BCSJ Award Article

Total Syntheses of Sterically Locked Phycocyanobilin Derivatives Bearing a 15Z-anti or a $15 E$-anti CD-Ring Component

Kaori Nishiyama, Ayumi Kamiya, Mostafa A. S. Hammam, Hideki Kinoshita, Shuhei Fujinami, Yutaka Ukaji,* and Katsuhiko Inomata*
Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192

Received June 24, 2010; E-mail: inomata@se.kanazawa-u.ac.jp

Abstract

Total syntheses of sterically locked phycocyanobilin derivatives with a 15 Z-anti or a $15 E$-anti CD-ring component were performed toward elucidation of the stereochemistry and function of the chromophore in phytochromes. In the course of the construction of a sterically locked 15E-anti CD-ring component employing 5-tosylpyrrolin-2-one derivatives as the D-ring, the Ts group was found to be rearranged under acidic conditions to give a mixture of regioisomers, both of which could be transformed into the same CD-ring precursor via detosylation with a base followed by Wittig-like coupling reaction. In addition, a sterically locked 15E-anti biliverdin derivative was also synthesized.

Phytochromes, one of the best-characterized photoreceptors in plants, are a widespread family of red/far-red light responsive photoreceptors first discovered in plants ${ }^{1}$ and have been recently also discovered in bacteria, ${ }^{2}$ fungi, ${ }^{3}$ and slime molds. ${ }^{4}$ They play critical roles in various light-regulated processes, ranging from phototaxis and pigmentation in bacteria to seed germination, chloroplast development, shade avoidance, and flowering in higher plants. All phytochromes have a covalently attached linear tetrapyrrole (bilin) chromophore that absorbs light in the red and far-red region. ${ }^{5}$ Three different bilins are used as chromophores: land plants use phytochromobilin (РФВ), ${ }^{6}$ and cyanobacteria use phycocyanobilin (PCB), ${ }^{7}$ which is also a chromophore of the light-harvesting pigment, phycocyanin, and differs from РФВ only by substitution of the vinyl group at the C18 position with an ethyl group. ${ }^{6,7 \mathrm{~b}, 8}$ The РФВ and РСВ chromophores bind covalently to the apoprotein by a thioether bond through the A-ring ethylidene side chain. Some bacterial phytochromes carry biliverdin (BV) as a natural chromophore (Figure 1). ${ }^{3,9}$ We found that the BV covalently binds to the apoprotein of Agrobacterium phytochrome Agp1 via its A-ring vinyl side chain, ${ }^{10}$ which was recently confirmed by X-ray crystallographic analysis of other bacteriophytochromes. ${ }^{11}$

The interchange between the physiologically inactive red light absorbing Pr-form and the active far-red light absorbing Pfr-form is the most essential for the light absorbing and biological processes in the phytochrome chromophore function (Figure 1). It is commonly accepted that the first step in the photoconversion from Pr to Pfr is a Z to E isomerization around the $\mathrm{C} 15=\mathrm{C} 16$ double bond between the C- and D-rings of the bilin chromophores. ${ }^{12}$

In order to analyze the structure and function of the chromophores in the reconstituted phytochromes, we have synthesized $\mathrm{P} Ф \mathrm{~B}, \mathrm{PCB}$, the modified PCBs, and BVs, in free acid forms by developing efficient methods for the preparation of each pyrrole ring, a new coupling reaction between them, and palladium-catalyzed deprotection of allyl propanoate side chains of the B - and C-rings under mild conditions. ${ }^{13}$ Furthermore, we have succeeded for the first time in synthesizing the sterically locked 15Z-syn, 15Z-anti, $15 E$-syn, and $15 E$-anti BV derivatives, ${ }^{14,15}$ which made it possible to directly confirm the stereochemistry around the C15 position of the chromophores in Agrobacterium phytochromes Agp1 and Agp2. ${ }^{16}$ Doubly locked BV derivatives were also recently synthesized to assemble with Agp1 and Agp2. ${ }^{17}$ Assembly experiments of the synthesized chromophores with phytochrome apoproteins in vitro and in vivo have provided us insights into the structure and function of phytochromes, in particular the stereochemistry at the C15 position of the BV chromophore in Pr- and Pfr-forms of Agp1 and Agp2 was determined to be 15Z-anti and 15Eanti, respectively. ${ }^{13}$

Recently it was reported that light-induced rotation of the A-ring but not the D-ring is the primary motion of the chromophore during photoconversion from Pr to Pfr in the cyanobacterial phytochrome from Synechococcus OSB', which has PCB as a chromophore. ${ }^{18}$ In order to reveal the exact mechanism of photoconversion in the cyanobacterial phytochrome, the syntheses of sterically locked PCB derivatives are crucial. In this paper, we first describe a total synthesis of 15Zanti PCB derivative, in which the stereochemistry between the

Figure 1.

C- and D-rings is locked in Z-configuration and anti-conformation, respectively, corresponding to the Pr-form of Agp1 and Agp2. Next, a total synthesis $15 E$-anti BV derivative, which has been reported briefly in a preliminary communication, ${ }^{15}$ and finally, $15 E$-anti PCB derivative corresponding to the Pfr-form will be described.
The retro-synthetic analyses are shown in Scheme 1. In the synthesis of sterically locked 15Z-anti PCB derivative 1, ring closure was carried out by the intramolecular $\mathrm{S}_{\mathrm{N}} 2$ reaction of a nitrogen atom of the D-ring toward an alkyl halide moiety of the C-ring to form 5 as previously described. ${ }^{14}$ On the contrary, the intramolecular Wittig-like reaction between the tethered Cand D-rings in 8a was designed for the synthesis of a sterically locked E-anti CD-ring component 6, which allowed production of $15 E$-anti PCB derivative 2 and $15 E$-anti BV derivative 3 corresponding to Pfr-form.

Results and Discussion

The AB-ring component 4 of PCB derivative was prepared from 9 , whose preparation was previously reported during the course of the synthesis of the 15Z-anti locked BV derivative. ${ }^{14}$ Oxidation of sulfide 9 by $m \mathrm{CPBA}$ and subsequent heating in xylene gave a vinylic compound $\mathbf{1 0}$ (Scheme 2). The resulting compound $\mathbf{1 0}$ was then reduced with aluminum amalgam ${ }^{19}$ followed by acidic isomerization to give 11 in good chemical yield. Compound $\mathbf{4}$ generated in situ from 11 by treating with trifluoroacetic acid (TFA) was coupled with $\mathbf{5}^{14}$ under acidic conditions to afford the sterically locked 15Z-anti PCB diallyl ester $\mathbf{1 2}$ in 54% yield (Scheme 3). ${ }^{20}$ The allyl ester groups of 12 were deprotected via a $\operatorname{Pd}(0)$-catalyzed reaction using sodium p-toluenesulfinate (TsNa) as a nucleophile in THF/

MeOH to give the desired locked chromophore 1 in 76% yield in a free acid form.

Next we intended to synthesize the sterically locked $15 E$ anti BV derivative 3. The CD-ring component 6 was prepared starting from the commercially available 3,4-dihydro- 2 H -pyran (13) via tetrahydropyran-2-ol (14) and 5-hydroxypentanal (15) as shown in Scheme 4. The Henry reaction with 1-nitropropane followed by acetylation in the presence of 4-(dimethylamino)pyridine (DMAP) gave a mixture of nitro diacetate compound 17 and the corresponding nitro olefin 18, which was allowed to react with t-butyl isocyanoacetate without separation in the presence of DBU applying Barton's method ${ }^{21}$ to give the pyrrole derivative 19 in 26% yield from 13 in four steps. Iodination of the α-position of the pyrrole 19 with N iodosuccinimide (NIS) followed by oxidation utilizing $\mathrm{Pb}(\mathrm{OAc})_{4}$ in toluene ${ }^{22}$ gave the pyrrolinone derivative 21 in 90% yield from 19. The α-acetoxy group of the pyrrolinone derivative 21 was replaced with a Ts group using anhydrous TsNa in 94% yield, followed by protection of the pyrrolinoneNH using $\mathrm{Boc}_{2} \mathrm{O}$ to give 23 in 86% yield.

Hydrolysis of the acetate group in 0.5 M methanolic HCl afforded the N -protected tosylpyrrolinone derivative $\mathbf{2 4}$ in 97% yield. As described in the preliminary communication, ${ }^{15}$ the iodination of the resulting alcohol using iodine and triphenylphosphine in the presence of imidazole followed by nitration using sodium nitrite in the presence of phloroglucinol ${ }^{23}$ gave a tosylpyrrolinone derivative bearing a nitro group in its side chain, which was initially considered to be 26a. However, the spectral data of the product were not identical with the indicated structure of 26a. The hydrolysis product first assigned as 24a was confirmed to be a ca. 1:2 mixture of the two

Scheme 1.

Scheme 2.

Scheme 3.

(ca.1 : 2 mixture)
$\mathrm{Ph}_{3} \mathrm{P}, \mathrm{I}_{2}$ $\underset{\substack{\text { imidazole } \\ \text { in MeCN } \\ 89 \%}}{\mathrm{Ph}_{3} \mathrm{P}, \mathrm{I}_{2}} \longrightarrow \mathrm{X}=\mathrm{OH} 24$ 89\%

Scheme 4.

isomeric alcohols 24a and 24b as follows. After conversion of the mixture of alcohols 24 to nitro compounds 26 via iodination, the resulting nitro compounds could be separated into two isomers, and they gave single crystals suitable for Xray crystallographic analysis. The X-ray analyses revealed that they are 5-tosylpyrrolin-2-one derivative 26a and its 3-tosyl isomer 26b, respectively, as shown in Figure 2. This suggests that an isomerization proceeded during the acidic hydrolysis of the acetate $\mathbf{2 3}$ due to steric demand.

