New records of Megaselia (Diptera: Phoridae) reared from fungus sporophores in Japan, including five new species

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00010702

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

1 2	1	New records of Megaselia (Diptera: Phoridae) reared from fungus
3 4	2	sporophores in Japan, including five new species
5 6 7	3	
7 8 9	4	R. Henry L. DISNEY ¹ , Masayuki NITTA ² , MIO KOBAYASHI ² , and Nobuko
10 11	5	TUNO ²
12 13 14	6	
15 16	7	¹ Department of Zoology, University of Cambridge, Downing Street, Cambridge,
17 18 19	8	CB2 e3EJ, U.K. E-mail: rhld2@hermes.cam.ac.uk
20 21	9	² Graduate School of Natural Science and Technology, Kanazawa University,
22 23 24	10	Shizenken 1B214, Kakuma South Campus, Ishikawa 920-1192, Japan. E-mail:
25 26	11	tuno@staff.kanazawa-u.ac.jp
27 28	12	
29 30	13	Abstract
31 32	14	Megaselia donaldsonae Disney sp. nov., M. flava (Fallén), M. gotoi Disney, M.
33 34 35	15	kanekoi Disney, M. margaretae Disney sp. nov., M. nakayamai Disney sp. nov.,
36 37	16	M. salteri Disney sp. nov. and M. stepheni Disney sp. nov. were reared from
38 39 40	17	sporophores of fungi.
41 42	18	
43 44 45	19	Key words: mycophagy, Amanita, Gymnopilus, Russula
46 47	20	
48 49	21	Introduction
50 51 52	22	Most of the reports of scuttle flies (Diptera, Phoridae) reared from fungi are from
53 54	23	sporophores in Europe, but include a few records from Japan (Disney, 1994).
55 56 57	24	The majority of these records are for species of the giant genus Megaselia
58 59	25	Rondani (Disney 1994). But these records represent a subset only of the
60 61 62 63 64		1

known larval habits for this genus, which includes parasitoids, predators, feeders on decaying organic materials, etc (Disney 1994). Species reared from fungi are a substantial subset that includes true fungus feeders but also some known to be parasitoids of the larvae of other fungus feeders (e.g. Sciaridae). *Megaselia*" is one of the largest, most biologically diverse and taxonomically difficult genera in the entire animal kingdom" (Marshall 2012). Our knowledge of Japanese species of *Megaselia* is rudimentary. Prior to this study the total was 23 described species (Disney 1989a). By contrast at least 250 species are recorded from the British Isles (Disney 1989b, and subsequent additions) and at least 1500 species for the world (according to Henry Disney's most recent estimate). Our knowledge of Japanese species associated with fungi is likewise in its infancy. This paper extends our knowledge.

During 2012, Masayuki Nitta and Mio Kobayashi, under the supervision of Nobuko Tuno, reared insects from fungi sporophores. The scuttle flies were kindly examined by Dr. Hiroto Nakayama (Biosystematics Laboratory, Graduate School of Social & Cultural Studies, Kyushu University). He reported that they all belonged to the huge genus *Megaselia*, with three being of previously reported species from Japan but the rest being undescribed species. The latter were sent to Henry Disney who describes five new species below.

46 Materials and methods

48 Sporophores of fungi were collected and put on moist vermiculite in containers
49 of appropriate sizes at 27±1°C under 14 hour light and10 hour dark photoperiod

conditions. The containers lids had a hole plugged with cotton wool to ensure
adequate air exchange. The sporophores were misted with water to maintain
adequately high humidity. The containers were checked for emerging insects
every 1 or 2 days for at least one month after sporophore collection.

The flies that emerged were preserved in 70% ethanol. Some were mounted whole on slides in Berlese Fluid and the rest sent to Henry Disney. He made slide mounts of specimens dissected into components placed under separate coverslips (e.g. Disney 1983) mounted in the same medium, whose advantages have been discussed elsewhere (Disney 2001).

59 The holotypes and some paratypes of the new species are deposited in the

60 Museum of Zoology of the University of Cambridge (MZUC). Some paratypes

61 are deposited in the Laboratory of Ecology of Kanazawa University (LEKU).

62 The sample numbers refer to the rearing records. The reference numbers (e.g.

63 34–166) are also written on the slide labels and refer to Henry Disney's

64 notebook 34 and page 166. In this study, we applied updated fungal supra-

65 genetic classifications (Hosaka *et al.* 2011), however, we employed sporophore

66 names as reported in the previous studies (Disney 1994).

Results

The following species of scuttle flies were reared from the fungi

72 indicated. *Megaselia donaldsonae* Disney sp. nov. (Fig. 1A–F)

