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Abstract 

Ferredoxin-NADP+ oxidoreductase [EC 1.18.1.2] from Bacillus subtilis (BsFNR) is homologous to the bacterial NADPH-

thioredoxin reductase, but possesses a unique C-terminal extension that covers the re-face of the isoalloxazine ring moiety of the 

flavin adenine dinucleotide (FAD) prosthetic group. In this report, we utilize BsFNR mutants depleted of their C-terminal residues 

to examine the importance of the C-terminal extension in reactions with NADPH and ferredoxin (Fd) from B. subtilis by 

spectroscopic and steady-state reaction analyses. The depletions of residues Y313 to K332 (whole C-terminal extension region) 

and S325 to K332 (His324 intact) resulted in significant increases in the catalytic efficiency with NADPH in diaphorase assay 

with ferricyanide, whereas Km values for ferricyanide were increased. In the cytochrome c reduction assay in the presence of B. 

subtilis ferredoxin, the S325-K332 depleted mutant displayed a significant decrease in the turnover rate with an Fd concentration 

range of 1 to 10 μM. The Y313-K332 depleted mutant demonstrated an increase in the rate of the direct reduction of horse heart 

cytochrome c in the absence of Fd. These data indicated that depletion of the C-terminal extension plays an important role in the 

reaction of BsFNR with ferredoxin. 
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1. Introduction 

Ferredoxin-NAD(P)+ oxidoreductase ([EC 1.18.1.2], [EC 1.18.1.3], FNR) is a member of the dehydrogenase family of the 

flavoprotein superfamily (Aliverti et al., 2008; Dym and Eisenberg, 2001; Correll et al., 1993). FNR catalyzes the redox reaction 

between the two electron carrier nucleotides, NAD(P)H, and the one electron carrier iron-sulfur proteins, ferredoxin (Fd), 

adrenodoxin (Ad) and putidaredoxin (Pd), and also the low molecular weight flavoprotein, flavodoxin. In photosynthesis, FNR 

catalyzes the reduction of NADP+ to NADPH by photochemically reduced Fd (Sétif, 2001; Knaff and Hirasawa, 1991). In non-

photosynthetic processes, FNR and its isoforms catalyze the reduction of Fd, Ad and Pd with NAD(P)H. In the latter case, 

reduced iron-sulfur proteins play an indispensable role as a low redox potential electron donor in a variety of metabolic processes 

including cytochrome P450-dependent hydroxylation, nitrogen fixation and the tolerance of active oxygen species. (Aliverti et al., 

2008; Knaff and Hirasawa, 1991; Bianchi et al., 1993; Munro et al., 2007; Ewen et al., 2011). 

FNRs generally consist of two nucleotide-binding domains that are typically found among the FAD-dependent 

dehydrogenase family (Aliverti et al., 2008; Dym and Eisenberg, 2001; Correll et al., 1993). Phylogenic and structural 

information on FNR and its isoforms indicates that FNRs are categorized into five groups (Aliverti et al., 2008; Ceccarelli et al., 

2004; Seo et al., 2004; Muraki et al., 2010). FNRs from green sulfur bacteria, Firmicutes and thermophiles (designated as TrxR-

type FNRs) exhibit significant conservation of structural topology with bacterial NADPH-thioredoxin reductase (TrxR) (Seo et 

al., 2004; Muraki et al., 2010; Komori et al., 2010), whereas adrenodoxin reductase (AdR) and putidaredoxin reductase (PdR) 

exhibit conservation of structural topology with glutathione reductase (GR) (Aliverti et al., 2008; Dym and Eisenberg, 2001). The 

structural topologies of these FNR groups are distinct from those of FNRs from plastid, cyanobacteria and proteobacteria. The 

latter FNRs are structurally related to phthalate dioxygenase reductase, NADPH-cytochrome P450 reductase and cytochrome b5 

reductase (Aliverti et al., 2008; Dym and Eisenberg, 2001; Correll et al., 1993; Karplus and Faber, 2004). Despite the differences 

in structural topology, similar arrangements of amino acid residues are often found around the isoalloxazine ring moiety of the 