The separated 5-tosyl isomer of the nitro compound 26a was allowed to react with allyl 4 -oxobutanoate (27) ${ }^{17 \mathrm{c}}$ to construct the nitro alcohol side chain of the 5-tosylpyrrolin-2-one derivative 28a according to the Henry reaction. Acetylation of the resulting alcohol $28 a$ followed by reaction with t-butyl isocyanoacetate gave the dipyrrole derivative 29a in 27% yield in three steps as shown in Scheme 5. Compound 29a was subjected to the Vilsmeier reaction ${ }^{24}$ to afford the formylated dipyrrole derivative $\mathbf{8 a}$ in 71% yield. Compound $\mathbf{8 a}$ was then

Figure 2.
treated with 99% formic acid to cleave the Boc and t-butyl ester giving a dicarboxylic acid derivative 30a, which was subjected to our original Wittig-like coupling reaction using tri(n-butyl)phosphine in the presence of $\mathrm{DBU}^{13,25}$ to afford the pyrromethenone derivative 31 in 46% yield from 8 a in two steps. In a similar manner, the 3 -tosyl isomer $\mathbf{2 6 b}$ was converted to the formylated dipyrrole derivative $\mathbf{8 b}$. The treatment of the dipyrrole $\mathbf{8 b}$ with formic acid followed by tri(n-butyl)phosphine and DBU gave the same pyrromethenone derivative 31 in 60% yield from $\mathbf{8 b}$.

Furthermore, the CD-ring 31 could be synthesized without the separation of the isomeric nitro compounds 26a and 26b in similar chemical yields (Scheme 6).

Finally, the acid 31 was converted to the corresponding aldehyde 6 via decarboxylation and formylation by treating with trimethyl orthoformate in TFA in 63% yield.

As $15 E$-anti locked CD-ring component 6 was in hand, the synthesis of sterically locked 15E-anti BV derivative 3 was then examined by coupling with the AB -ring component. The AB-ring component 7 of BV derivative was obtained from 9 as previously reported. ${ }^{14}$ The coupling reaction between the $15 E$ anti CD- and AB -ring components (6 and 7) was carried out under acidic conditions to afford the sterically locked BV diallyl ester derivative $\mathbf{3 2}$ in 71% yield. The deprotection of the allyl esters was achieved by $\operatorname{Pd}(0)$-catalyzed reaction in the presence of TsNa as a nucleophile to give the desired BV derivative 3 bearing a 15E-anti CD-ring component in 70\% yield (Scheme 7).

Finally, the synthesis of sterically locked 15E-anti PCB 2 was examined by coupling with AB-ring component of PCB.

The coupling of $\mathbf{6}$ with $\mathbf{4}$, generated in situ from 11, was accomplished under acidic conditions to afford the $15 E$-anti PCB derivative 33. Final deprotection of allyl ester furnished the free acid 2 quantitatively (Scheme 8).

Conclusion

As described above, total syntheses of the sterically locked 15Z-anti and 15E-anti PCB derivatives 1, 2, and 15E-anti BV derivative $\mathbf{3}$ were achieved. These sterically locked chromophores will make it possible to investigate the stereochemistry and function of phytochrome chromophores both in vitro and in vivo.

Experimental

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL Lambda 400, Lambda 300, and ECS 400 NMR spectrometers. The chemical shifts were determined in the δ-scale relative to TMS $(\delta 0)$ as an internal standard. The IR spectra were measured on a JASCO FT/IR-230 spectrometer. The MS spectra were recorded with a JEOL SX-102A mass spectrometer. THF and $\mathrm{Et}_{2} \mathrm{O}$ were freshly distilled from sodium diphenylketyl. All other solvents were distilled and stored over drying agents. Merck silica gel $60 \mathrm{PF}_{254}$ (Art. 7749) was used for thin-layer chromatography (TLC) and Cica-Merck silica gel 60 (No. 9385-5B) and Cica silica gel 60N (No. 37563-84) for flash column chromatography.
\boldsymbol{t}-Butyl 3-(2-Allyloxycarbonylethyl)-4-methyl-5-[(4-meth-yl-5-oxo-3-vinyl-1 H-pyrrol-2 (5H)-ylidene)methyll-1H-pyr-role-2-carboxylate (10). To a solution of t-butyl 3-(2-allyloxycarbonylethyl)-4-methyl-5-(\{4-methyl-5-oxo-3-[2-(p-

Scheme 5.
tolylthio)ethyl]-1 H -pyrrol-2(5H)-ylidene \}methyl)-1 H -pyrrole-2-carboxylate $(9)^{14}(627 \mathrm{mg}, 1.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, a solution of $m \mathrm{CPBA}$ (70% purity, $281 \mathrm{mg}, 1.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere, and the mixture was allowed to stir for 5 min at $0^{\circ} \mathrm{C}$. The organic solvent was removed under reduced pressure, and the residue was partitioned between AcOEt and water. The organic extract was washed successively with saturated aqueous solutions of $\mathrm{NaHSO}_{3}, \mathrm{NaHCO}_{3}$, brine, and dried over MgSO_{4}. After evaporation of the solvent, the residue was dissolved in xylene $(10 \mathrm{~mL})$ and the solution was refluxed with stirring for 1 h . After removal of the solvent under reduced pressure, the obtained solid product was recrystallized from $\mathrm{AcOEt} /$ hexane to give 10. The residue obtained by evaporation of the mother liquid was purified by flash column chromatography (hexane $/ \mathrm{AcOEt}=3 / 1, \mathrm{v} / \mathrm{v}$) to give additional 10. The total amount of 10 was 463 mg (95% yield) as a yellow solid.

Mp 192.5-193.5 ${ }^{\circ} \mathrm{C}$ (from AcOEt). IR (KBr): 3350, 3124, 2979, 1730, 1686, 1656, 1449, 1366, 1275, 1159, 1130, 1056, 992, 915, 849, 765, 733, $688 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 1.57(\mathrm{~s}, 9 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H}), 2.55(\mathrm{t}, 2 \mathrm{H}, J=8.1$ $\mathrm{Hz}), 3.02(\mathrm{t}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.59(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 5.21$ (dd, $1 \mathrm{H}, J=10.5,1.3 \mathrm{~Hz}), 5.30(\mathrm{dd}, 1 \mathrm{H}, J=17.1,1.3 \mathrm{~Hz})$, 5.65 (dd, $1 \mathrm{H}, J=17.5,1.3 \mathrm{~Hz}), 5.67(\mathrm{dd}, 1 \mathrm{H}, J=11.5$, 1.3 Hz), 5.91 (ddt, $1 \mathrm{H}, J=17.1,10.5,5.6 \mathrm{~Hz}), 6.10(\mathrm{~s}, 1 \mathrm{H})$, $6.63(\mathrm{dd}, 1 \mathrm{H}, J=17.5,11.5 \mathrm{~Hz})$. Two $\mathrm{N} H$ protons were not observed clearly. Found: C, 67.68; H, 7.17; N, 6.46\%. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, $67.58 ; \mathrm{H}, 7.09$; N, 6.57%.
\boldsymbol{t}-Butyl 3-(2-Allyloxycarbonylethyl)-5-\{(Z)-[(E)-3-ethyl-idene-4-methyl-5-oxopyrrolidin-2-ylidene]methyl\}-4-methyl$\mathbf{1 H}$-pyrrole-2-carboxylate (11). To 10 ($200 \mathrm{mg}, 0.468 \mathrm{mmol}$) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2.6 \mathrm{~mL} / 0.26 \mathrm{~mL})$ was added aluminum amalgam, ${ }^{19}$ which was prepared from aluminum foil $(64 \mathrm{mg}$, 2.37 mmol) by the successive treatment with 1 M NaOH aq,

(26a : 26b = ca. $1: 2$)

Scheme 6.

Scheme 7.

Scheme 8.
$\mathrm{H}_{2} \mathrm{O}$, THF, $0.5 \% \mathrm{HgCl}_{2}$ aq, $\mathrm{H}_{2} \mathrm{O}$, THF, and the resulting suspension was stirred for 2 h at room temperature. The reaction mixture was filtered through a pad of Celite. The filtrate was condensed under reduced pressure and the residue was partitioned between AcOEt and water. The organic extract was washed with brine and then dried over MgSO_{4}. After evaporation of the solvent, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.6 \mathrm{~mL})$, and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(89 \mathrm{mg}, 0.468 \mathrm{mmol})$ was added under a nitrogen atmosphere. After stirring for 5 min at room temperature, the solvent was removed under reduced pressure and the residue was partitioned between AcOEt and water. The organic extract was washed with brine and dried over MgSO_{4}, followed by evaporation of the solvent. The residue was separated by TLC on SiO_{2} (hexane/ $\mathrm{AcOEt}=2 / 1, \mathrm{v} / \mathrm{v}$) to give $\mathbf{1 1}(178 \mathrm{mg}, 0.416 \mathrm{mmol})$ in 89% yield as a yellow solid. The spectral data were identical with those previously reported. ${ }^{22,26}$