Etymology. Named for Margaret Donaldson (see Acknowledgements). Type series. Holotype, male, Ishikawa Prefecture, Kanazawa City, 9_20 vii 2012, ex Amanita vaginata (Amanitaceae), N. Tuno (sample 21, MZUC, 34-166). Paratypes: 4 males, 5 females same data as holotype except females (sample 22, MZUC, 34-167); and 1 male, 2 females (samples 15–17, LEKU). *Diagnosis.* The fifth segment of the mid tarsus being clearly longer than the fourth segment means that in the key to males recorded from the British Isles (Disney 1989a) this species runs to couplet 12, lead 2, to *M. lutea* (Meigen); from which it is at once distinguished by its hairs on the mesopleuron (e.g. as fig. 8.3(a) in Disney 1994). In the keys to Australasian and Oriental species (Borgmeier 1967) it will run to couplet 11 on page 206. As its costal index is intermediate between the two options offered it needs to be keyed both ways. However, the male is immediately distinguished from all the species of the following couplets by the same mid tarsal feature indicated above. Likewise several subsequently described species are excluded with the exception of two species from China, from which it is distinguished in the key below. Description. Male. Frons mainly yellow but brown around the sockets of the supra-antennal bristles (SAs) and ocelli, clearly broader than long, with 42_54 hairs and dense but very fine microtrichia. Supra-antennal bristles unequal (Fig. 1A), the lower pair being at most two thirds as long as upper pair. The antials lower on frons than anterolaterals (ALs), and about midway between upper SAs and an AL bristle. Pre-ocellars a little nearer together than either from a mediolateral bristle, all four being at about the same level on frons. Cheek with

97 4_5 bristles and jowl with 2 long and 1 shorter bristles. The subglobose

postpedicels yellow, without subcutaneous pit sensilla (SPS) vesicles (Fig. 1A). Palps (Fig. 1A) yellow, about 1.5 times as long as breadth of postpedicel, with 5 bristles, the longest (apical) being about as long as lower SAs, and 5_8 hairs. Labrum (Fig. 1A) slightly darker than palps and about 0.8_0.9 times as wide as a palp. Labella (Fig. 1A) coloured as palps and with only a few short spinules below. Thorax, apart from brown patch on pteropleuron, yellow. Three notopleural bristles, the middle one being shorter than the other two, and no cleft in front of these. Mesopleuron with 4_7 (most commonly 5_6) hairs. Scutellum with an anterior pair of hairs (about as long as those in middle of scutum) and a posterior pair of bristles. Abdominal tergites 1-4 brown contrasting with yellow tergites 5-6 and with hairs, those towards the sides of tergite 2 and at rear of tergite 6 being longer than the rest (Fig. 1B). Venter yellow with hairs on segments 3–6. Hypopygium with brown epandrium with a pale yellow anal tube (Fig. 1B), the epandrium with moderately long hairs only and thus lacking differentiated bristles. Hypandrium largely dusky yellow, with a pair of asymmetric lobes; left lobe large, with small microtrichia and with few beyond the basal half; right lobe much shorter and smaller, with stronger microtrichia extending its full length. The pair of hypandrial hairs short but somewhat robust. Apart from brown patch on mid coxa, legs yellow. Fore tarsus with posterodorsal hair palisade on segments 1-5; segment 5 longer than 4. The ratios of the lengths of tarsal segments about 3.6: 1.1: 1.0: 0.8: 1. Dorsal hair palisade of mid tibia extending about three quarters and its spur about 0.8 times as long as basitarsus. The ratios of the lengths of mid tarsal segments (Fig. 1C) about 2.1: 1.1: 0.9: 0.4: 1. Hairs below basal half of hind

femur clearly longer than those of anteroventral row of outer half. Hind tibia
with 12_16 differentiated posterodorsal hairs and simple spinules of apical
combs. Wings (Fig. 1D) 1.8_1.9 mm long. Costal index 0.45_0.52. Costal
ratios 4.3_5.0: 1.6_1.9: 1. Costal cilia (of section3) 0.07_0.08 mm long. No hair
at base of vein 3. Sc not reaching vein 1. With 2 axillary bristles, both being
longer than costal cilia (the outer one being 0.12_0.15 mm long). Sc almost
reaching R1. Thick veins yellowish gray; thin veins gray but pale. Membrane
tinged gray (evident to naked eye when viewed against a white background).
Haltere grayish brown.

Female. Head similar to male except labrum 1.3_1.4 times as wide as diameter of postpedicel and palps with 5_7 bristles and at least as many hairs. Thorax, apart from brown patch on pteropleuron, yellow as male. Abdominal tergites yellow. Tergites 5–6 with hairs (Fig. 1E). Venter yellow, with hairs below segments 3–6. Sternite 7 pale (Fig. 1F). Posterolateral lobes at rear of sternum 8 not long and with hairs at base. Cerci very pale and about 2.5 times as long as broad. Furca not evident. Dufour's crop mechanism about 2.3 times as long as greatest width and rounded behind. Legs ratios of the lengths of mid tarsal segments about 3.7: 1.8: 1.6: 0.8: 1. Wing length 2.0_2.1 mm. Costal index 0.48_0.54. Costal ratios 5.0_5.9: 1.7_2.4: 1. Haltere grayish brown.