FAD prosthetic group among FNR and its relatives. One such arrangement of amino acid residues involves the aromatic residues 

stacked on the isoalloxazine ring moiety of the FAD prosthetic group. The functional role of these residues has been extensively 

studied in plastid-type FNRs. Mutational analyses of FNRs from cyanobacteria (Piubelli et al., 2000; Nogués et al., 2004; Tejero 

et al., 2005) and Apicomplexa (Baroni et al., 2011), and cytochrome P450 BM3 (Neeli et al., 2005) display altered selectivity 
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towards NADH/NADPH upon replacement of the aromatic residues on the re-face of the ring. In the case of TrxR-type FNRs 

from Chlorobaculum tepidum (CtFNR) and Bacillus subtilis (BsFNR), replacement of the re-face Phe and His, respectively, did 

not significantly affect its selectivity and reactivity to NAD(P)H (Muraki et al., 2010; Komori et al., 2010). 

    The crystal structures of CtFNR (Muraki et al., 2010), Thermus thermophilus HB8 (PDB code: 2ZBW) (Mandai et al., 

2009a) and BsFNR (Komori et al., 2010) have revealed that these FNRs possess homologous structural topology with the TrxR, 

but only the TrxR-type FNRs possess the two conserved aromatic residues on the si- and re-face of the ring (Fig. 1). In the case of 

BsFNR, Tyr50 on the si-face and His324 on the re-face of the isoalloxazine ring moiety of the FAD prosthetic group stacked 

almost in parallel to the isoalloxazine ring moiety of the FAD prosthetic group at a distance of approximately 3.5 Å (Komori et al., 

2010). The five amino acid residues following His324 form a unique short -helix in the crystal structure of BsFNR and cover the 

re-face of the ring (Figure 1). A structurally related TrxR from Escherichia coli (EcTrxR) lacks the corresponding aromatic 

residues and C-terminal short -helix (Waksman et al., 1994). The role of the C-terminal extension in BsFNR including the re-

face His324 residue remains unclear. The crystal structure of BsFNR in the NADP+-bound form indicates that BsFNR and 

EcTrxR share similarities in their NADP+ binding mode (Komori et al., 2010) and accordingly, a drastic domain motion would be 

required for hydride ion transfer between NAD(P)+/H and the FAD prosthetic group as previously proposed for EcTrxR (Lennon 

et al., 2000). In such a scenario, the C-terminal extension would prevent the nicotinamide ring moiety of NADP+/H from coming 

into close contact with the isoalloxazine ring moiety in TrxR-type FNR, thereby participating in the reaction with NAD(P)H. To 

analyze the functional role of the C-terminal extension of BsFNR during interactions with Fd and NAD(P)H, we performed a 

reaction analysis of BsFNR mutants with specific alterations designed to impair the C-terminal region. 
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2. Results 

2.1 Preparation of WT and mutant FNRs 

    Two C-terminal depleted BsFNR mutants Y313-K332 and S325-K332 (hereafter designated as Y313 and S325, 

respectively) were purified to homogeneity using a method for the preparation of recombinant wild type (WT) enzyme (Fig. S1). 

The molecular mass of the WT BsFNR polypeptide migrated with an apparent molecular mass of 40 kDa on a sodium dodecyl 

sulfate-polyacryl amide gel electrophoresis (SDS-PAGE) gel. S325 BsFNR also migrated with an apparent molecular mass 

similar to that of WT and the Y313 mutant had an apparent molecular mass of approximately 38 kDa on an SDS-PAGE gel. 

Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOFMS) analysis of the WT BsFNR in 

native form displayed major peaks with masses of 36749 Da and 37523 Da. The corresponding values calculated from the DNA 

sequence with or without FAD were 37625 and 36839 Da, respectively. Similarly, mutant protein peak sizes of 34431 Da and 

35179 Da (34496 and 35281 Da by sequence) for Y313 and 35866 Da and 36624 Da (35932 and 36718 Da by sequence) for 

S325 mutants correlated with WT peak sizes (Fig. S2). All of the purified FNRs eluted as a single peak during gel-permeation 

chromatography. The deduced apparent molecular mass of WT BsFNR was approximately 97 kDa (Table 1). Y313 and S325 

mutants also exhibited a single peak with a deduced apparent molecular mass of approximately 94 kDa. These data confirm that 

all FNRs utilized in this report were present as homo-dimers in solution. 