Allyl 3-\{2-[1-(2-Allyloxycarbonylethyl)-6-ethyl-5-methyl-7-oxo-3,7,8,9-tetrahydro-3,7a-diazacyclopenta $[f]$ azulen-2-yl-methylene]-5-(3-ethylidene-4-methyl-5-oxopyrrolidin-2-yl-idenemethyl)-4-methyl-2 H -pyrrol-3-yl\}propanoate (12). To $11(13 \mathrm{mg}, 0.030 \mathrm{mmol})$ and $\mathbf{5}^{14}(8 \mathrm{mg}, 0.022 \mathrm{mmol})$ was added $\mathrm{HCO}_{2} \mathrm{H}(0.14 \mathrm{~mL})$ and TFA $(0.07 \mathrm{~mL})$ at room temperature under a nitrogen atmosphere. After stirring for 10 min , the resulting brown solution was condensed under reduced pressure. To the residue was added $\mathrm{MeOH}(5.0 \mathrm{~mL})$ and the reaction mixture was stirred for 2 h . The blue reaction mixture was quenched with a phosphate buffer solution (pH 7.0) and extracted with AcOEt. The organic layer was washed with brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was separated by TLC on $\mathrm{SiO}_{2}\left(\mathrm{CHCl}_{3} /\right.$ $\mathrm{AcOEt} / \mathrm{EtOH}=40 / 8 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v})$ to afford $12(12 \mathrm{mg}, 0.012$ mmol) in 54% yield as a blue solid. Mp $113-115^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $)$. $\mathrm{IR}(\mathrm{KBr}): 3456,2935,1730,1674,1615$, $1586,1455,1412,1338,1314,1280,1233,1212,1160,1100$, 1040, 991, 953, 824, 771, $662 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.11$ $(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.45(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.94(\mathrm{~d}, 3 \mathrm{H}$, $J=7.1 \mathrm{~Hz}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{q}, 2 \mathrm{H}, J=$ 7.6 Hz), $2.56(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.57(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $2.87-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.95(\mathrm{t}, 2 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 3.28(\mathrm{q}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 3.96-4.02(\mathrm{~m}, 2 \mathrm{H}), 4.56$ $(\mathrm{d}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}), 4.57(\mathrm{~d}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}$, $J=10.1 \mathrm{~Hz}), 5.21(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 5.27(\mathrm{~d}, 1 \mathrm{H}, J=$ $17.1 \mathrm{~Hz}), 5.28(\mathrm{~d}, 1 \mathrm{H}, J=17.1 \mathrm{~Hz}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{ddt}, 2 \mathrm{H}$, $J=17.1,10.1,5.9 \mathrm{~Hz}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{q}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz})$, $6.64(\mathrm{~s}, 1 \mathrm{H})$. Two NH protons were not observed clearly. HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+1\right)$, Found: m / z 679.3485. Calcd for $\mathrm{C}_{40} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{6}$: 679.3496 .
3-\{2-[1-(2-Carboxyethyl)-6-ethyl-5-methyl-7-oxo-3,7,8,9-tetrahydro-3,7a-diazacyclopenta[f] azulen-2-ylmethylene]-5-(3-ethylidene-4-methyl-5-oxopyrrolidin-2-ylidenemethyl)-4-methyl-2H-pyrrol-3-yl\}propanoic Acid (1). To a mixed solution of $12(27 \mathrm{mg}, 0.045 \mathrm{mmol})$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](10 \mathrm{mg}$, 0.009 mmol) in THF $(1.0 \mathrm{~mL})$, a solution of $\mathrm{TsNa}(16 \mathrm{mg}$, $0.090 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ was added under a nitrogen atmosphere at room temperature. After stirring for 10 min , the reaction mixture was quenched by the addition of thiourea ($3 \mathrm{mg}, 0.036 \mathrm{mmol}$). The solution was directly separated by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH}=\right.$
$250 / 15 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v})$. The blue fraction was evaporated and the resulting solid residue was recrystallized from $\mathrm{CHCl}_{3} /$ hexane. Free acid 1: a blue solid, $19 \mathrm{mg}(0.034 \mathrm{mmol})$, in 76% yield. $\mathrm{Mp}>280^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3} /$ hexane). IR (KBr): 3213, 2926, 1778, 1694, 1599, 1454, 1395, 1277, 1159, 1064, 963, 895, $824 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): \delta 1.10(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.38$ $(\mathrm{d}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.70(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.13$ $(\mathrm{s}, 3 \mathrm{H}), 2.40(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.84(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz})$, 2.87-2.92 (m, 4H), 3.14-3.20 (m, 4H), $3.17(\mathrm{q}, 1 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 4.06-4.10(\mathrm{~m}, 2 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{q}, 1 \mathrm{H}, J=$ $7.3 \mathrm{~Hz}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H})$. Two $\mathrm{N} H$ protons and two COOH protons were not observed clearly. UV-vis (MeOH) $\lambda_{\text {max }} 365(\varepsilon=21100), 608(\varepsilon=72000) \mathrm{nm}$. HRMS $\left(\mathrm{FAB}^{+}\right)$ $\left(\mathrm{M}^{+}+1\right)$, Found: m / z 599.2881. Calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{6}$: 599.2870 .
t-Butyl 3-(4-Acetoxybutyl)-4-ethyl-1 H -pyrrole-2-carboxylate (19). To a mixture of $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and concd HCl $(2.5 \mathrm{~mL}), 3,4$-dihydro-2H-pyran (13) ($10.046 \mathrm{~g}, 0.120 \mathrm{~mol}$) was added at room temperature. After stirring for 40 min , the mixture was neutralized with a saturated aqueous solution of NaHCO_{3} and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic extract was dried over MgSO_{4} and the solvent was evaporated to give a colorless oil of a mixture of tetrahydropyran-2-ol (14) and 5hydroxypentanal (15) $(5.570 \mathrm{~g})$. To the mixture of $\mathbf{1 4}$ and $\mathbf{1 5}$ $(5.570 \mathrm{~g}, 0.055 \mathrm{~mol})$ and 1-nitropropane $(9.730 \mathrm{~g}, 0.109 \mathrm{~mol})$ was added $\mathrm{KOH}(0.616 \mathrm{~g}, 0.011 \mathrm{~mol})$ in $\mathrm{MeOH}(11 \mathrm{~mL})$ dropwise at $0^{\circ} \mathrm{C}$. After stirring overnight at room temperature, the reaction mixture was neutralized by adding 1 M HCl and the organic solvent was removed under reduced pressure. The residue was partitioned between AcOEt and water, and the organic extract was successively washed with a saturated aqueous solution of NaHCO_{3}, brine, and dried over MgSO_{4}. The solvent was evaporated to give the nitro alcohol $\mathbf{1 6}$ $(9.033 \mathrm{~g})$ as a yellow oil. To a mixture of $16(9.033 \mathrm{~g}, 0.047$ $\mathrm{mol})$ and DMAP $(1.160 \mathrm{~g}, 9.5 \mathrm{mmol})$ in THF $(10 \mathrm{~mL}), \mathrm{Ac}_{2} \mathrm{O}$ $(9.8 \mathrm{~mL}, 0.104 \mathrm{~mol})$ was added dropwise at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 3 h , the reaction mixture was quenched by adding MeOH and the solvent was removed under reduced pressure. The residue was partitioned between AcOEt and water and the organic extract was successively washed with a saturated aqueous solution of NaHCO_{3}, brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to give an oil of a mixture of 6 -nitrooctane-1,5-diyl diacetate (17) and 6-nitrooct-5-enyl acetate (18) $(12.285 \mathrm{~g})$. To a solution of t-butyl isocyanoacetate $(3.133 \mathrm{~g}, 22.22 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$, DBU $(7.435 \mathrm{~g}$, 48.914 mmol) was added at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere, followed by dropwise addition of the mixture of $\mathbf{1 7}$ and $\mathbf{1 8}$ $(12.285 \mathrm{~g})$ in THF $(5 \mathrm{~mL}) .{ }^{21}$ After stirring overnight at room temperature, the solvent was removed under reduced pressure and the residue was partitioned between AcOEt and water. The organic extract was successively washed with 1 M HCl , a saturated aqueous solution of NaHCO_{3}, brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was separated by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\mathrm{AcOEt}=6 / 1, \mathrm{v} / \mathrm{v})$ to give $\mathbf{1 9}(4.764 \mathrm{~g}, 26 \%$ yield in 4 steps $)$ as an oil. IR (neat): $3320,2968,2934,2868,2360,2341,1739$, $1684,1566,1552,1505,1457,1406,1367,1317,1246,1140$, 1113, 1083, 1059, 941, 907, 840, 785, $745 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.18(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.54-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~s}$,
$9 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.72(\mathrm{t}, 2 \mathrm{H}, J=$ $7.9 \mathrm{~Hz}), 4.08(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 6.65(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 9.32$ $(\mathrm{s}, 1 \mathrm{H})$. HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+1\right)$, Found: $m / z 310.2018$. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{4}: 310.2038$.
\boldsymbol{t}-Butyl 3-(4-Acetoxybutyl)-4-ethyl-5-iodo-1H-pyrrole-2carboxylate (20). To a solution of compound $19(3.40 \mathrm{~g}$, 11 mmol) in acetone $(50 \mathrm{~mL}), N$-iodosuccinimide $(2.97 \mathrm{~g}$, 13.2 mmol) was added at room temperature under a nitrogen atmosphere. ${ }^{22}$ After stirring for 1 h , the solvent was removed under reduced pressure and the residue was partitioned between AcOEt and water. The organic extract was successively washed with saturated aqueous solutions of $\mathrm{NaHSO}_{3}, \mathrm{NaHCO}_{3}$, brine, and then dried over MgSO_{4}. The solvent was evaporated and the residue was separated by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\left.\mathrm{AcOEt}=7 / 1, \mathrm{v} / \mathrm{v}\right)$ to give $20(4.740 \mathrm{~g}, 99 \%$ yield) as an oil. IR (neat): $3457,3296,2965,2869,1738,1665$, 1557, 1476, 1457, 1402, 1367, 1318, 1242, 1169, 1139, 1109, $1058,948,860,846,779 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.07(\mathrm{t}$, $3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.56-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$, $2.40(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.75(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.09(\mathrm{t}, 2 \mathrm{H}$, $J=6.2 \mathrm{~Hz}), 9.20(\mathrm{~s}, 1 \mathrm{H})$. HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+1\right)$, Found: m / z 436.0985. Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{INO}_{4}: 436.0998$.
\boldsymbol{t}-Butyl 2-Acetoxy-3-(4-acetoxybutyl)-4-ethyl-5-oxo-2,5-dihydro-1H-pyrrole-2-carboxylate (21). A mixed solution $20(4.25 \mathrm{~g}, 9.76 \mathrm{mmol})$ and lead tetraacetate $\left[\mathrm{Pb}(\mathrm{OAc})_{4}, 6.49 \mathrm{~g}\right.$, 14.6 mmol] in toluene (30 mL) was stirred at room temperature for $2 \mathrm{~d} .{ }^{22}$ The reaction mixture was filtered through a pad of Celite and the filtrate was partitioned between AcOEt and water. The organic extract was successively washed with saturated aqueous solutions of $\mathrm{NaHSO}_{3}, \mathrm{NaHCO}_{3}$, brine, and then dried over MgSO_{4}. The solvent was evaporated and the residue was separated by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{AcOEt}=4 / 1, \mathrm{v} / \mathrm{v})$ to give $21(3.405 \mathrm{~g}, 91 \%$ yield) as an oil. IR (neat): $3382,2977,2938,2876,2360,2342,1727$, $1459,1370,1241,1156,1117,1048,841,819,782 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.11(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.45(\mathrm{~s}, 9 \mathrm{H})$, $1.50-1.73(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{q}, 2 \mathrm{H}$, $J=7.5 \mathrm{~Hz}), 2.34-2.49(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 6.77$ $(\mathrm{s}, 1 \mathrm{H})$. HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+1\right)$, Found: m / z 384.2022. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{7}: 384.2038$.
\boldsymbol{t}-Butyl 3-(4-Acetoxybutyl)-4-ethyl-5-oxo-2-tosyl-2,5-di-hydro-1H-pyrrole-2-carboxylate (22). A mixture of compound $21(1.99 \mathrm{~g}, 5.19 \mathrm{mmol})$ and anhydrous $\mathrm{TsNa}(1.938 \mathrm{~g}$, $10.89 \mathrm{mmol})$ in THF (50 mL) was refluxed for 1.5 h under a nitrogen atmosphere. The solvent was removed under reduced pressure and the residue was partitioned between AcOEt and water. The organic extract was washed with brine and then dried over MgSO_{4}. The solvent was evaporated and the residue was separated by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\mathrm{AcOEt}=4 / 1, \mathrm{v} / \mathrm{v})$ to give $22(2.345 \mathrm{~g}, 94 \%$ yield $)$ as an oil. IR (neat): $3580-3200,2978,2940,2880,2360,2340,1728$, $1710,1578,1459,1367,1321,1278,1243,1154,1082,1065$, $840,816,710 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.72(\mathrm{t}, 3 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 1.59(\mathrm{~s}, 9 \mathrm{H}), 1.67-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.35(\mathrm{~m}, 4 \mathrm{H})$, $2.05(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dt}, 1 \mathrm{H}, J=13.4,4.4 \mathrm{~Hz}), 3.02$ (dt, $1 \mathrm{H}, J=13.4,4.4 \mathrm{~Hz}), 4.09-4.16(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H})$, $7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.66(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz})$. HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+1\right)$, Found: $m / z 480.2056$. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34^{-}}$ $\mathrm{NO}_{7} \mathrm{~S}: 480.2074$.

