.08, 2.16 and 4.32 mM) 

in addition to its background concentration of 0.03 mM to investigate the effect of increasing Fe2+ 

concentrations on arsenic uptake in rice roots. The concentration of tAs in rice roots increased 

significantly (P < 0.01) with increasing Fe2+ concentrations in soil for As(V) treatment, while its 

concentration was not increased with increasing Fe2+ concentrations in soil for DMA treatment (Fig. 4). 

 

Effect of excess Fe+2 in soil on As(V) and DMA uptake in rice shoots 
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Regardless of the As species and the addition of excess 1.8 mM Fe2+ in soil, tAs concentrations in 

rice shoots increased significantly (P < 0.01) with increasing growing time (Fig. 5) indicating that 

arsenic speciation and Fe2+ concentrations in soil affect arsenic uptake in rice shoots. The concentration 

of tAs in rice shoots were more than four-times higher for As(V) treatment compared to that for DMA. 

When rice seedlings were grown for extended time (5 d) with different concentrations of Fe2+ in soil, 

tAs concentrations in rice shoots increased significantly (P < 0.01) with increasing Fe2+ concentrations 

in soil for As(V) treatment, while tAs concentration did not increase significantly (P > 0.01) for DMA 

treatment (Fig. 6). 

 

Discussions 

Effect of excess Fe2+ in soil on As(V) uptake in rice roots 

Although As(V) enters into rice roots through phosphate uptake pathway due to their similar 

physicochemical properties (Liu et al., 2004b; Rahman et al., 2008a; Rahman et al., 2008b; Wang et al., 

2002), it has high adsorptive affinity to Fe-oxides/hydroxides (Chen et al., 2005). In paddy soils, Fe-

oxides/hydroxides on rice root surfaces (Chen et al., 2005; Liu et al., 2006; Liu et al., 2004a) as well as 

on soil particles (Zhao et al., 2010) decrease the concentration of bioavailable fraction of As(V) in the 

soil that may results in low arsenic influx in rice roots. In this study, the initial increase followed by 

gradual decrease of the tAs concentration in roots of rice seedlings grown with excess Fe2+ and 0.3 mM 

As(V) (Fig. 1A) was related to Fe and arsenic concentrations on rice root surfaces (Figs. 3A, B). 

Irrespective of the addition of excess Fe2+ in soil, Fe concentration on rice root surfaces was low 

initially that might not be able to absorb high amount of As(V). Therefore, arsenic uptake in rice roots 

increased initially. Fe concentration on rice root surfaces increased steadily (P < 0.01) with growing 

time, and the concentration of Fe on root surface was significantly higher (P < 0.01) when the rice 
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seedlings were grown with access Fe2+ than without access Fe2+ (Fig. 2C). This result indicates that the 

amount of Fe-oxides/hydroxides on the root surfaces increased with growing time for the addition of 

excess Fe2+ in the soils. It has been reported that heavy metal and nutrient uptake in rice is related to 

the amount of Fe-plaque (Fe-oxides/hydroxides) on the roots surfaces (Zhang et al., 1998). In this case, 

increase of Fe-oxides/hydroxides on rice roots with growing time and the subsequent adsorption of 

As(V) on the Fe-oxides/hydroxides decreased arsenic uptake in rice roots. This result is in consistent 

with the finding of Rahman et al. (2011) that Fe concentrations in culture solution decrease arsenic 

uptake in hydroponic rice roots when rice seedling was grown with As(V).  

The concentration of tAs in rice roots increased steadily with increasing growing time when rice 

seedlings were grown without excess Fe2+ and As(V) (Fig. 1A). This was related to the amount of Fe-

oxides/hydroxides on rice root surfaces. Fe and tAs concentrations on root surfaces of rice seedlings 

grown without excess Fe2+ was significantly lower than that grown with excess Fe2+ (Figs. 2A, C). This 

might be because the amount of Fe-oxides/hydroxides was less and the bioavailable fraction of As(V) 

was high in the soil rhizosphere under Fe2+-limited condition. The tAs concentration in rice roots 

increased significantly (P < 0.01) when the rice seedlings were treated with As(V) and different 

concentrations of Fe2+ (1.08, 2.16 and 4.32 mM for extended time (5 d) (Fig. 4). This result is not in 

consistent with the result of short-term uptake study (Fig. 1A) indicating that Fe concentration in soil 

affects arsenic uptake in rice roots differently for growing time (short-time or long-time). 

Arsenic uptake mechanisms in rice is complex because of the ability of rice plant to carry oxygen 

from the aerial parts down to its stem and discharge the oxygen in the rhizosphere through the roots 

(Brammer and Ravenscroft, 2009). This creates an oxidized zone around the roots in which Fe is 

oxidized and precipitated to forms a coating of Fe-oxides/hydroxides on rice roots (Liu et al., 2006). 