 

2.2 Spectroscopic properties 

The UV-visible absorption spectra of the Y313 and S325 mutants exhibited a slight blue-shift of the FAD transition band 

in the near-UV region with peaks at approximately 380 nm when compared to that of WT (Fig. 2A). These blue shifts are likely 

due to changes in the environment of the FAD prosthetic group including a loss of hydrogen bonding with the Ser325 and Thr326 

residues, a decrease in the polarity of the environment and/or a loss of the dipole field of the C-terminal helix (Yagi et al., 1980; 

Heelis. 1982). Absorption coefficients of WT and mutated BsFNRs at the max of approximately 460 nm exhibited similar values 

(12.3 - 12.6 mM-1cm-1, Table 1). 

Addition of NADP+ to the FNR solution induced a shift in the flavin bands which produced troughs at approximately 450 

and 480 nm, and peaks at approximately 470 and 505 nm on the difference spectra (Fig. 2B). The ∆absorbance of the difference 
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spectra at 505-6 nm minus 480-1 nm for Y313 and S325 mutants increased when compared to that of WT BsFNR for the blue 

shift of the absorption bands in the NADP+-free oxidized form and exhibited a similar shape after addition of NADP+. The plots 

of the absorption changes (∆A505-6 minus ∆A480-1) on the difference spectra against the NADP+ concentration provided saturation 

curves (Fig. 2C). Dissociation constant (Kd) values of the mutated BsFNRs significantly decreased to less than half that of WT 

BsFNR (Table 1), indicating an increase in the stability of the NADP+-FNR complex upon deletion of the C-terminal extension. 

 

2.3 Steady-state reactions with NADPH and ferredoxin 

To evaluate the reactivity of WT and mutated BsFNRs with NADPH, a diaphorase assay was performed using potassium 

ferricyanide as an electron acceptor (Table 1). Upon depletion of the C-terminal extension, the Km value for ferricyanide 

drastically increased (Table 1). Although the kcat values for WT and mutated FNRs at 1 mM NADPH were similar, the Km values 

for NADPH of the C-terminal depletion mutants significantly decreased when compared to WT (Table 1). Together with the 

obtained Kd values for NADP+, depletion of the C-terminal extension resulted an increase in the reactivity with NADP+/H. 

For the assay of FNR under steady-state reaction conditions, the Fd reduction rate is often evaluated by the cytochrome c 

reduction assay utilizing cytochrome c as a final electron acceptor. Under the assay conditions outlined in this report, 

concentrations of the acceptor proteins were much larger than that of the donor proteins (FNR (-10 nM) < Fd (1-10 μM) < 

cytochrome c (0.1 mM)). This design minimized the effects of side reactions on the estimation of the Fd-dependent cytochrome c 

reduction rate except for direct cytochrome c reduction by FNR. WT and S325 BsFNR exhibited relatively low direct 

cytochrome c reduction rates in an NADPH concentration range of 1-200 μM (< 1.5 s-1 and < 3.5 s-1, respectively). However, the 

Y313 mutant displayed an enhanced direct cytochrome c reduction rate which was approximately 15 – 20 s-1 at an NADPH 

concentration range of 1-200 μM at 0.1 mM cytochrome c. An addition of BsFd did not substantially increase the rate of 

cytochrome c reduction. Accordingly, we could not estimate the rate of Fd-dependent cytochrome c reduction for the Y313 

mutant. The rates for the S325 mutant decreased to less than half that of WT BsFNR at 5 μM NADPH (Fig. 3). The linear 

dependency of the reduction rate for the S325 mutant on the BsFd concentration might indicate that the affinity of S325 

BsFNR to BsFd was considerably reduced when compared to WT. 
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3. Discussion 

Depletion of the C-terminal extension of BsFNR slightly increased its reactivity with NADP+/H, but significantly reduced its 

reactivity with BsFd in the steady-state assay. Because the rate for the reductive half reaction of BsFNR in the diaphorase assay is 

more than an order of magnitude faster than that of the observed oxidative half reaction in the cytochrome c reduction assay, the 

presence of the C-terminal extension may increase the turnover rate for the physiological reaction. These results are useful in the 

context of the assignment of TrxR-type FNR genes and the investigation into the shared structural topology of TrxR-type FNR 

and TrxR. Crystal structure analyses suggested that BsFNR and EcTrxR bind NADP+/H with a similar binding mode (Komori et 

al., 2010; Waksman et al., 1994; Lennon et al., 2000); however, amino acid sequence and structural information predict that 