142 Megaselia flava (Fallén)

144 Trineura flava Fallén,1823: 7.

145 Aphiochaeta matsutakei Sasaki, 1935: 112.

1 2	146	
3 4	147	Material examined. A hundred fifty specimens emerged from the sporocarps of
5 6 7	148	the following species belonging to 3 orders (Agaricales, Boletales, and
, 8 9	149	Russulales) in Ishikawa Prefecture: Agaricus abruptibulbus, Calvatia
10 11	150	craniiformis, Chlorophyllum neomastoideum (Agaricaceae), Amanita
12 13 14	151	ibotengutake, A. longistriata, A. pantherina, A. pseudoporphyria, A. punctate, A.
15 16	152	spissacea, A. sychnopyramis, A. vaginata, A. virgineoides, Amanita sp.
17 18 19	153	(Amanitaceae), Hygrocybe cuspidate (Hygrophoraceae), Gymnopus peronatus
20 21	154	(Omphalotaceae), Armillaria tabescens (Physalacriaceae), Psilocybe
22 23 24	155	argentipes (Strophariaceae), Boletellus floriformis, B. bicolor, B. griseus,
25 26	156	Heimioporus japonicus, Leccinum eximium, Tylopilus neofelleus, T. rigens, T.
27 28	157	vinosobrunneus, Xanthoconium affine, Xerocomus subtomentosus (Boletaceae),
29 30 31	158	Suillus bovinus (Suillaceae), Russula alboareolata, R. cyanoxantha
32 33	159	(Russulaceae).
34 35 36	160	This species has previously been reared from the sporophores of the
37 38	161	following fungi, Amanita ibotengutake (Yamashita et al. 2005) and A. muscaria
39 40 41	162	(Yakovlev 1986, 1994) (Amanitaceae), <i>Boletus rubellus</i> (Khalidov 1984;
42 43	163	Yakovlev 1994), Leccinum scabrum aggregate (Yakovlev 1986) (Boletaceae),
44 45	164	Gymnopilus hybridus (Disney & Evans 1988) (Cortinariaceae), Armillaria
40 47 48	165	matsudake (Sasaki 1935; Kiyoku1958) and A. mellea (Yakovlev 1994)
49 50	166	(Marasmiaceae), <i>Peziza</i> (= <i>Aleuria</i>) sp. (Yakovlev 1980, 1986), <i>P. micropus</i>
51 52 53	167	(Disney & Evans 1982; Disney & Ševčík 2009), <i>P. repanda</i> (Colyer 1954;
54 55	168	Buxton 1961; Disney 1994), P. varia (Disney & Evans 1982, 1999), and P.
56 57 58	169	vesiculosa (Disney & Evans 1996) (Pezizaceae), Pluteus cervinus (=
59 60		
61 62		
64 65		7

1	170	atricapillus) (Disney & Evans 1982) (Pluteaceae), Russula aeruginea (Eisfelde	r
2 3 4	171	1956), <i>R. heterophylla</i> (Schmitz 1948), <i>R. risigallina</i> form <i>roseipes</i> (Yakovlev	
5 6 7	172	1994), <i>R. rubra</i> (Schmitz 1948) and <i>R. violeipes</i> (Ševčík 2001) (Russulaceae),	I
7 8 9	173	Suillus granulatus (Yakovlev 1994) (Suillaceae), and Tricholoma matsutake (=	Т.
10 11 12	174	edodes) (Sasaki1935; Kiyoku 1958) (Tricholomataceae). The larvae invade the	е
12 13 14 15	175	stems of the sporophores.	
15 16 17	176	<i>Megaselia gotoi</i> Disney	
18 19	177		
20 21 22	178	<i>Megaselia gotoi</i> Disney, 370.	
23 24	179		
25 26 27	180	Material examined. Twenty-one specimens were reared from sporophores of	
28 29	181	the following species belonging to two orders, Agaricales and Russulales;	
30 31 32	182	Amanita castanopsidis, A. hemibapha, A. neoovoidea, A. punctate, A.	
33 34	183	sychnopyramis, A. virosa, Amanita sp. (Amanitaceae), Hymenopellis sp.	
35 36 37	184	(Physalacriaceae), <i>Russula cyanoxantha, Russula</i> sp. (Russulaceae).	
38 39	185	The species has previously been reared from sporophores of Amanita	
40 41 42	186	farinosa and A. spissacea (Disney 1989b) and A. ibotengutake (Yamashita et	
43 44	187	<i>al.</i> 2005).	
45 46	188		
47 48 49	189	Megaselia kanekoi Disney	
50 51	190		
52 53 54	191	<i>Megaselia kanekoi</i> Disney 1989b, 372.	
55 56	192		
57 58			
59 60			
61 62			
63			Q
64			υ

1 2	193	Material examined. Eight specimens were reared from sporophores of the
3 4	194	following species belonging to Agaricales and Russulales. Amanita
5 6 7	195	pseudoporphyria (Amanitaceae), Hymenopellis sp. (Physalacriaceae), Russula
8 9	196	alboareolata, R. cyanoxantha, Russula sp. (Russulaceae).
10 11	197	The species has previously been reared from sporophores of Amanita
12 13 14	198	spissacea (Disney 1989b) and A. ibotengutake (Yamashita et al. 2005).
15 16	199	
17 18 19	200	Megaselia margaretae Disney sp. nov. (Fig. 2A–H)
20 21	201	
22 23 24	202	Etymology. Named for Margaret Donaldson (see Acknowledgements).
25 26	203	<i>Type series.</i> Holotype, male, Ishikawa Prefecture, Kanazawa City, 9–20 vii
27 28 29	204	2012, ex Amanita vaginata (Amanitaceae) (sample 23, MZUC, 34–167).
30 31	205	Paratypes: 1 male, 3 females same data as holotype except females (sample
32 33	206	24); 4 males Ishikawa Prefecture, Nomi City, 4–18.ix.2012, ex A.
34 35 36	207	pseudoporphyria (sample 20, MZUC, 34–166, samples 8 & 9, LEKU); 3 males,
37 38	208	2 females, Ishikawa Prefecture, Nanao City, 22.vii–4.viii.2012, ex Amanita sp.,
39 40 41	209	N. Tuno (samples 10–14, LEKU); 2 females, Kanazawa City, 2–15.vii.2012, ex
42 43	210	Russula violeipes, N. Tuno (samples 6 & 7, LEKU).
44 45 46	211	Diagnosis. The fifth segment of the mid tarsus clearly longer than the fourth
47 48	212	segment means that in the key to males recorded from the British Isles (Disney
49 50	213	1989a) this species runs to couplet 12, lead 2, to <i>M. lutea</i> (Meigen); but more
51 52 53	214	closely resembles the Japanese <i>M. gotoi</i> and an Australasian and an Oriental
54 55	215	species. It is distinguished from these 3 species in the key below.
56 57 58		
59 60		
6⊥ 62 63		
64 65		