Therefore, increasing Fe2+ concentrations in soil increased the formation of Fe-oxides/hydroxides on 
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the rice root and soil particulate surfaces, serving as a strong adsorbent for As(V). Increased arsenic 

uptake in rice roots for increasing Fe2+ concentrations can be explained by As(V) mobilization in soil 

rhizosphere. Previous studies have shown that two mechanisms are involved in the mobilization of 

As(V) in the soil rhizosphere; i) reduction of As(V) to As(III) followed by desorption from the 

adsorption surfaces of Fe-oxides/hydroxides into the solution phase, and ii) reductive dissolution of Fe-

oxides/hydroxides from rice roots to the solution (Takahashi et al., 2004) mediated by 

phytosiderophores.  

As(V) is reduced to As(III) under the anaerobic (reducing) environment in the soil rhizosphere 

(Xu et al., 2007), which might be created for grown rice plant for extended time under waterlogged 

condition. As(III) is more bioavailable than As(V) (Zhu et al., 2008), and therefore, As(III) is readily 

taken up by rice plant that increased the tAs concentration in rice roots. In reducing condition, Fe 

bioavailability and uptake in rice roots decreased for the increase of Fe-oxides/hydroxides in the soil 

rhizosphere that results Fe-deficiency. Being the strategy-II plant, rice roots exude phytosiderophores 

in the rhizosphere soil under the Fe-deficient condition to increase Fe bioavailability and uptake 

(Ishimaru et al., 2006; Romheld and Marschner, 1986). Some rhizospheric microbes also solubilise 

precipitated Fe3+ in the rhizosphere to enhance Fe bioavailability and uptake in rice by exuding 

siderophores to the root-plaque interface (Bar-Ness et al., 1992; Crowley et al., 1992; Kraemer, 2004). 

In addition to this reductive dissolution of Fe-oxides/hydroxides by microbial siderophores and 

phytosiderophores under the reducing environment, phosphate fertilizer has also been reported to 

decrease the amount of Fe-oxides/hydroxides on rice roots (Hu et al., 2005). Decrease of the amount of 

Fe-oxides/hydroxides in the soil rhizosphere by reductive dissolution of the Fe-oxides/hydroxides or 

phosphate fertilizer releases the adsorbed As(V) and enhances arsenic bioavailability and uptake in rice 

plant (Zhao et al., 2010). 
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The increase of arsenic uptake for the addition of Fe in the growth medium could possibly be 

explained by the influence of Fe in up-regulating the phosphate transporter. Ward et al. (2008) clearly 

showed that the addition of Fe up-regulate phosphate transporter in Arabidopsis. Similar situation could 

be in rice. The increase of tAs by Fe treatment could be due to the up-regulation of phosphate 

transporter since Phosphate and As(V) are homolog, and As(V) is also taken up by plants through the 

same transporter (Wang et al., 2002). 

Arsenic uptake in rice roots was not influenced significantly (p > 0.01) by different Fe2+ 

concentrations in soil when the seedlings were grown with DMA (Fig. 2B). This might be due to the 

fact that DMA is transported through aquaglyceroporin (Rahman et al., 2010). Poor correlation (r2 = 

0.551 and 0.447 for ‘with excess’ and ‘without excess’ Fe2+, respectively) between tAs and Fe 

concentrations on root surfaces (apoplastic) of DMA-treated rice seedling (Figs. 3C, D) also reveals 

that there is no biochemical interaction between DMA and Fe. Therefore, Fe2+ concentrations in soil do 

not affect DMA uptake in rice roots.  

 

Effect of excess Fe+2 on DMA uptake in rice roots 

Although As(III) is the major species in paddy soils, DMA was also found in small quantities 

(Abedin et al., 2002; Takamatsu et al., 1982), and the uptake of DMA in rice has been reported in 

previous studies (Abedin et al., 2002; Marin et al., 1993). Irrespective of the addition of Fe2+ in soils, 

tAs concentration in rice roots increased significantly with time (p < 0.01) for DMA (Fig. 1B). This 

might be because DMA uptake in rice roots is independent of Fe2+ concentrations in growing medium 

(Rahman et al., 2011), and can be explained by its uptake mechanisms in plants. Kinetic studies of 

DMA influx in rice roots showed that the glycerol transporter (aquaglyceroporin) in root plasma 

membrane favors DMA uptake (Rahman et al., 2010), and rice aquaporin Lsi1 is also supposed to 
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mediate the uptake of un-dissociated pentavalent DMA (Li et al., 2009). In addition, Fe-hydroxide on 

plant root surfaces does not favour DMA adsorption (Rahman et al., 2008a; Rahman et al., 2008b). 