BsFNR uses a distinct mode to bind Fd and Fld. In EcTrxR, thioredoxin (Td) reduction is catalyzed via the redox-active two 

cysteine residues (Cys135 and Cys138 in the EcTrxR numbering scheme) present on the surface of the NADPH-binding domain 

and the Td-binding site is almost completely conserved in TrxR (Waksman et al., 1994; Lennon et al., 2000). In contrast, FNR 

catalyzes the two separate single electron transfer to the external soluble protein. Because electron transfer to and from Fd requires 

close contact of the Fe-S cluster with the isoalloxazine ring moiety of the FAD prosthetic group at a distance for efficient electron 

tunneling (Moser et al., 2010), the Fd binding sites of plastid-type FNRs in co-crystals are close to the re-face of the isoalloxazine 

ring (Kurisu et al., 2001; Medina and Gómez-Moreno, 2004). However, the binding modes of Fd have not been determined for 

TrxR-type FNRs. Our results suggest that the C-terminal extension is involved in Fd binding and/or an electron transfer. Fd 

binding around the C-terminal region was also proposed in a recent report on the TtFNR-TtFd fusion protein of a TrxR type-FNR 

where fusion of the TtFd domain to the N-terminus of TtFNR did not exhibit a reduction of cytochrome P450, whereas fusion of 

the TtFd domain to the C-terminus successfully reduced cytochrome P450 (Mandai et al., 2009b). TrxR-type FNRs presumably 

evolved to enhance their reactivity with Fd by extending the C-terminus beyond the re-face of the isoalloxazine ring from the 

original structure shared with TrxR. The open conformation observed in the BsFNR crystal structure (Komori et al., 2010) enables 

the Bacillus thermoproteolyticus Fd (BtFd) (Fukuyama et al., 1989) to approach the isoalloxazine ring with a distance of 

approximately 9 Å between the Fe2 atom of the [4Fe-4S] cluster on BtFd and the C8M atom of FAD in BsFNR without steric 

crush (Fig. S3). These data are within the range of distances found for many natural intermolecular electron transfer systems 

(Moser et al., 2010). This unique open conformation in the crystal structures of TrxR-type FNRs (Muraki et al., 2010; Komori et 
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al., 2010) is distinct from the FR and FO forms reported in crystals of EcTrxR (Waksman et al., 1994; Lennon et al., 2000). In the 

C-terminal extension region of BsFNR, a stretch of positively charged residues Lys317, Arg319 and Lys332 is present (Fig. S3), 

but the Lys and Arg residues in the C-terminal extension region are not highly conserved except for Arg319 (Fig. 1B). 

Furthermore, the C-terminal extension region varies in length and amino acid composition depending on the organism. With 

regard to the His324 residue, the replacement of the C-terminus Tyr residue, (the counterpart of His324 in plastid-type FNRs) 

decreases its reactivity with Fd (Nogués et al., 2004). 
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4. Materials and Methods 

 

4.1 Preparations of WT BsFNR, mutant BsFNRs and B. subtilis Fd 

WT BsFNR was overexpressed in E. coli cells. The open reading frame of the yumC gene was cloned by PCR utilizing B. 

subtilis subsp. subtilis str. 168 genome as a template and both Fwd (5’-ATGCGAGAGGATACAAAGGTT-3’) and Rev (5’- 

GCAGACACAAGCTCCTTT-3’) primers. The PCR product was blunted (Mighty Cloning Reagent Set (Blunt End), Takara 

Bio Company, Otsu, Japan) and ligated into the pETBlue-1 vector (Novagen, Merck KGaA, Darmstadt, Germany). The obtained 

DNA sequence of the open reading frame differed from the previously reported one (Seo et al., 2009). The open reading frame of 

the previously reported one contained additional 48 nucleotides encoding 16 amino acid residues, (IEFLPGRCNHSHNQYS), 

beyond the C-terminal Lys332 of the wild-type protein because of the insertion of a stop codon into an inappropriate position. The 

resulting plasmid was transformed into Tuner(DE3)pLacI cells (Novagen). Expression and purification were performed according 

to the methods described in (Seo et al., 2009) with the following modifications: Pre-cultivated cells were resuspended in terrific 

broth medium in place of Luria-Bertani medium with the same concentrations of antibiotics. After DyeMatrex Red A affinity 

column chromatography, buffer was exchanged by dialysis to 10 mM  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES)-NaOH buffer (pH 7.0). Dialyzed FNR-containing solution was applied to a hydroxyapatite column (CHT Ceramic 