Description. Male. Frons mainly yellow but brown around sockets of the Supra-antennal bristles (SAs) and ocellar triangle, with 28-44 hairs and dense but very fine microtrichia. Supra-antennal bristles unequal, the lower pair being about б half as long as the upper pair. The antials a little lower on frons than anterolaterals (which slightly higher on frons than upper SAs), and 3_6 times as far from upper SAs as either from an AL bristle. Pre-ocellars slightly further apart than either from a mediolateral bristle, which very slightly higher on frons. Cheek with 2_3 bristles and jowl with 2. Postpedicels subglobose, yellow, without subcutaneous pit sensilla (SPS) vesicles (Fig. 2A). Palps (Fig. 2A) yellow, 1.3_1.5 times as long as postpedicel, with 6 bristles, the most apical being about half as long as palp, and up to twice as many hairs. Labrum (Fig. 2A) yellow and about $0.8_{0.9}$ times as wide as a postpedicel. Labella (Fig. 2A) yellow, at most with only 1_2 hairs reduced to short spinules below. Thorax mainly yellow, with 3 notopleural bristles and no cleft in front of these. Mesopleuron bare. Scutellum with an anterior pair of hairs (as long as those in middle of scutum) and a posterior pair of bristles. Abdominal tergites 1-3 extensively brown (especially tergite 3) and tergites 4–6 mainly yellow, slightly longer hairs towards the sides of tergite 2 and at rear of tergite 6 (Fig. 2B). Venter yellow, and with hairs on segments 3–6 (Fig. 2B). Hypopygium with brown epandrium, the hypandrium largely pale dusky yellow, with a pale yellow anal tube (Fig. 2B). Apart from brown patch on mid coxa, legs yellow. Fore tarsus with posterodorsal hair palisade on segments 1–5; 5 slightly longer than 4. The ratios of the lengths of the segments about 3.2: 1.5: 1.1: 0.6: 1; segment 5 slightly wider than 3 and 4. Dorsal hair palisade of mid tibia extends about

 0.8 times its length and its apical spur about 0.8_0.9 times as long as mid basitarsus (Fig. 2C) and rest of mid tarsus as Fig. 2C. Hairs below basal half of hind femur longer than those of anteroventral row of outer half (Fig. 2D). Hind tibia with 16-18 differentiated posterodorsal hairs and spinules of apical combs simple. Wings (Fig. 2E) 1.2_1.9 mm long. Costal index 0.48_0.52. Costal ratios 6.7_8.0: 2.9_4.4: 1. Costal cilia (of section 3) 0.05_0.07 mm long. No hair at base of vein 3. With 2 axillary bristles, both being longer than costal cilia (the outer being 0.09_0.12 mm long). Sc not reaching R1. Thick veins brown but costa paler than rest, thin veins brown but pale. Membrane tinged grey (just evident to naked eye when viewed against a white background). Haltere brown.

Female. Head (Fig. 2F) similar to male but labrum about 1.1 times wider than diameter of postpedicel. Thorax mainly yellow as male. Abdominal tergites 2-6 typically with anterior two thirds yellow and posterior third brown, but the brown reduced on tergites 5-6. Tergites 5-6 as Fig. 2G, tergite 6 being slightly wider at its anterior end than its greatest length; and the sub rectangular tergite 7 (Fig. 2G) almost 3 times as long as its greatest breadth and the hairs restricted to the posterior two fifths. Venter yellow but a little greyer on the flanks below the sides of the tergites, with hairs below segments 3-6, but those on 3 reduced to only 1 or 2. Sternite 7 (Fig. 2H) at least twice as long as greatest breadth and tapered forwards in its anterior half and with its hairs restricted to its posterior half. Posterolateral lobes at rear of sternum 8 pale (Fig. 2H), at least as long as width at base and with 3 longer bristles behind and 2 smaller ones in front. Cerci pale and at most 1.5 times as long as broad. Furca and Dufour's crop

mechanism not discerned. Legs similar to male except segment 5 of the mid
tarsus is about as long as segment 4. Wing as in males except length 1.8_1.9
mm, Costal index 0.52_0.57. Costal ratios 5.4_6.3: 3.0_3.4: 1. Outer axillary
bristle 0.11_0.12 mm long. Costal cilia 0.07_0.08 mm long.

Megaselia nakayamai Disney sp. nov. (Fig. 3A–C)

Etymology. Named for Dr. Hiroto Nakayama who identified speciemens
belongings to described species.

Type series. Holotype, male, Ishikawa Prefecture, Nanao City, 22.vii–1

viii.2012, ex *Russula cyanoxantha* f. *peltereaui* (Russulaceae), N. Tuno (sample
19, MZUC, 34–166).