Thus, the uptake mechanisms of DMA, and the biochemistry of DMA with Fe-oxides/hydroxides in the 

soil rhizosphere explain the influence of Fe on DMA uptake in rice roots adequately.  

The present study also showed that, regardless of the addition of excess Fe2+ in soil, tAs 

concentration in rice roots was significantly lower for DMA than that for As(V) (Fig. 1). The tAs 

concentration in roots of DMA-treated rice seedling was about one-third than in roots of As(V)-treated 

rice seedling. This result is in consistent with the findings of Rahman et al. (2011) in rice plant. Raab et 

al. (2007) compared arsenic uptake by 46 plant species by exposing to 13.3 μM As(V) or DMA for 24 

h, and found that the plants, on average, took up about a fifth of the amount of DMA compared with 

As(V) uptake. 

 

Effect of excess Fe+2 in soil on As(V) and DMA uptake in rice shoots 

The short-term uptake study showed that tAs concentration in rice shoot did not differ 

significantly for growing rice seedlings with or without excess Fe+2 and As(V) (Fig. 5A). This result 

agrees with the previous findings for hydroponic rice (Liu et al., 2004a, b), and also for other wetland 

plant species (Christensen and Sand-Jensen, 1998; Greipsson, 1994, 1995). Despite the fact that 

increasing amounts of Fe-plaque increase tAs accumulation on the root surfaces, they did not affect 

arsenic concentrations in rice shoots (Liu et al., 2004a). The result indicates that Fe-plaque may act as a 

‘barrier’ to decrease arsenic translocation from roots to shoots. Nevertheless, the role of Fe2+ 

concentrations in altering the translocation of arsenic from root to shoot may depend on the plant 

species, arsenic speciation, and exposure time. The present study showed that, tAs concentration in rice 

shoots increased significantly (p < 0.01) with increasing Fe2+ concentrations in soil when the seedlings 
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were grown with As(V) for extended time (5 d). However, tAs concentration in rice shoots did not 

increase significantly (p > 0.01) when the seedlings were grown with DMA for the same duration (Fig. 

6). Regardless of arsenic species and Fe concentrations in soil, tAs concentrations in the shoots 

increased gradually with increasing growing time (Fig. 5). Thus, it can be hypothesized that arsenic 

speciation and exposure time are important determinants that may influence the effect of Fe+2 

concentrations on arsenic translocation in rice shoots. 

Irrespective of the Fe2+ concentrations in soil, tAs concentration was about 10-times lower in rice 

shoots of DMA-treated seedlings than in shoots of As(V)-treated seedlings (Fig. 5). The result indicate 

that As(V) translocation from roots to shoots of rice plant is higher than that of DMA. As(III) was 

found to be the main form of arsenic in xylem sap when rice was grown hydroponically with As(V) 

indicating that As(V) is rapidly reduced to As(III) inside rice roots (Xu et al., 2007). The As(III) is then 

taken up in rice roots mainly by Lsi1, a silicon influx transporter (Ma et al., 2008). Lsi2, another silicon 

influx transporter localized at the proximal side of both exodermis and endodermis cells of rice roots,  

is involved in the efflux of As(III) toward the xylem (Ma et al., 2008). Lsi2 plays a significant role in 

arsenic transport from roots to shoots and ultimately to the grain in rice (Ma et al., 2008). This 

mechanisms of As(III) uptake also explain why iAs concentration in rice shoots and grains is higher 

than methylarsenic species. 

Although DMA is traslocated from plant’s roots to shoots more efficiently than MMA and iAs 

species (transfer factors for As(V) and DMA were 0.18 and 1.8, respectively) (Raab et al., 2007), the 

present study showed that translocation of tAs from root to shoot of rice plant grown with As(V) is 

about 10-times higher than that grown with DMA. The reasons for limited uptake and translocation of 

DMA in rice shoots are unclear. However, Li et al. (2009) showed that most of the methylarsenic 

species are dissociated at the cytoplasmic pH (approximately 7.5), and the negatively charged methyl 
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As may be transported to the xylem via a pathway which is different from that of As(III) (Lsi2 

transporter). Thus, lack of involvement of Lsi2 is in the transport of methylarsenic species would be a 

reason for the inefficient translocation of DMA from roots to shoots of rice plant. Whatever the reasons 

and mechanisms are for inefficient translocation of DMA, the present study showed that Fe2+ 

concentrations in soil do not affect the translocation of As(V) and DMA from roots to shoots of rice 

plant. 