Hydroxyapatite Type I (20 μm), BioRad Lab. Inc., CA, U.S.A.) and eluted with a linear gradient of 10 mM HEPES-NaOH (pH 

7.0) to 500 mM potassium phosphate (pH 7.0) buffers. Yellow fractions were further purified using Mono Q anion exchange 

column chromatography (Mono Q 10/100, GE healthcare, Buckinghamshire, UK) with a linear gradient of 0 – 400 mM NaCl in 

20 mM tris(hydroxymethyl)aminomethane (Tris)-HCl buffer. 

Expression vectors for mutated BsFNRs containing deletions of the C-terminal extension region were constructed by 

introducing a stop codon TAA using a Quikchange protocol, the plasmid encoding the WT BsFNR sequence as a template and the 

primers described in the Supplemental materials section (Table S1). Mutated BsFNRs were expressed and purified according to a 

method similar to that used for the purification of WT BsFNR. B. subtilis Fd was expressed in E. coli cells under the control of the 

nprE promoter and purified according to the methods similar to those described in (Seo et al., 2009). 
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4.2 Steady-state enzyme assays 

The NADPH diaphorase assay using potassium ferricyanide as an electron acceptor was performed in 20 mM HEPES-NaOH 

buffer (pH 7.0) in the presence of 5 mM glucose-6-phosphate (G6P, Oriental Yeast Co., Ltd., Japan), 5 U ml-1 glucose-6-phosphate 

dehydrogenase (G6PDH, Leuconostoc mesenteroides; Biozyme Laboratories, Blaenavon, UK), 2 nM FNR together with NADPH 

(Oriental Yeast Co., Ltd., Tokyo, Japan) and potassium ferricyanide. Assays were performed at 25˚C under aerobic conditions by 

monitoring the decrease in absorbance at 420 nm or 440 nm utilizing a double beam spectrophotometer (V-560, JASCO, Tokyo, 

Japan).  

NADPH-dependent cytochrome c reduction in the presence or absence of Fd from B. subtilis (BsFd) was assayed in 20 mM 

HEPES-NaOH buffer (pH 7.0) containing 2-5 U ml-1 G6PDH, 5 mM G6P, 0.1 mM horse heart cytochrome c (Nacalai Tesque, 

Kyoto, Japan) and 2 – 10 nM FNRs together with Fd from B. subtilis and NADPH at 25˚C. Additional NaCl from the BsFd stock 

solution was less than 2 mM. The amount of reduced horse heart cytochrome c was estimated by monitoring the absorption 

changes at 550 nm with a ∆ɛ value of 21 mM-1 cm-1. Each data point is an average of three independent measurements. Horse 

heart cytochrome c was further purified by cation exchange chromatography (TSK Gel SP-5PW, Tosoh, Japan) and desalted via 

dialysis before use.  

Turnover rates were calculated by subtracting the respective assay blank containing all of the assay reagents except for 

FNRs. Km and kcat values were evaluated by nonlinear regression analysis using the Michaelis-Menten equation on the IgorPro 

(ver. 5.02) software (WaveMetrics, USA). Turnover rates are expressed as the number of NADPH molecules consumed by one 

molecule of native-form FNR. 

Protein and substrate concentrations were determined using the extinction coefficients for WT BsFNR (ε457 = 12.3 mM-1 cm-1, 

Seo et al., 2004), ∆Y313 mutant (ε457 = 12.6 mM-1 cm-1), ∆S325 mutant (ε457 = 12.3 mM-1 cm-1), B. subtilis Fd (ε390 = 16.0 mM-1 

cm-1, Green et al., 2003), potassium ferricyanide (ε420 = 1.02 mM-1 cm-1) and NADPH (ε340 = 6.2 mM-1 cm-1). 