Diagnosis. In the keys to the males of Megaselia species from the British Isles it
runs to couplet 267, lead 1, to *M. surdifrons* (Wood). The subsequently
described *M. okazakii* Disney also runs to this point. Both differ from *M. nakayamai* in having thorax and postpedicels brown, a grayish venter with hairs
on segments 3–6, a pair of long bristles on the hypandrium, and with a small
hair at the base. In addition *M. okazakii* has a shortened dorsal face of the
epandrium and much paler wings.

Description. Male. Frons yellow but ocellar triangle largely brown, clearly broader than long, with 90_96 hairs and dense but very fine microtrichia. Supraantennal bristles (SAs) unequal the lower pair being half as long as the upper pair. The antials lower on frons than anterolaterals, and about 1.5 times as far from upper SAs as either from an AL bristle. Pre-ocellars about as far apart as either from a mediolateral bristle, which at about the same level on frons.

Cheek with seemingly no bristles and jowl with two. The subglobose postpedicels yellow, without subcutaneous pit sensilla (SPS) vesicles (Fig. 3A). Palps (Fig. 3A) yellow, about two fifths as broad as postpedicel but almost twice б as long as breadth of latter, with 6 bristles, the longest (apical) being only about half as long as an upper SA bristle, and with as many hairs. Labrum obscured in available specimen. Labella almost as pale as palps, together at least twice as broad as postpedicel, and with numerous, densely crowded, short spinules below. Thorax yellow. Two notopleural bristles and no cleft in front of these. Mesopleuron bare. Scutellum with an anterior pair of hairs (about as long as those in middle of scutum) and a posterior pair of bristles. Abdominal tergites brown with hairs a little longer towards sides of tergite 2 and clearly longest at rear of tergite 6 (Fig. 3B). Venter very pale yellow, and with hairs only on segments 5 and 6. Hypopygium with light brown epandrium, a pale hypandrium with a pale yellow anal tube (Fig. 3B). Apart from brown patch on mid coxa, legs yellow. Fore tarsus with posterodorsal hair palisade on segments 1-4 and 5 clearly longer than 4. Dorsal hair palisade of mid tibia extends almost three guarters of its length. Hairs below basal half of hind femur longer than those of anteroventral row of outer half. Hind tibia with 14_16 differentiated posterodorsal hairs and spinules of apical combs simple. Wings (Fig. 3C) 1.1_ 1.2 mm long. Costal index 0.54_0.55. Costal ratios 3.0_3.1: 1.9: 1. Costal cilia (of section 3) 0.04_0.05 mm long. No hair at base of vein 3. With 2 axillary bristles, both being longer than costal cilia (the outermost 0.09 mm long). Sc not reaching R1. Costa pale, rest of thick veins light brown, 4_6 grey and 7 very pale. Membrane only lightly tinged grey. Haltere with light gray knob.

Etymology. Named for Stephen Salter (see Acknowledgements). Type series. Holotype, male, Ishikawa Prefecture, Nomi City, 12–27.vii.2012, ex Gymnopilus sp. (family undetermined), N. Tuno (sample 28, MZUC, 34-168). Paratypes: 3 females as holotype; 1 male, 6 females as holotype except 12-26.vii.2012 (samples 1 & 27, MZUC, samples 2-3, LEKU); 1 male, 6 females, Kanazawa City, 6–18.ix.2012, ex G. picreus, N. Tuno (sample 29, MZUZ, 34–168). Diagnosis. In the key to the males of Megaselia species from the British Isles it runs to couplet 285, where the lack of a notopleural cleft and the AL bristles being clearly higher on the frons than the antials excludes the two species of this couplet. The hypopygium of the mainland European species *M. praeacuta* (Schmitz) has a much shorter anal tube and hypandrial lobes, apart from its postpedicels having SPS vesicles. The subsequently described M. tamilnaduensis Disney will also run to this couplet but it has a distinctly different hypopygium, with its shortened dorsal face of the epandrium and shorter anal tube and shorter hairs below the basal half of the hind femur, and it lacks the densely crowded spinules on the ventral faces of the labella. In the keys of Borgmeier (1967) M. salteri runs to couplet 14, lead 2, on page 93, to M. patellipyga Borgmeier. However, the latter has strikingly enlarged posterolateral lobes of the epandrium. Apart from *M. tamilnaduensis* (see above) also running to this point *M. abdita* (Brues) and *M. media* (Collin) will also both key out here. Their shorter anal tubes and lack of densely crowded

Megaselia salteri Disney sp. nov. (Fig. 4A–G)