Di-t-butyl 3-(4-Acetoxybutyl)-4-ethyl-5-oxo-2-tosyl-1H-pyrrole-1,2(2H,5H)-dicarboxylate (23). To a mixture of 22 $(17.64 \mathrm{~g}, 42 \mathrm{mmol})$ and di-t-butyl dicarbonate $\left(\mathrm{Boc}_{2} \mathrm{O}, 13.75 \mathrm{~g}\right.$, 63 mol) in MeCN $(100 \mathrm{~mL})$, DMAP $(1.03 \mathrm{~g}, 8.4 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ was added dropwise at $-40^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring for 30 min at room temperature, the solvent was removed under reduced pressure and the residue was partitioned between AcOEt and water. The organic extract was washed with brine and then dried over MgSO_{4}. The solvent was evaporated and the residue was separated by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $\left./ \mathrm{AcOEt}=1 / 1, \mathrm{v} / \mathrm{v}\right)$ to give 23 ($18.78 \mathrm{~g}, 86 \%$ yield) as a white solid. Mp $102-104^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O} /$ hexane). IR (KBr): 2979, 2940, 2880, 1766, 1739, $1647,1597,1464,1369,1314,1285,1254,1232,1214,1154$, 1086, 1043, 1006, 976, 950, 843, 819, 796, 778, 742, 706, $661 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.81(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.48$ $(\mathrm{s}, 18 \mathrm{H}), 1.64-1.78(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.33(\mathrm{~m}, 1 \mathrm{H})$, $2.39-2.66(\mathrm{~m}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}), 7.29$ (d, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}$), $7.65(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz})$. Found: C, 60.03 ; H, $6.98 ; \mathrm{N}, 2.50 \%$. Calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NO}_{9} \mathrm{~S}: \mathrm{C}, 60.08 ; \mathrm{H}, 7.13$; N, 2.42\%.

Di-t-butyl 4-Ethyl-3-(4-hydroxybutyl)-5-oxo-2-tosyl-1 H -pyrrole-1,2(2H,5H)-dicarboxylate (24a) and Di-t-butyl 4-Ethyl-3-(4-hydroxybutyl)-5-oxo-4-tosyl-1 H -pyrrole-1,2-(4H,5H)-dicarboxylate (24b). To compound 23 (18.78 g , $36 \mathrm{mmol})$ was added 0.5 M methanolic $\mathrm{HCl}(229 \mathrm{~mL})$ and the solution was stirred overnight at room temperature. The mixture was neutralized with a saturated aqueous solution of NaHCO_{3} and the solvent was removed under reduced pressure. The residue was partitioned between AcOEt and water and the organic extract was washed with brine and then dried over MgSO_{4}. The solvent was evaporated and the residue was separated by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\mathrm{AcOEt}=4 / 1,3 / 1,2 / 1,1 / 1, \mathrm{v} / \mathrm{v}$) to give a ca. 1:2 mixture of $\mathbf{2 4 a}$ and $\mathbf{2 4 b}$ ($16.08 \mathrm{~g}, 97 \%$ yield) as an oil. Analytical samples of $\mathbf{2 4 a}$ and $\mathbf{2 4 b}$ were obtained by further separation of a part of the mixture by flash column chromatography.

24a: a white soild. $\mathrm{Mp} 87^{\circ} \mathrm{C}$ (from AcOEt). IR (KBr): 3555, 2980, 2942, 2868, 1783, 1729, 1623, 1595, 1460, 1395, 1371, 1321, 1281, 1254, 1226, 1153, 1083, 1013, 960, 847, 815, 795, $764,706,658 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.4$ $\mathrm{Hz}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.55-1.70(\mathrm{~m}, 5 \mathrm{H}), 2.12-2.29$ $(\mathrm{m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.89(\mathrm{~m}, 1 \mathrm{H})$, $3.66-3.76(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.70(\mathrm{~d}, 2 \mathrm{H}$, $J=8.3 \mathrm{~Hz}$). Found: C, $60.39 ; \mathrm{H}, 7.22$; N, 2.66%. Calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{8} \mathrm{~S}: \mathrm{C}, 60.31 ; \mathrm{H}, 7.31$; N, 2.61%.

24b: an oil. IR (neat): 3559, 2980, 2936, 2877, 1791, 1730, $1628,1597,1458,1393,1369,1322,1254,1211,1152,1084$, 1006, 944, 846, 817, 795, 759, 706, $661 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} N M R$ $\left(\mathrm{CDCl}_{3}\right): \delta 0.81(\mathrm{t}, 3 \mathrm{H}, J=7.8 \mathrm{~Hz}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$, $1.61-1.86(\mathrm{~m}, 5 \mathrm{H}), 2.24-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.52$ $(\mathrm{m}, 3 \mathrm{H}), 3.68-3.75(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.66$ $(\mathrm{d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz})$. HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+1\right)$, Found: m / z 538.2469. Calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{NO}_{8} \mathrm{~S}: 538.2474$.

Di- t-butyl 4-Ethyl-3-(4-iodobutyl)-5-oxo-2-tosyl-1H-pyr-role-1,2(2H,5H)-dicarboxylate (25a) and Di-t-butyl 4-Ethyl-3-(4-iodobutyl)-5-oxo-4-tosyl-1H-pyrrole-1,2(4H,5H)-dicarboxylate (25b). To a ca. 1:2 mixture of 24a and $\mathbf{2 4 b}(9.240 \mathrm{~g}$, $20.0 \mathrm{mmol})$ was added $\mathrm{Ph}_{3} \mathrm{P}(6.295 \mathrm{~g}, 24.0 \mathrm{mmol}), \mathrm{I}_{2}(6.096 \mathrm{~g}$,
24.0 mmol), and imidazole $(3.404 \mathrm{~g}, 50.0 \mathrm{mmol})$ in MeCN $(50 \mathrm{~mL})$ at room temperature under a nitrogen atmosphere. After stirring for 1 h , the solvent was removed under reduced pressure and the residue was partitioned between AcOEt and water. The organic extract was successively washed with a saturated aqueous solution of NaHCO_{3} and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was separated by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\mathrm{AcOEt}=4 / 1,3 / 1,2 / 1,1 / 1, \mathrm{v} / \mathrm{v}$) to give a ca. 1:2 mixture of 25a and 25b ($10.195 \mathrm{~g}, 89 \%$ yield) as an oil. Analytical samples of the iodides were obtained by further separation of a part of the mixture by flash column chromatography.

25a: an oil. IR (neat): 2979, 2935, 2877, 2257, 1782, 1748, $1658,1596,1458,1395,1370,1305,1255,1151,1083,1045$, 983, $912,874,817,779,733 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.94$ $(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.60-1.96(\mathrm{~m}$, $4 \mathrm{H}), 2.13-2.84(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz})$, 7.29 (d, 2H, $J=8.3 \mathrm{~Hz}$), $7.70(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz})$. HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+1\right)$, Found: m / z 648.1495. Calcd for $\mathrm{C}_{27} \mathrm{H}_{39^{-}}$ NO_{7} SI: 648.1492.
25b: an oil. IR (neat): 2981, 2938, 2879, 1760, 1742, 1721, $1641,1596,1460,1392,1369,1353,1327,1304,1257,1221$, 1201, 1151, 1080, 1003, 940, 871, 842, 811, 779, 732, $675 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.83(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.47$ $(\mathrm{s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.64-1.95(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.67(\mathrm{~m}, 4 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz})$, $7.65(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz})$. HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+1\right)$, Found: m / z 648.1495. Calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{7} \mathrm{SI}$: 648.1492 .

Di-t-butyl 4-Ethyl-3-(4-nitrobutyl)-5-oxo-2-tosyl-1H-pyr-role-1,2(2H,5H)-dicarboxylate (26a) and Di-t-butyl 4-Ethyl-3-(4-nitrobuty)-5-oxo-4-tosyl-1 H -pyrrole-1,2(4H,5H)-dicarboxylate (26b). To ca. 1:2 mixture of the iodides 25a and 25b ($8.64 \mathrm{~g}, 15 \mathrm{mmol}$), $\mathrm{NaNO}_{2}(2.14 \mathrm{~g}, 31 \mathrm{mmol})$, and phloroglucinol $(2.76 \mathrm{~g}, 17 \mathrm{mmol})$, DMF (100 mL) was added under a nitrogen atmosphere. ${ }^{23}$ After stirring overnight at room temperature, the mixture was partitioned between AcOEt and water. The organic extract was washed with brine and then dried over MgSO_{4}. The solvent was evaporated and the residue was separated by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\mathrm{AcOEt}=4 / 1, \mathrm{v} / \mathrm{v}$) to give a ca. 1:2 mixture of 26a and 26b $(4.64 \mathrm{~g}, 60 \%$ yield) as an oil. Analytical samples of $26 a$ and $\mathbf{2 6 b}$ were obtained by further separation of a part of the mixture by flash column chromatography. Their structures were confirmed by X-ray crystallographic analysis.