 

4.3 Miscellaneous methods 

The UV-visible absorption spectra were measured with a double beam spectrophotometer (V-560, JASCO) at room 

temperature. For Kd determination, 1–10 l of NADP+stock solutions (1 – 100 mM) were added to each cuvette containing 
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BsFNRs in 2 ml of 20 mM HEPES-NaOH buffer (pH 7.0) in a sample cell and 2 ml of 20 mM HEPES-NaOH buffer (pH 7.0) in 

the reference cell. Spectra were recorded after incubation for a few minutes at room temperature. Difference spectra were obtained 

by subtracting the control spectrum recorded prior to the addition of the substrates from the experimentally obtained spectra after 

correcting for the volume changes. Kd values were determined according to the method described in a previously published study 

(Batie and Kamin, 1984). 

SDS-PAGE analysis was performed as described in (Laemmli, 1970). Protein bands on a 12 % gel were visualized with 

Coomassie Brilliant Blue R-250. Molecular masses of the native forms of the enzymes were deduced by gel-permeation 

chromatography on a Superdex-200 10/300 column (GE healthcare, USA) at a flow rate of 0.4 ml min-1 utilizing 20 mM Tris-

HCl buffer (pH 8.0) containing 200 mM NaCl. The molecular mass standard was purchased from Sigma-Aldrich (Kit for 

Molecular Weights 12,000-200,000, MWGF200, USA). MALDI TOFMS analysis was performed utilizing an Ab Sciex 4800 

Plus MALDI TOF/TOFTM analyzer in linear mode. Sinapic acid was used as a matrix. Each data point is expressed as a mean 

value of the 40 times integration of 50 shots at a laser intensity of 3000. BSA was used as the molecular standard. 

Absorption coefficients for WT and mutated BsFNRs were determined by the heat denaturation method (Aliverti et al., 

1999). Protein solutions containing approximately 10 M FNRs in 10 mM HEPES-NaOH buffer (pH 7.0) were incubated in a 

boiling water bath for 10 minutes in the dark. Denatured proteins were separated by centrifugation at 15,000 g for 30 min. The 

FAD concentration in the supernatant was determined using the extinction coefficient of 11.3 mM-1cm-1 at 450 nm. 
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Figure legends 

 

Fig. 1 (A) Close-up view of the C-terminal extension in the crystal structure of BsFNR (PDB code: 3LZX). The figure was 

prepared using Discovery Studio 3.5 Visualizer (Accelrys Inc., USA). Side chains of Tyr313 and His324 are depicted as ball and 

stick model. Subunits A and B and helix 6 are colored in blue, green and purple, respectively. (B) Partially aligned amino acid 

sequences of the C-terminal region of TrxR-type FNRs. The numbers of amino acid residues in BsFNR are indicated. The His324 

residue of BsFNR is indicated by an arrow. The positions of the 6th and 7th helices assigned in the crystal structure of BsFNR 

(Komori et al., 2010) are indicated by rods. BSU_32110: FNR from Bacillus subtilis subsp. subtilis str. 168 (this work), 

rpa_RPA3954: Rhodopseudomonas palustris CGA009 FNR, tth_TTC0096: Thermus thermophilus HB27 FNR, cte_CT1512: 

Chlorobaculum tepidum FNR. 

 

Fig. 2 (A) UV-visible absorption spectra of WT and mutated BsFNRs in the air-oxidized form. Measurements were performed at 

room temperature in 20 mM HEPES-NaOH buffer (pH 7.0). Solid line: WT BsFNR, dotted line: Y313, broken line: S325. (B) 

Difference spectra induced by an addition of 1 mM NADP+. Solid line: WT BsFNR, dotted line: Y313, broken line: S325. 

Measurements were performed at room temperature in 20 mM HEPES-NaOH buffer (pH 7.0). (C) Relationship between the 

magnitude of spectral change and NADP+ concentration. WT BsFNR (●): ∆ε505 - ∆ε481, Y313 BsFNR (○): ∆ε506 - ∆ε481, 

and S325 BsFNR (▢): ∆ε506 - ∆ε480. Each 1–10 µl of NADP+ (0.01 – 100 mM) stock solutions were added to the cuvettes 

containing 2 ml of ~ 10 μM BsFNR solutions in 20 mM HEPES-NaOH buffer (pH 7.0) for the sample cell and 20 mM 

HEPES-NaOH buffer (pH 7.0) only for the reference cell. 