spinules on the ventral faces of their labella distinguish them from *M. salteri*. The subsequently described *M. alisamorum* Disney will also key out here. It has densely spinose labella, but its hypopygium has a longer yellow anal tube б and a distinctive elongated and downward curving left lobe of the hypandrium. Description. Male. Head as Fig. 4A, frons brown, clearly broader than long, with 110_120 hairs and dense but very fine microtrichia. Supra-antennal bristles (SAs) unequal, the lower pair being about 0.8 times as long the upper pair. The antials clearly lower on frons than anterolaterals and almost as close to eye margins, but almost midway between upper SAs and AL bristles or a little closer to USAs. Pre-ocellars closer together than either is from a mediolateral bristle, which is at about the same level on frons. Cheek with 1_3 bristles and jowl with two longer. The subglobose postpedicels brown, without subcutaneous pit sensilla (SPS) vesicles (Fig. 4A, B). Palps (Fig. 4A, B) yellow, about a guarter as broad as postpedicel but a little longer than breadth of latter, with 4_6 bristles (the longest, apical, being about two thirds as long as a lower SA bristle) and 5-6 hairs. Labrum (Fig. 4A) dusky yellow and about three guarters the width of a postpedicel. Labella coloured as labrum but with darker bands towards sides, their combined widths about 1.5 times the width of a postpedicel, and with numerous, densely crowded, short spinules below (Fig. 4B). Thorax brown with two notopleural bristles and no cleft in front of these. Mesopleuron bare. Scutellum with an anterior pair of hairs (subequal to those in middle of scutum) and a posterior pair of bristles. Abdominal tergites brown with hairs longest towards sides of tergite 2 and at rear of tergite 6 (Fig. 4C). Venter brown, with hairs on segments 3–6. Epandrium brown, hypandrium only lightly tinged

brown and anal tube pale brown (Fig. 4C). Left lobe of hypandrium longer than right lobe. Apart from brown patch on mid coxa, legs yellowish lightly tinged brown, except the hind femora browner and getting darker towards tip. Fore tarsus with posterodorsal hair palisade on segments 1-4 and 5 slightly longer than 4. Dorsal hair palisade of mid tibia extends about 0.8 times its length. Hairs below basal half of hind femur clearly longer than those of anteroventral row of outer half (Fig. 4D). Hind tibia with 8-10 clearly differentiated posterodorsal hairs and spinules of apical combs simple or occasionally with a single bifurcated spinule above the posteroventral apical spur. Wings (Fig. 4E) 1.3_1.6 mm long. Costal index 0.34_0.44. Costal ratios 4.2_6.5: 1.8_2.9: 1. Costal cilia (of section 3) 0.07_0.09 mm long. A small hair at base of vein 3. With 2 axillary bristles, both being longer than costal cilia (the outer being 0.09_ 0.11 mm long). Membrane pale, only slightly tinged gray. Thick veins brown, except costa pale, thin veins 4_6 more gray and 7 only discernible with critical lighting. Membrane only very lightly tinged gray (not evident to naked eye when viewed against a white background). Haltere brown.

Female. Head similar to male but except palp with 6_7 hairs that are longer
than those of male, labrum brown and a little wider than diameter of postpedicel
and labella not enlarged and with at most only 1 or 2 small spinules below.
Abdominal tergites brown. Tergites 3–7, front margin of tergite 6 being as broad
as length. Venter brown, with hairs below segments 3–6. Sternite 7 as Fig. 4G.
Posterolateral lobes at rear of sternum 8 as Fig. 4G. Cerci pale and about 2.6
times as long as broad. Furca and Dufour's crop mechanism not discerned.
Legs similar to male but hind tibia with fewer posterodorsal hairs. Wing as male

except 1.4_1.7 mm long. Costal index 0.38_0.43. Costal ratios 3.3_6.0: 1.9_3.3:

1. Costal cilia 0.06_0.08mm long. Outer axillary bristle 0.08_0.10mm long.

Otherwise it and haltere as male.

Megaselia stepheni Disney sp. nov. (Fig. 5A–G)

Etymology. Named for Stephen Salter (see Acknowledgements).

Type series. Holotype, male, Ishikawa Prefecture, Kanazawa City, 2-

15.vii.2012, ex Russula violeipes, N. Tuno (sample 25, MZUC, 34–167).

Paratypes, 3 males, 4 females as holotype except samples 18 & 26, MZUC,

and samples 4 & 5, LEKU.

Diagnosis. The fifth segment of the mid tarsus being clearly longer than the fourth segment means that in the key to males recorded from the British Isles (Disney 1989a) this species runs to couplet 12, lead 2, to *M. lutea* (Meigen); but more closely resembles the Japanese *M. gotoi* and an Australasian and an Oriental species. It is distinguished from these 3 species in the key below. Description. Male. Frons mainly yellow but brown around the sockets of the Supra-antennal bristles (SAs) and ocellar triangle brown, clearly broader than long, with 40_50 hairs and crowded but very fine microtrichia. Supra-antennal bristles (SAs) unequal the lower pair being about two thirds the length of the upper pair. The antials slightly lower on frons than anterolaterals, and about twice as far from upper SAs as either from an AL bristle. Pre-ocellars about as far apart than either from a mediolateral bristle, all four being at about the same level on frons. Cheek with 3_4 bristles and jowl with 2 longer. The subglobose postpedicels yellow, without subcutaneous pit sensilla (SPS) vesicles (Fig. 5A).