26a: a white solid. $\mathrm{Mp} 117-120^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O} /$ hexane). IR $(\mathrm{KBr}): 2980,2937,2878,1785,1748,1658,1596,1552,1460$, 1372, 1332, 1304, 1255, 1149, 1083, 1046, 1028, 941, 873, $820,779,713,655 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.93(\mathrm{t}, 3 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.58-2.29(\mathrm{~m}, 6 \mathrm{H})$, 2.59-2.88(m, 2H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 7.27$ $(\mathrm{d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.70(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}) . \mathrm{HRMS}\left(\mathrm{FAB}^{+}\right)$ $\left(\mathrm{M}^{+}+1\right)$, Found: m / z 567.2368. Calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$: 567.2376. Crystal data: $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$, FW 566.67, orthorhombic, $P c a 2_{1}, a=9.567(2) \AA, b=15.836(3) \AA, c=19.335(3) \AA$, $V=2929.3(9) \AA^{3}, \quad Z=4, \quad D_{\text {calcd }}=1.285 \mathrm{~g} \mathrm{~cm}^{-3}, \quad R=0.044$ ($R_{w}=0.081$) for 6470 reflections with $I>3.00 \sigma(I)$ and 352 variable parameters.

26b: a white solid. $\mathrm{Mp} 98-100^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O} /$ hexane). IR (KBr): 2980, 2938, 2875, 1792, 1760, 1728, 1596, 1551, 1457,
$1368,1321,1252,1210,1151,1085,1005,943,843,817,775$, $705,661 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.78(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $1.47(\mathrm{~s}, 9 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.68-2.16(\mathrm{~m}, 4 \mathrm{H}), 2.21-2.69(\mathrm{~m}$, $4 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 7.31(\mathrm{~d}, 2 \mathrm{H}$, $J=8.2 \mathrm{~Hz}), 7.64(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz})$. Found: C, $57.24 ; \mathrm{H}$, 6.80; N, 4.92%. Calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}: \mathrm{C}, 57.23$; H, 6.76; $\mathrm{N}, 4.94 \%$. Crystal data: $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$, FW 566.67, triclinic, $P \overline{1}, a=16.601(2) \AA, b=18.798(3) \AA, c=21.8398(3) \AA, \alpha=$ $66.44(3)^{\circ}, \quad \beta=71.18(2)^{\circ}, \quad \gamma=84.41(3)^{\circ}, \quad V=5909(1) \AA^{3}$, $Z=8, \quad D_{\text {calcd }}=1.274 \mathrm{~g} \mathrm{~cm}^{-3}, \quad R=0.046 \quad\left(R_{w}=0.066\right)$ for 19815 reflections with $I>3.00 \sigma(I)$ and 1404 variable parameters.

Crystallographic data have been deposited with Cambridge Crystallographic Data Centre: Deposition numbers CCDC789497 and -789498 for compounds 26a and 26b, respectively. Copies of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, U.K.; Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

Di-t-butyl 3-\{3-[4-(2-Allyloxycarbonylethyl)-5-(t-butoxy-carbonyl)-1H-pyrrol-3-yl]propyl\}-4-ethyl-5-oxo-2-tosyl-1H-pyrrole-1,2(2H,5H)-dicarboxylate (29a) and Di-t-butyl 3-\{3-[4-(2-Allyloxycarbonylethyl)-5-(t-butoxycarbonyl)-1 H -pyr-rol-3-yl]propyl\}-4-ethyl-5-oxo-4-tosyl-1H-pyrrole-1,2(4H,5H)dicarboxylate (29b). Step 1: To a ca. 1:2 mixture of 26a and 26b ($625 \mathrm{mg}, 1.245 \mathrm{mmol}$) and allyl 4-oxobutanoate (27) ${ }^{17 \mathrm{c}}$ $(353 \mathrm{mg}, 2.490 \mathrm{~mol}), 0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} \mathrm{NOH}$ in THF $(3.7 \mathrm{~mL}, 0.37$ mmol) was added dropwise at $0^{\circ} \mathrm{C}$. After stirring for 4 h at room temperature, the solvent was removed under reduced pressure and the residue was partitioned between AcOEt and water. The organic layer was successively washed with 1 M HCl , a saturated aqueous solution of NaHCO_{3}, brine, and dried over MgSO_{4}. The solvent was evaporated and the residue was separated by TLC on SiO_{2} (hexane/ $\mathrm{AcOEt}=3 / 1, \mathrm{v} / \mathrm{v}$) to give a mixture of crude nitro alcohols 28a and 28b (600 mg) as an oil.

Step 2: To the mixture of 28a and 28b (total 600 mg , ca. $0.811 \mathrm{mmol})$ and DMAP ($20 \mathrm{mg}, 0.162 \mathrm{mmol}$) was added $\mathrm{Ac}_{2} \mathrm{O}$ ($91 \mathrm{mg}, 0.892 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring for 2 h at room temperature, the reaction mixture was quenched by adding MeOH and the solvent was removed under reduced pressure. The residue was partitioned between AcOEt and water, and the organic extract was successively washed with a saturated aqueous solution of NaHCO_{3}, brine, and dried over MgSO_{4}. The solvent was evaporated and the product was separated by TLC on SiO_{2} (hexane $/ \mathrm{AcOEt}=2 / 1, \mathrm{v} / \mathrm{v}$) to give a mixture of acetates of 28a and its isomer 28b and the corresponding nitro olefins $(570 \mathrm{mg})$ as an oil.

Step 3: To a solution of t-butyl isocyanoacetate (321 mg , $2.280 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$ under a nitrogen atmosphere, DBU ($578 \mathrm{mg}, 3.8 \mathrm{mmol}$) was added, followed by dropwise addition of the mixture of nitro acetates and the corresponding nitro olefins obtained above (total 570 mg) in THF $(2 \mathrm{~mL}) .{ }^{21}$ After stirring overnight at room temperature, the solvent was removed under reduced pressure and the residue was partitioned between AcOEt and water. The organic extract was successively washed with saturated aqueous solutions of
$\mathrm{NaHSO}_{3}, \mathrm{NaHCO}_{3}$, brine, and then dried over MgSO_{4}. The solvent was evaporated and the residue was separated by TLC on SiO_{2} (hexane $/ \mathrm{AcOEt}=2 / 1, \mathrm{v} / \mathrm{v}$) to give a ca. $1: 2$ mixture of $\mathbf{2 9 a}$ and $\mathbf{2 9 b}(268 \mathrm{mg})$ as an oil. Total yield over these 3 steps was 28%.

In a similar manner, 2-tosyl isomer 29a was prepared from the isolated 26a: The nitro compound 26a ($200 \mathrm{mg}, 0.398$ mmol), allyl 4-oxobutanoate (27) (113 mg, 0.796 mmol), and $0.1 \mathrm{M}{ }^{n} \mathrm{Bu}_{4} \mathrm{NOH}$ in THF $(1.2 \mathrm{~mL}, 0.12 \mathrm{mmol})$ gave nitro alcohol 28a ($195 \mathrm{mg}, 0.264 \mathrm{mmol}$) in Step 1. The nitro alcohol 28a ($50 \mathrm{mg}, 0.068 \mathrm{mmol}$), DMAP ($2 \mathrm{mg}, 0.014 \mathrm{mmol}$), and $\mathrm{Ac}_{2} \mathrm{O}(91 \mathrm{mg}, 0.892 \mathrm{mmol})$ afforded a mixture of the acetate of 28a and the corresponding nitro olefin (total 27 mg) in Step 2. The mixture of the nitro acetate and the corresponding nitro olefin (total 27 mg), t-butyl isocyanoacetate $(15 \mathrm{mg}, 0.108$ mmol), and DBU ($27 \mathrm{mg}, 0.036 \mathrm{mmol}$) afforded 29a $(23 \mathrm{mg}$, 0.028 mmol) in Step 3. Total yield over these 3 steps was 27%.

Furthermore, the isomer 29b was prepared from the isolated 26b: The nitro compound 26b ($200 \mathrm{mg}, 0.398 \mathrm{mmol}$), allyl 4oxobutanoate (27) (113 mg, 0.796 mmol$)$, and $0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} \mathrm{NOH}$ in THF ($1.2 \mathrm{~mL}, 0.12 \mathrm{mmol}$) gave $\mathbf{2 8 b}(187 \mathrm{mg}, 0.253 \mathrm{mmol})$ in Step 1. The nitro alcohol 28b ($76 \mathrm{mg}, 0.103 \mathrm{mmol}$), DMAP $(2 \mathrm{mg}, 0.014 \mathrm{mmol})$, and $\mathrm{Ac}_{2} \mathrm{O}(12 \mathrm{mg}, 0.113 \mathrm{mmol})$ afforded a mixture of the acetate of $\mathbf{2 8 b}$ and the corresponding nitro olefin (total 62 mg) in Step 2. The mixture of the nitro acetate and the corresponding nitro olefin (total 62 mg), t-butyl isocyanoacetate $(35 \mathrm{mg}, 0.250 \mathrm{mmol})$, and $\mathrm{DBU}(63 \mathrm{mg}, 0.420 \mathrm{mmol})$ produced 29b ($51 \mathrm{mg}, 0.063 \mathrm{mmol}$) in Step 3. Total yield over these 3 steps was 42%.