 

Conclusion 

Fe-oxides/hydroxides in paddy soils influence arsenic dynamics in rice plant by changing arsenic 

solubility, retention, and release in the soil rhizosphere. Fe-plaque on rice roots serves either as a 

source or as a sink for arsenic depending on specific localized conditions and arsenic speciation. At 

high Fe concentration in soil, As(V) is taken up by rice roots rapidly during the initial growth phase. 

However, an oxidised condition is created in the soil rhizosphere with increasing growing time due to 

radial loss of O2 from root aerenchyma (Colmer, 2003). This oxidised condition enhances the formation 

of Fe- oxides/hydroxides on rice root surfaces that adsorbed a significant amount of the As(V) in the 

rhizosphere. As a result, As(V) uptake in rice roots decrease. However, reductive dissolution of Fe-

oxides/hydroxides by microbial siderophores and phytosiderophores released by rice plant may 

increase As(V) bioavailability in the rhizosphere and uptake in rice plant. Thus, Fe concentration in soil 

plays important role in controlling the bioavailability and uptake of iAs species in rice plant. 

Hypothetically, increasing concentration of Fe in paddy soils through irrigation with Fe-rich 

groundwater in South Asian countries would decrease iAs uptake in rice, but the scenario is opposite. 

The concentrations of iAs species in rice straw and grain from arsenic contaminated South Asian 

countries like Bangladesh and West Bengal, where irrigation water is rich in Fe, have been reported to 
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be higher than those from other countries. This might be due to the involvement of Lsi2 in arsenic 

transport from roots to shoots and to the rice grain. On the other hand, Fe-rich irrigation water does not 

affect methylated arsenic uptake in rice. 
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Table 1: Composition of modified Murashige and Skoog (MS) nutrient solutions used to grow rice 

seedlings (Oryza sativa L.) in experimental soil 

Nutrient elements Concentrations (mg L-1) 
Macronutrients  
NH4NO3 1650 
KNO3 1900 
CaCl2·2H2O 440 
MgSO4·7H2O 370 
KH2PO4 170 
  
Micronutrients  
KI 0.83 
H3BO3 6.20 
MnSO4·4H2O 22.30 
ZnSO4·7H2O 8.60 
Na2MoO4·2H2O 0.25 
CuSO4·5H2O 0.025 
CoCl2·6H2O 0.025 
  
Iron source  
FeSO4·7H2O 
Na2EDTA·2H2O 

Modified*

37.2 
pH 6.5 

 

*Fe concentrations in the MS nutrient solution were 0, 1.08, 2.16, and 4.32 mM for the concentration-

dependant uptake experiment, while its concentration in the MS solution was 1.80 mM for time-

dependant uptake experiment. 
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Fig. 1: Time course of arsenic uptake in rice roots affected by additional Fe+2 and arsenic speciation. 

As(V) (A); and DMA (B). [●] with excess Fe+2 (Fe = 1.83 mM); [■] without excess Fe+2 (Fe = 

0.03 mM). The soil was irrigated with MS growth solution containing 0.3 mM arsenic. Values 

are mean ± SD (n = 3). 
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Fig. 2: Time course of arsenic concentrations on rice root surface (apoplastic) as influenced by 

additional Fe+2. As(V) (A); DMA (B); Fe for the system of DMA (C). The soil was irrigated 

with MS growth solution containing 0.3 mM arsenic. [●] with excess Fe (Fe+2 = 1.83 mM); [■] 

without excess Fe (Fe+2 = 0.03 mM). Values are mean ± SD (n = 3). 
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Fig. 3: Correlation between Fe and arsenic concentrations on rice roots surface grown for 10 h with 

As(V) and additional Fe+2 (A); with As(V) and without additional Fe+2 (B); with DMA and 

additional Fe+2 (C); with DMA and without additional Fe+2 (D).  
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Fig. 4: Influence of Fe+2 concentrations and arsenic species in growth medium on arsenic uptake in rice 

roots. [●] As(V); [■] DMA.  The soil was irrigated with MS growth solution containing 0.3 mM 

arsenic. Rice seedlings were grown for 5 d. Values are mean ± SD (n = 3). 
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Fig. 5: Time course of As(V) (A) and DMA (B) concentrations in rice shoots as influenced by 

additional Fe+2 in the growth medium. [●] with additional Fe+2 (Fe = 1.83 mM); [■] without 

additional Fe+2 (Fe = 0.03 mM). The soil was irrigated with MS growth solution containing 0.3 

mM arsenic. Values are mean ± SD (n = 3). 
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Fig. 6: Influence of Fe+2 concentrations and arsenic species in growth medium on arsenic uptake in 

shoots of rice seedlings. [●] As(V); [■] DMA. The soil was irrigated with MS growth solution 

containing 0.3 mM arsenic. Rice seedlings were grown for 5 d. Values are mean ± SD (n = 3). 