Palps (Fig. 5A) yellow, about 6 times as long as broad and 1.2 times as long as width of postpedicel, with 5₆ bristles (the longest, apical, one about 1.2 times as long as lower SA bristle) and as many hairs. Labrum (Fig. 5A) yellow about б two thirds as wide as a postpedicel. Labella (Fig. 5A) coloured as palps almost devoid of short spinules below. Thorax mainly yellow. Three notopleural bristles and no cleft in front of these. Mesopleuron bare. Scutellum with an anterior pair of hairs (about as long as those in middle of scutum) and a posterior pair of bristles. Abdominal tergites 1_3 brown and tergites 4_5 yellow, with hairs longest at rear of tergite 6 (Fig. 5B). Venter yellow, with hairs on segments 3_6. Epandrium brown, hypandrium paler and its long left lobe and very short right lobe pale yellowish; with a pale brown anal tube. Apart from brown patch on mid coxa, legs yellow. Fore tarsus with posterodorsal hair palisade on segments 1_5 and 5 just longer than 4. Dorsal hair palisade of mid tibia extends about two thirds its length and its spur about as long as basitarsus of mid tarsus. The ratios of the lengths of the mid tarsal segments about 1.4: 0.5: 0.4: 0.2: 1. Hairs below basal half of hind femur longer than those of anteroventral row of outer half (Fig. 5D). Hind tibia with 16_18 differentiated posterodorsal hairs and spinules of apical combs simple. Wings (Fig. 5E) 1.5_ 1.6 mm long. Costal index 0.42_0.45. Costal ratios 3.7_3.8: 1.2_1.7: 1. Costal cilia (of section 3) 0.05_0.06 mm long. No hair at base of vein 3 and the latter a little thickened in basal half. With 2 axillary bristles, both being longer than costal cilia (the outer being 0.10 mm long). Sc not quite reaching R1. All veins brown, except costa pale. Membrane tinged gray (just evident to naked eye when viewed against a white background). Haltere with brownish gray knob.

Female. Head similar to male but labrum light brown and a little wider than a postpedicel. Thorax as male. Abdominal tergites yellow apart from tergite 7. Tergites 5–7 as Fig. 5F. Venter pale dusky yellow, and with hairs below segments 3-6. Sternite 7 brown (Fig. 5G). Posterolateral lobes at rear of sternum 8 largely represented by a pair of apical bristles (Fig. 5G). Cerci pale relatively short (Fig. 5G). Furca and Dufour's crop mechanism not discerned. Legs similar to male but last segment of mid tarsus not longer than 3+4, but a little longer than 4. Wing as male except length 1.7_1.8mm. Costal index 0.49_ 0.54. Costal ratios 3.5_4.7: 1.5_2.3: 1. Costal cilia 0.06_0.08mm long. Outer axillary bristle 0.11_0.12 mm long. Vein 3 not thickened in basal half. Haltere as male. Key to palaearctic species resembling Megaselia lutea as their fifth segment of the mid tarsus being clearly longer than the fourth segment Note: females can only be assigned to this complex by their association with males. --

1 2	454	3	Epandrium with hairs only. Section 1 of costa not thicker in basal two	
3 4	455		thirds and section 2 is longer than section 3. Spur of mid tibia clearly	
5 6 7	456		shorter than mid basitarsus	4
7 8 9	457	-	Epandrium with hairs plus 3_4 bristles towards lower margins each	
10 11	458		side. Costa thicker in basal two thirds of section 1 and section 2	
12 13 14	459		shorter than section 3. Spur of mid tibia about as long as mid	
15 16	460		basitarsus setifurcana L	iu
17 18 19	461			
20 21	462	4	Abdominal tergites brown tibisetalis Fan	ıg
22 23 24	463	-	Abdominal tergites 1_4 brown contrasting with yellow tergites 5–6 (Fig	J .
25 26	464		1B) donaldsonae Disney sp. no	OV.
27 28 29	465			
30 31	466	5	Thorax and postpedicels of antennae yellow	3
32 33	467	-	Thorax and postpedicels of antennae brown. (Hypopygium as fig. 414	•
34 35 36	468		in Disney 1989a. More than 3 bristles on axillary ridge of wing. Tip of	
37 38	469		hind femur brown) (Wood	d)
39 40 41	470	Note:	the Australasian <i>M. tetrachaeta</i> Beyer has a light brown thorax and a	
42 43	471	browr	n tip to the postpedicel. It differs from <i>M. scutellaris</i> in having the first	
44 45 46	472	costa	I section clearly shorter than sections 2+3 combined and its costal cilia	
47 48	473	being	less than 0.1 mm in length.	
49 50 51	474			
52 53	475	6	With only 2 axillary bristles. Hind femur entirely yellow	7
54 55	476	-	With more than 3 axillary bristles. Tip of hind femur brown.	
56 57 58	477		(Hypopygium as fig. 415 in Disney 1989a) <i>lutea</i> (Meigen)
59 60				
61 62 63				
64 65				20

1 2	478	
3 4	479	7 Epandrium with hairs above and 1 or more bristles near lateral margins.
5 6 7	480	Abdominal tergites with longer hairs towards lateral margins only on
8 9	481	segments 2 and 6. Abdominal venter with smaller hairs on segments
10 11 12	482	3-6. The last segment of the mid tarsus thicker than segment 4, at least
12 13 14	483	basally 8
15 16	484	- Epandrium with several bristles but lacking hairs dorsally (fig. 2 in Disney
17 18 19	485	1989b). Abdominal tergites 2–6 with long hairs laterally that are clearly
20 21	486	differentiated from those above. Abdominal venter with long bristle-like
22 23 24	487	hairs on segments 5 and 6 (fig. 32 in Disney 1989b) but minute hairs only
25 26	488	on segments 3 and 4. The last segment of the mid tarsus not thicker than
27 28 20	489	segment 4gotoi Disney
29 30 31	490	Note: the Oriental M. termimycana Disney closely resembles M. gotoi but only
32 33	491	has short fine hairs on segments 5 and 6 of the venter.
34 35 36	492	
37 38	493	8 Epandrium with a single bristle each side (Fig. 2B). Segment 5 of mid
39 40 41	494	tarsus shorter than segments 3 and 4 combined (Fig. 2C)
42 43	495	<i>margaretae</i> Disney sp. nov.
44 45 46	496	- Epandrium with 2 bristles each side (Fig. 5B). Segment 5 of mid tarsus
40 47 48	497	longer than segments 3 and 4 combined (Fig. 5C) stepheni
49 50	498	Disney sp. nov.
51 52 53	499	
54 55	500	9 Mesopleuron with hairs
56 57 58	501	- Mesopleuron bare 12
59 60		
61 62		
03		21