29a: an oil. IR (neat): $3378,3318,2979,2936,1791,1733$, $1689,1597,1565,1456,1402,1369,1324,1281,1254,1213$, $1153,1086,1058,1001,941,843,816,757,706,662 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.51$ $(\mathrm{s}, 9 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.70-1.81(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.20(\mathrm{~m}, 2 \mathrm{H})$, $2.34-2.66(\mathrm{~m}, 5 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.86(\mathrm{~m}, 1 \mathrm{H}), 3.00$ $(\mathrm{d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.56(\mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.8 \mathrm{~Hz}), 5.28(\mathrm{~d}, 1 \mathrm{H}, J=17.2 \mathrm{~Hz}), 5.91(\mathrm{ddt}, 1 \mathrm{H}, J=17.2$, $10.8,5.5 \mathrm{~Hz}), 6.67(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.3$ $\mathrm{Hz}), 7.68(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 8.92(\mathrm{brs}, 1 \mathrm{H}) . \operatorname{HRMS}\left(\mathrm{FAB}^{+}\right)$ $\left(\mathrm{M}^{+}+1\right)$, Found: m / z 785.3684. Calcd for $\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{~S}$: 785.3684.

29b: an oil. IR (neat): 3378, 3318, 2979, 2936, 1791, 1733, $1689,1597,1565,1456,1402,1369,1324,1281,1254,1213$, $1153,1086,1058,1001,941,843,816,757,706,662 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.80(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.45$ $(\mathrm{s}, 9 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.78-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.28(\mathrm{~m}, 1 \mathrm{H})$, $2.36-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.66(\mathrm{~m}, 6 \mathrm{H}), 3.02$ $(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.59(\mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 5.22(\mathrm{~d}, 1 \mathrm{H}$, $J=10.1 \mathrm{~Hz}), 5.30(\mathrm{~d}, 1 \mathrm{H}, J=17.4 \mathrm{~Hz}), 5.89(\mathrm{ddt}, 1 \mathrm{H}, J=$ $17.4,10.1,5.5 \mathrm{~Hz}), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.3 \mathrm{~Hz}), 7.65(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 8.89$ (brs, 1 H$).\left(\mathrm{FAB}^{+}\right)$ $\left(\mathrm{M}^{+}+1\right)$, Found: m / z 785.3684. Calcd for $\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{~S}$: 785.3684.

Di-t-butyl 3-\{3-[4-(2-Allyloxycarbonylethyl)-5-(t-butoxy-carbonyl)-2-formyl-1H-pyrrol-3-yl]propyl\}-4-ethyl-5-oxo-2-tosyl-1H-pyrrole-1,2(2H,5H)-dicarboxylate (8a) and Di-tbutyl 3-\{3-[4-(2-Allyloxycarbonylethyl)-5-(t-butoxycarbon-yl)-2-formyl-1H-pyrrol-3-yl]propyl\}-4-ethyl-5-oxo-4-tosyl-1H-pyrrole-1,2(4H,5H)-dicarboxylate (8b). To DMF
$(30 \mathrm{~mL})$ was added $\mathrm{POCl}_{3}(781 \mathrm{mg}, 5.094 \mathrm{mmol})$ dropwise at room temperature and the mixture was stirred for 30 min under a nitrogen atmosphere. ${ }^{24}$ A solution of a ca. $1: 2$ mixture of $\mathbf{2 9 a}$ and 29b $(2.560 \mathrm{~g}, 3.208 \mathrm{mmol})$ in DMF $(2 \mathrm{~mL})$ was then added dropwise at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ and then for 2 h at $65^{\circ} \mathrm{C}$. The reaction mixture was quenched by addition of a 10% aqueous NaOAc solution $(52 \mathrm{~mL})$ with stirring for 2 h at $65^{\circ} \mathrm{C}$. The mixture was partitioned between AcOEt and water, and the organic extract was washed with brine, and then dried over MgSO_{4}. The solvent was evaporated and the residue was separated by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $\left./ \mathrm{AcOEt}=3 / 1, \mathrm{v} / \mathrm{v}\right)$ to give a ca. $1: 2$ mixture of aldehydes $\mathbf{8 a}$ and $\mathbf{8 b}(1.780 \mathrm{~g}, 67 \%$ yield) as an oil.

In a similar manner, the reaction of $\mathbf{2 9 a}(150 \mathrm{mg}, 0.188$ mmol) with $\mathrm{POCl}_{3}(46 \mathrm{mg}, 0.301 \mathrm{mmol})$ and DMF (total 1.8 mL) gave $\mathbf{8 a}(110 \mathrm{mg}, 71 \%$ yield). Furthermore, the reaction of $\mathbf{2 9 b}(150 \mathrm{mg}, 0.188 \mathrm{mmol})$ with $\mathrm{POCl}_{3}(46 \mathrm{mg}$, 0.301 mmol) and DMF (total 1.8 mL) gave $\mathbf{8 b}(127 \mathrm{mg}, 82 \%$ yield).

8a: a white solid. Mp $59^{\circ} \mathrm{C}$ (from AcOEt). IR (KBr): 3299, $2979,2937,1783,1746,1668,1596,1550,1460,1393,1370$, $1303,1256,1153,1082,1046,989,932,843,816,783,710$, $665 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}\right): \delta 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.44$ $(\mathrm{s}, 9 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H}), 1.75-1.95(\mathrm{~m}, 2 \mathrm{H}), 2.09-$ $2.23(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.89(\mathrm{~m}, 6 \mathrm{H}), 3.01(\mathrm{t}, 2 \mathrm{H}$, $J=8.2 \mathrm{~Hz}), 4.55(\mathrm{~d}, 2 \mathrm{H}, \quad J=6.0 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}, \quad J=$ $10.8 \mathrm{~Hz}), 5.27(\mathrm{~d}, 1 \mathrm{H}, J=17.6 \mathrm{~Hz}), 5.87(\mathrm{ddt}, 1 \mathrm{H}, J=17.6$, $10.8,6.0 \mathrm{~Hz}), 7.26(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.70(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.2 \mathrm{~Hz}), 9.51$ (brs, 1 H$), 9.76(\mathrm{~s}, 1 \mathrm{H}) . \operatorname{HRMS}\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+1\right)$, Found: m / z 813.3623. Calcd for $\mathrm{C}_{42} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}: 813.3633$.
$\mathbf{8 b}$: a white solid. $\mathrm{Mp} 60^{\circ} \mathrm{C}$ (from AcOEt). IR (KBr): 3309, 2979, 2937, 1790, 1737, 1663, 1597, 1550, 1459, 1370, 1324, 1255, 1208, 1152, 1086, 1051, 999, 930, 844, 816, 706, $661 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.76(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.43$ $(\mathrm{s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H}), 1.80-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.22-$ $2.66(\mathrm{~m}, 6 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.03(\mathrm{t}, 2 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), 4.56(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 5.19(\mathrm{~d}, 1 \mathrm{H}, J=10.0$ $\mathrm{Hz}), 5.27(\mathrm{~d}, 1 \mathrm{H}, J=17.2 \mathrm{~Hz}), 5.87(\mathrm{ddt}, 1 \mathrm{H}, J=17.2,10.0$, $6.0 \mathrm{~Hz}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.63(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz})$, 9.48 (brs, 1H), $9.80(\mathrm{~s}, 1 \mathrm{H}) . \operatorname{HRMS}\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+1\right)$, Found: m / z 813.3627. Calcd for $\mathrm{C}_{42} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}$: 813.3633.

1-(2-Allyloxycarbonylethyl)-7-ethyl-6-0xo-3,5,6,8,9,10-hexahydro-3,5-diazadicyclopenta[a,d]cyclooctene-2-carboxylic Acid (31). A ca. $1: 2$ mixture of $\mathbf{8 a}$ and $\mathbf{8 b}(1.780 \mathrm{~g}$, 2.160 mmol) was dissolved in 99% formic acid $(10.8 \mathrm{~mL})$ at $10^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring for 5 h at room temperature, the solvent was removed under reduced pressure and the residue was partitioned between AcOEt and water and the organic extract was washed with brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The evaporation of the solvent gave a crude mixture of dicarboxylic acid $\mathbf{3 0 a}$ and its isomer $\mathbf{3 0 b}(900 \mathrm{mg})$, which was dried under vacuum over solid NaOH overnight and used for the next reaction without further purification. To the mixed solution of the carboxylic acids $(900 \mathrm{mg})$ obtained above in THF/DMF (2/1, v/v, 27 mL) was added ${ }^{n} \mathrm{Bu}_{3} \mathrm{P}(693 \mathrm{mg}$, 3.425 mmol) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere, followed by dropwise addition of $\mathrm{DBU}(626 \mathrm{mg}, 4.112 \mathrm{mmol}) .{ }^{13,25}$ After stirring overnight at room temperature, the solvent was
removed under reduced pressure and the residue was dissolved in AcOEt. The organic solution was treated with a saturated aqueous solution of NaHCO_{3} to convert the resulting carboxylic acid to the corresponding sodium salt and the organic phase was discarded. The aqueous solution was acidified to pH 3 by adding 1 M HCl and the precipitated solid carboxylic acid was filtered off and dried under vacuum to give 31 ($410 \mathrm{mg}, 49 \%$ yield in 2 steps) as a yellow solid. It was used for the next step without further purification.

In a similar manner, $\mathbf{8 a}(60 \mathrm{mg}, 0.073 \mathrm{mmol})$ was converted to 2-tosyl isomer of the carboxylic acid $\mathbf{3 0 a}(40 \mathrm{mg})$. The crude acid $\mathbf{3 0 a}(58 \mathrm{mg})$ was treated with ${ }^{n} \mathrm{Bu}_{3} \mathrm{P}(45 \mathrm{mg}, 0.222 \mathrm{mmol})$ and DBU ($41 \mathrm{mg}, 0.269 \mathrm{mmol}$) to give $31(19 \mathrm{mg}, 46 \%$ yield in 2 steps). Furthermore, $\mathbf{8 b}(40 \mathrm{mg}, 0.049 \mathrm{mmol})$ was converted to 30b $(39 \mathrm{mg})$, which was treated with ${ }^{n} \mathrm{Bu}_{3} \mathrm{P}$ (25 mg , 0.125 mmol) and DBU ($23 \mathrm{mg}, 0.151 \mathrm{mmol}$) to give 31 ($11 \mathrm{mg}, 60 \%$ yield in 2 steps). Mp $171-175^{\circ} \mathrm{C}$ (from THF/ hexane). IR (KBr): 3255, 2970, 2935, 2876, 2583, 1677, 1557, $1463,1371,1262,1179,1154,1092,1057,988,935,844,820$, $784 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3} / \mathrm{THF}-d_{8}\right): \delta 1.10(\mathrm{t}, 3 \mathrm{H}, J=7.3$ $\mathrm{Hz}), 1.93-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.36-2.38$ (m, 2H), 2.45-2.53 (m, 2H), 2.59 (t, 2H, $J=8.2 \mathrm{~Hz}$), 3.05 (t, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.53(\mathrm{~d}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.9 \mathrm{~Hz}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=17.4 \mathrm{~Hz}), 5.90(\mathrm{ddt}, 1 \mathrm{H}, J=17.4,9.9$, $5.4 \mathrm{~Hz}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H}), 10.65(\mathrm{~s}, 1 \mathrm{H})$. HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+1\right)$, Found: m / z 385.1759. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}$: 385.1764 .