 

Fig. 3 Effect of Fd concentration on the cytochrome c reduction activity of WT and S325 BsFNRs. Assays were performed in 

20 mM HEPES-NaOH buffer (pH 7.0) at 25 °C. Reaction mixtures contained 5 mM G6P, 5 U ml-1 G6PDH, 0.1 mM horse heart 

cytochrome c, 5 µM NADPH and 5 nM BsFNRs with B. subtilis Fd as indicated. Observed rates are expressed by subtraction of 

the respective assay blank containing all the assay reagents except FNRs. Error bar at each data point represents ± one standard 

deviations. 
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Table 1 

Enzymatic, spectroscopic and molecular properties of WT and mutant BsFNRs 

 

 WT ΔY313 ΔS325 

NADPH diaphorase with ferricyanide*    

Km for NADPH (μM)a 20 ± 1 10.7 ± 0.4  8.7 ± 0.4 

Km for ferricyanide (μM)b 290 ± 20 990 ± 90 1600 ± 160 

kcat (s-1)a 930 ± 11 872 ± 7 1050 ± 10 

Kd for NADP+ (μM)c*  4.6 ± 0.2   1.5 ± 0.2   1.5 ± 0.2 

ε (mM-1cm-1 per subunit) / at λmax (nm) 12.3/ 457d 12.6/ 457 12.3/ 457 

App. Mr (gel-permeation/ SDS-PAGE, kDa) 97 / 40 94 / 38 94 / 40 

*Each parameter value is represented ± one standard deviation. 

a: at 4 mM ferricyanide 

b: at 1 mM NADPH 

c: obtained with the data in Figure 2C 

d: from (Seo et al., 2004) 
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Figure S1 

SDS-PAGE analysis of wild type and mutated BsFNR proteins with Coomassie Brilliant Blue staining. Lanes 1–4 were 
loaded with molecular weight markers (97.4, 66.2, 45.0, 32.0, 21.0, 14.4 kDa from the top), wild type, ΔY313 and ΔS325 
mutants, respectively.  

1 2 3 4



 
 
 

Figure S2 

Mass spectra of MALDI-TOFMASS analysis for the WT and mutated BsFNRs in the native form. The data were obtained 
by the integrated value of 50 shots at the laser intensity of 3000 in linear mode by AB sciex 4800 Plus MALDI TOF/TOFTM 
Analyzer. In addition, those values show the mean value of 40 times. Sinapic acid was used as the matrix. BSA was utilized as 
a molecular standard. 
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Figure S3 

Docking model of Bacillus thermoproteolyticus Fd (BtFd) and Bacillus subtilis FNR (BsFNR). BtFd (PDB ID: 

1IQZ) was docked to a large cleft between two domains of BsFNR (PDB ID: 3LZX) without any steric 

hindrance using the programs COOT (Emsley, P. & Cowtan, K., Acta Crystallogr D Biol. Crystallogr. (2004) 60, 2126-

2132). In the model, both proteins are considered as the rigid bodies. The distance between the Fe2 atom of 

the [4Fe-4S] cluster on BtFd and the C8M atom of the FAD on BsFNR is 8.8 Å. The figures were prepared 

with PyMOL (http://pymol.sourceforge.net). BsFNR molecules A and B are shown in green and cyan, 

respectively.  FAD and NADP+ molecules are shown in yellow. BtFd is shown in orange. Positively charged 

residues around the large cleft between the two domains of BsFNR are shown in magenta. 
 
  



 
Table S1  
Nucleotide sequences of the forward (-F) and reverse (-R) primers utilized for the preparation of mutated BsFNR genes. The 
positions of the produced termination codons in the sequence are underlined. 
 

Primer name Nucleotide sequence 

yumC-Y313del-F GAA CAA CGC CAA GGC TTA AAT GGA CCC GAA AGC CCG 

yumC-Y313del-R CGG GCT TTC GGG TCC ATT TAA GCC TTG GCG TTG TTC 

yumC-S325del-F GCC CGC GTA CAG CCT CTT CAC TAA ACA AGT CTT TTT G 

yumC-S325del-R CAA AAA GAC TTG TTT AGT GAA GAG GCT GTA CGC GGG C 

 