Allyl 1-(7-Ethyl-2-formyl-6-oxo-3,5,6,8,9,10-hexahydro-3,5-diazadicyclopenta $[a, d]$ cycloocten-1-yl)propanoate (6). To a solution of $\mathbf{3 1}(110 \mathrm{mg}, 0.3 \mathrm{mmol})$ in TFA (3 mL) was added $(\mathrm{MeO})_{3} \mathrm{CH}(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere and allowed to stir for 25 min at $0^{\circ} \mathrm{C}$ and for 20 min at room temperature. The reaction mixture was quenched with water and extracted with AcOEt. The organic layer was successively washed with a saturated aqueous solution of NaHCO_{3}, brine, and dried over MgSO_{4}. The solvent was evaporated and the residue was separated by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{AcOEt}=2 / 1, \mathrm{v} / \mathrm{v})$ to give $6(67 \mathrm{mg})$ in 63% yield as a yellow solid. Mp $128-130^{\circ} \mathrm{C}$ (from AcOEt/hexane). IR (KBr): $3605,3565,3005,2967,2925,1714,1645,1421,1362,1223$, 1092, 903, $785 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.13(\mathrm{t}, 3 \mathrm{H}, J=$ 7.6 Hz), 1.94 (quint, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}$), 2.36-2.42 (m, 4H), 2.51 $(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.64(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.08(\mathrm{t}, 2 \mathrm{H}$, $J=7.7 \mathrm{~Hz}), 4.57(\mathrm{~d}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}), 5.23(\mathrm{dd}, 1 \mathrm{H}, J=10.5$, $1.5 \mathrm{~Hz}), 5.28(\mathrm{dd}, 1 \mathrm{H}, J=17.3,1.5 \mathrm{~Hz}), 5.88(\mathrm{ddt}, 1 \mathrm{H}$, $J=17.3,10.5,5.9 \mathrm{~Hz}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 8.31$ (brs, 1H), 9.63 (s, 1H), 9.98 (brs, 1H). Found: C, 68.39 ; H, 6.52; N, 7.49%. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 68.46 ; \mathrm{H}, 6.57 ; \mathrm{N}, 7.60 \%$.

Allyl 3-\{2-[1-(2-Allyloxycarbonylethyl)-7-ethyl-6-oxo-3,5,6,8,9,10-hexahydro-3,5-diazadicyclopenta $[a, d]$ cycloocten-2-ylmethylene]-4-methyl-5-(4-methyl-5-oxo-3-vinyl-2,5-di-hydro-1H-pyrrol-2-ylidenemethyl)-2H-pyrrol-3-yl\}propanoate (32). To a mixed solution of $6(15 \mathrm{mg}, 0.041 \mathrm{mmol})$ and (Z)-allyl 3-\{4-methyl-5-[4-methyl-5-oxo-3-vinyl-1 H -pyrrol$2(5 \mathrm{H})$-ylidenemethyl]-1 H -pyrrol-3-yl $\}$ propanoate (7) ${ }^{14}$ (13 mg , $0.041 \mathrm{mmol})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL})$, a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}(8 \mathrm{mg}$, 0.082 mmol) in $\mathrm{MeOH}(0.6 \mathrm{~mL})$ was added dropwise at room temperature under a nitrogen atmosphere. After stirring for 1 h , the reaction mixture was quenched with a phosphate buffer
solution (pH 7.0) and extracted with AcOEt. The organic layer was washed with brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the blue residue was separated by thin layer chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{CHCl}_{3} / \mathrm{MeOH}=$ $7 / 4 / 0.5, \mathrm{v} / \mathrm{v} / \mathrm{v}$) to afford 32 in $71 \%(20 \mathrm{mg})$ yield as a blue solid. Mp 173-175 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane). IR (KBr): 3345, 2927, 1734, 1685, 1586, 1456, 1257, 1160, 1099, 953, 931, $874,850 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.04(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz})$, $1.92-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{q}, 2 \mathrm{H}$, $J=7.4 \mathrm{~Hz}), 2.32-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.48$ (brt, $2 \mathrm{H}, J=5.9 \mathrm{~Hz}$), $2.58(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.59(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.95(\mathrm{t}, 2 \mathrm{H}$, $J=7.8 \mathrm{~Hz}), 2.97(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.55-4.59(\mathrm{~m}, 4 \mathrm{H}), 5.21$ (d, $2 \mathrm{H}, J=10.2 \mathrm{~Hz}), 5.28(\mathrm{~d}, 2 \mathrm{H}, J=17.3 \mathrm{~Hz}), 5.67(\mathrm{~d}, 1 \mathrm{H}$, $J=11.7 \mathrm{~Hz}), 5.70(\mathrm{~d}, 1 \mathrm{H}, J=17.8 \mathrm{~Hz}), 5.84-5.94(\mathrm{~m}, 2 \mathrm{H})$, $6.11(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{dd}, 1 \mathrm{H}, J=17.8,11.7 \mathrm{~Hz})$, $6.86(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{brs}, 1 \mathrm{H})$. Two $\mathrm{N} H$ protons were not observed clearly. Found: C, 70.95 ; H, 6.49 ; N, 8.22%. Calcd for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{6}$: C, $70.99 ; \mathrm{H}, 6.55$; N, 8.28%.

3-\{2-[1-(2-Carboxyethyl)-7-ethyl-6-oxo-3,5,6,8,9,10-hexa-hydro-3,5-diazadicyclopenta $[a, d]$ cycloocten-2-ylmethylene]-4-methyl-5-(4-methyl-5-oxo-3-vinyl-2,5-dihydro-1 H -pyrrol-2-ylidenemethyl)-2H-pyrrol-3-yl\}propanoic Acid (3). To a mixed solution $32(20 \mathrm{mg}, 0.0296 \mathrm{mmol})$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ ($7 \mathrm{mg}, 0.0059 \mathrm{mmol}$) in THF $(0.7 \mathrm{~mL})$, a solution of TsNa $(10 \mathrm{mg}, 0.059 \mathrm{mmol})$ in $\mathrm{MeOH}(0.7 \mathrm{~mL})$ was added under a nitrogen atmosphere at room temperature. After stirring for 10 min , the solvent was evaporated and the residue was separated by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} /\right.$ $\mathrm{MeOH} / \mathrm{AcOH}=200 / 15 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}$). The blue fraction was evaporated and the resulting solid residue was recrystallized from $\mathrm{CHCl}_{3} /$ hexane. Free acid 3: a blue solid, $12 \mathrm{mg}, 70 \%$ yield. $\mathrm{Mp} 260^{\circ} \mathrm{C}$ (decomp.). IR (KBr): 3400, 3232, 2968, 2933, 1702, 1601, 1458, 1416, 1292, 1094, 954, 890, 839 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): \delta 1.17(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.88-1.96$ $(\mathrm{m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz})$, $2.44(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.53(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}), 2.88(\mathrm{t}, 4 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 3.20(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 3.21(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz})$, $5.60(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 5.74(\mathrm{~d}, 1 \mathrm{H}, J=17.8 \mathrm{~Hz}), 6.27$ $(\mathrm{s}, 1 \mathrm{H}), 6.72(\mathrm{dd}, 1 \mathrm{H}, J=17.8,11.7 \mathrm{~Hz}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 7.59$ $(\mathrm{s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 11.76(\mathrm{~s}, 1 \mathrm{H})$. Two $\mathrm{CO}_{2} H$ protons and one NH proton were not observed clearly. UV-vis (MeOH) $\lambda_{\text {max }} 381(\varepsilon=40533), 630(\varepsilon=29260) \mathrm{nm}$. HRMS $\left(\mathrm{FAB}^{+}\right)$ $\left(\mathrm{M}^{+}+1\right)$, Found: m / z 597.2741. Calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{6}$: 597.2713.

Allyl 3-\{2-[3-(2-Allyloxycarbonylethyl)-5-(3-ethylidene-4-methyl-5-oxopyrrolidin-2-ylidenemethyl)-4-methylpyrrol-2-ylidenemethyl]-7-ethyl-6-oxo-3,5,6,8,9,10-hexahydro-3,5-diazadicyclopenta $[a, d]$ cycloocten-1-yl\}propanoate (33). To $\mathbf{1 1}(13 \mathrm{mg}, 0.029 \mathrm{mmol})$ and $\mathbf{6}(9 \mathrm{mg}, 0.024 \mathrm{mmol})$ was added TFA $(0.36 \mathrm{~mL})$ at room temperature under a nitrogen atmosphere. After stirring for $20 \mathrm{~min}, \mathrm{MeOH}(0.72 \mathrm{~mL})$ was added and the reaction mixture was stirred for 1.5 h . The reaction mixture was quenched by adding a phosphate buffer solution (pH 7.0) and extracted with AcOEt. The organic layer was washed with brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the blue residue was separated by TLC on $\mathrm{SiO}_{2}\left(\mathrm{CHCl}_{3} / \mathrm{AcOEt} / \mathrm{EtOH}=60 / 8 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}\right)$ to afford $33(11 \mathrm{mg}, 0.016 \mathrm{mmol})$ in 67% yield as a blue solid. Mp $73-75^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane). IR (KBr): 3243, 2931, 2855,
$1733,1681,1590,1453,1412,1376,1338,1319,1256,1212$, 1155, 1091, 1052, 987, 957, 934, 895, 835, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.11(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.43(\mathrm{~d}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $1.92(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.94-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$, $2.35-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.50(\mathrm{t}, 2 \mathrm{H}$, $J=6.3 \mathrm{~Hz}), 2.58(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.59(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $2.92(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.96(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.25(\mathrm{q}, 1 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), 4.56-4.58(\mathrm{~m}, 4 \mathrm{H}), 5.20(\mathrm{dd}, 1 \mathrm{H}, J=10.5$, $1.5 \mathrm{~Hz}), 5.21(\mathrm{dd}, 1 \mathrm{H}, J=10.5,1.5 \mathrm{~Hz}), 5.27(\mathrm{dd}, 1 \mathrm{H}, J=$ $17.1,1.5 \mathrm{~Hz}), 5.29(\mathrm{dd}, 1 \mathrm{H}, J=17.1,1.5 \mathrm{~Hz}), 5.84(\mathrm{~s}, 1 \mathrm{H})$, 5.89 (ddt, $2 \mathrm{H}, J=17.1,10.5,5.9 \mathrm{~Hz}), 6.40(\mathrm{q}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz})$, $6.45(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 9.56(\mathrm{brs}, 1 \mathrm{H})$. Two NH protons were not observed clearly. HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+1\right)$, Found: m / z 679.3485. Calcd for $\mathrm{C}_{40} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{6}$: 679.3496 .

3-\{2-[3-(2-Carboxyethyl)-5-(3-ethylidene-4-methyl-5-oxo-pyrrolidin-2-ylidenemethyl)-4-methylpyrrol-2-ylidenemeth-yl]-7-ethyl-6-0xo-3,5,6,8,9,10-hexahydro-3,5-diazadicyclopenta $[a, d]$ cycloocten-1-yl\}propanoic Acid (2). To a mixed solution of $33(10 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](3 \mathrm{mg}$, 0.003 mmol) in THF $(0.4 \mathrm{~mL})$, a solution of $\mathrm{TsNa}(5 \mathrm{mg}$, $0.030 \mathrm{mmol})$ in $\mathrm{MeOH}(0.4 \mathrm{~mL})$ was added under a nitrogen atmosphere at room temperature. After stirring for 10 min , thiourea $(0.9 \mathrm{mg}, 0.012 \mathrm{mmol})$ was added. The solution was directly separated by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH}=250 / 15 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}$). The blue fraction was evaporated and the resulting solid residue was recrystallized from $\mathrm{CHCl}_{3} /$ hexane. Free acid 2: a blue solid, 12 mg , in quantitative yield. $\mathrm{Mp} 175-178{ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3} /$ hexane). IR (KBr): 3434, 2934, 2861, 1668, 1600, 1543, 1455, 1440, 1412, 1375, 1335, 1247, 1222, 1178, 1151, 1104, 1051, 969, 895, 848, 806, 745, 700, $667 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): \delta 1.16(\mathrm{t}, 3 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), 1.32(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.69(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$, 1.93-1.99 (m, 2H), 2.13 (s, 3H), 2.34-2.40 (m, 2H), 2.45 (q, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.55-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.95(\mathrm{~m}, 4 \mathrm{H}), 3.18-$ $3.28(\mathrm{~m}, 5 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{q}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.00(\mathrm{~s}$, $1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H})$. Two NH protons and two $\mathrm{CO}_{2} \mathrm{H}$ were not observed clearly. UV-vis (MeOH) $\lambda_{\max } 382(\varepsilon=$ 24613), $679(\varepsilon=39057) \mathrm{nm}$. HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+1\right)$, Found: m / z 599.2868. Calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{6}$: 599.2870.

The present work was financially supported in part by Grant-in-Aid for Scientific Research (B) (No. 15350021) from Japan Society for the Promotion of Science (JSPS).

References

1 H. A. Borthwick, S. B. Hendricks, M. W. Parker, E. H. Toole, V. K. Toole, Proc. Natl. Acad. Sci. U.S.A. 1952, 38, 662; W. L. Butler, K. H. Norris, H. W. Siegelman, S. B. Hendricks, Proc. Natl. Acad. Sci. U.S.A. 1959, 45, 1703.

2 K. C. Yeh, S. H. Wu, J. T. Murphy, J. C. Lagarias, Science 1997, 277, 1505; T. Lamparter, F. Mittmann, W. Gärtner, T. Börner, E. Hartmann, J. Hughes, Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 11792; S. J. Davis, A. V. Vener, R. D. Vierstra, Science 1999, 286, 2517.

3 S. H. Bhoo, S. J. Davis, J. Walker, B. Karniol, R. D. Vierstra, Nature 2001, 414, 776.

4 C. Starostzik, W. Marwan, FEBS Lett. 1995, 370, 146.
5 J. C. Lagarias, H. Rapoport, J. Am. Chem. Soc. 1980, 102, 4821; H. Falk, The Chemistry of Linear Oligopyrroles and Bile

Pigments, Springer Verlag, New York, 1989; W. Rüdiger, F. Thümmler, Angew. Chem., Int. Ed. Engl. 1991, 30, 1216; M. Furuya, P.-S. Song, in Assembly and Properties of Holophytochrome in Photomorphogenesis in Plants, 2nd ed., ed. by R. E. Kendrick, G. H. M. Kronenberg, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, Chap. 4.3, pp. 105-140; M. Stanek, K. Grubmayr, Chem.-Eur. J. 1998, 4, 1653; M. Stanek, K. Grubmayr, Chem.-Eur. J. 1998, 4, 1660; T. Lamparter, FEBS Lett. 2004, 573, 1; N. C. Rockwell, J. C. Lagarias, Plant Cell 2006, 18, 4; N. C. Rockwell, Y.-S. Su, J. C. Lagarias, Annu. Rev. Plant Biol. 2006, 57, 837.

6 W. Rüdiger, F. Thümmler, in Photomorphogenesis in Plants, 2nd ed., ed. by R. E. Kendrick, G. H. M. Kronenberg, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.

7 a) N. Frankenberg, K. Mukougawa, T. Kohchi, J. C. Lagarias, Plant Cell 2001, 13, 965. b) T. Hübschmann, T. Börner, E. Hartmann, T. Lamparter, Eur. J. Biochem. 2001, 268, 2055.

8 S. H. Wu, M. T. McDowell, J. C. Lagarias, J. Biol. Chem. 1997, 272, 25700.

9 A. Blumenstein, K. Vienken, R. Tasler, J. Purschwitz, D. Veith, N. Frankenberg-Dinkel, R. Fischer, Curr. Biol. 2005, 15, 1833; I. Oberpichler, I. Molina, O. Neubauer, T. Lamparter, FEBS Lett. 2006, 580, 437.

10 T. Lamparter, N. Michael, O. Caspani, T. Miyata, K. Shirai, K. Inomata, J. Biol. Chem. 2003, 278, 33786.

11 J. R. Wagner, J. S. Brunzelle, K. T. Forest, R. D. Vierstra, Nature 2005, 438, 325; J. R. Wagner, J. Zhang, J. S. Brunzelle, R. D. Vierstra, K. T. Forest, J. Biol. Chem. 2007, 282, 12298; X. Yang, E. A. Stojković, J. Kuk, K. Moffat, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 12571; X. Yang, J. Kuk, K. Moffat, Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 14715; X. Yang, J. Kuk, K. Moffat, Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 15639.
12 W. Rüdiger, F. Thümmler, E. Cmiel, S. Schneider, Proc. Natl. Acad. Sci. U.S.A. 1983, 80, 6244.
13 K. Inomata, Bull. Chem. Soc. Jpn. 2008, 81, 25, and references cited therein.

14 M. A. S. Hammam, H. Nakamura, Y. Hirata, H. Khawn, Y. Murata, H. Kinoshita, K. Inomata, Bull. Chem. Soc. Jpn. 2006, 79, 1561.

15 Preliminary communication of the synthesis of $15 E$-anti BV derivative: H. Kinoshita, M. A. S. Hammam, K. Inomata, Chem. Lett. 2005, 34, 800.

16 K. Inomata, M. A. S. Hammam, H. Kinoshita, Y. Murata, H. Khawn, S. Noack, N. Michael, T. Lamparter, J. Biol. Chem. 2005, 280, 24491; K. Inomata, S. Noack, M. A. S. Hammam, H. Khawn, H. Kinoshita, Y. Murata, N. Michael, P. Scheerer, N. Krauss, T. Lamparter, J. Biol. Chem. 2006, 281, 28162.

17 a) H. Khawn, L.-Y. Chen, H. Kinoshita, K. Inomata, Chem. Lett. 2008, 37, 198. b) K. Inomata, H. Khawn, L.-Y. Chen, H. Kinoshita, B. Zienicke, I. Molina, T. Lamparter, Biochemistry 2009, 48, 2817. c) L.-Y. Chen, H. Kinoshita, K. Inomata, Chem. Lett. 2009, 38, 602. d) P. Scheerer, N. Michael, J. H. Park, S. Nagano, H.-W. Choe, K. Inomata, B. Borucki, N. Krauß, T. Lamparter, ChemPhysChem 2010, 11, 1090.

18 A. T. Ulijasz, G. Cornilescu, C. C. Cornilescu, J. Zhang, M. Rivera, J. L. Markley, R. D. Vierstra, Nature 2010, 463, 250.

19 E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1345.

20 In the B- and C-rings of the obtained PCB derivative, two tautomeric forms such as $\mathbf{1 2}$ and $\mathbf{1 2}^{\prime}$ are possible. In this manuscript, one of the tautomeric forms is shown in the schemes including the case of BV derivative.

21 D. H. R. Barton, J. Kervagoret, S. Z. Zard, Tetrahedron 1990, 46, 7587.

22 K. P. Jayasundera, H. Kinoshita, K. Inomata, Bull. Chem. Soc. Jpn. 2000, 73, 497.

23 N. Kornblum, J. Powers, J. Org. Chem. 1957, 22, 455.
24 R. M. Silverstein, E. E. Ryskiewicz, C. Willard, Org. Synth., Coll. Vol. 1963, IV, 831.
25 H. Kinoshita, H. Ngwe, K. Kobori, K. Inomata, Chem. Lett. 1993, 1441; K. Kohori, M. Hashimoto, H. Kinoshita, K. Inomata, Bull. Chem. Soc. Jpn. 1994, 67, 3088.

26 K. P. Jayasundera, H. Kinoshita, K. Inomata, Chem. Lett. 1998, 1227.