1 2	502		
3 4	503	10	Abdominal tergite 6 at least as long as width on anterior margin (e. g.
5 6 7	504		Fig.1E). Costal section 2 longer than section 3 11
8 9	505	-	Tergite 6 clearly wider than its length. Costal section 2 shorter than
10 11	506		section 3 setifurcana Liu
12 13 14	507		
15 16	508	11	Abdominal tergites brown and tergite 6 tapered towards hind
17 18 19	509		margintibisetalis Fang
20 21	510	-	Abdominal tergites yellow and tergite 6 more-or-less rectangular
22 23 24	511		donaldsonae Disney sp. nov.
25 26	512	12	Thorax and postpedicels of antennae yellow
27 28 20	513	-	Thorax and postpedicels of antennae brown. (More than 3 bristles on
29 30 31	514		axillary ridge of wing. Tip of hind femur brown. Rear of abdomen as
32 33	515		Fig. 7) s <i>cutellaris</i> (Wood)
34 35 36	516	Note:	the unknown female of the Australasian <i>M. tetrachaeta</i> Beyer will have a
37 38	517	light t	prown thorax and a brown tip to the postpedicel, It will differ from <i>M</i> .
39 40 41	518	scute	<i>llaris</i> in having the first costal section clearly shorter than sections 2+3
42 43	519	comb	ined and its costal cilia being less than 0.1mm in length.
44 45 46	520		
47 48	521	13	Wing with only 2 axillary bristles. Hind femur entirely yellow 14
49 50	522	-	With more than 3 axillary bristles. Tip of hind femur brown. (Abdominal
51 52 53	523		tergites entirely brown and as Fig. 6) lutea (Meigen)
54 55	524		
56 57 58 59 60 61 62	525	14	Abdominal tergites yellow 15
63			22

1 2	526	- Abdominal tergites 2_5 yellow in anterior halves or more and brown
- 3 4	527	behind and tergite 6 almost as long as width of anterior margin (Fig.
5 6 7	528	2G)margaretae Disney sp. nov.
7 8 9	529	Note: the Oriental M. termimycana Disney closely resembles M. margaretae but
10 11	530	has uniformly brown abdominal tergites and tergite 7 narrows in its anterior half
12 13 14	531	(fig. 4 in Disney & Chou 1996).
15 16	532	
17 18 19	533	15 Tergite 6 clearly broader than long (Fig. 5F). Anterolateral bristles at
20 21	534	about the same level on frons as upper supra-antennal
22 23	535	bristlesstepheni Disney sp. nov.
24 25 26	536	- Length of tergite 6 almost equal to width of front margin. AL bristles
27 28	537	higher on frons than upper SAs gotoi Disney
29 30 31	538	
32 33	539	
34 35		
36 37	540	Discussion
38 39	541	The Phoridae is among the commonest families of flies reported emerging from
40 41 42	542	fungus sporophores. Phorids have been recorded from younger sporophores
43 44	543	than the family Drosophilidae, which are more characteristic of mature to
45 46 47	544	decaying stages (Tuno N pers. obs.). In our rearings from various species of
48 49	545	sporophores sampled in Ishikawa Prefecture we obtained eight Megaselia
50 51	546	species including five species new to science. Among the new species, M.
52 53 54	547	salteri sp. nov. and M. stepheni sp. nov. showed narrow host preference. The
55 56	548	latter emerged from species of Russula (Russulaceae) and the former from
57 58	549	species of Gymnopilus (a genus formerly assigned to Cortinareaceae but
59 60 61		
62 63		3.3
64 65		23

currently unplaced in the present fungal classification). Compared with dominating species like *M. flava*, these minor species in number showed proportionally narrower host preferences. Some ecologists have explored the б general pattern in the relationships between fungal host and fungivorous flies using mycophagous drosophillid flies, a taxonomically well studied group (Lacy 1984; Takahashi et al. 2005; Toda et al. 1999; Tuno 2001). In the Drosophildae, most of the dominating species utilize a wide range of host mushrooms. It is apparent that we are far from a comprehensive understanding of the species diversity in mycophagous flies in Japan. It has been proposed that mycophagous flies are generalists in terms of host selection but this has been observed in only for dominating fly species and most of unnamed flies have been omitted from ecological studies. We may need to review ecological hypothesis and theories that have been proposed on the basis of such biased datasets on fungal host ranges for most of the unnamed mycophagous flies. The proportion of new species of scuttle flies underlines the perception that Phoridae associated with fungi in Japan is still a largely unexplored field. Future studies can be expected to add many more new phorid species and new fungus host records for known species. Those for Phoridae associated with fungi in Japan are likely to contribute to a more comprehensive understanding of the relationships between fungal host and their consumers and the diversity of the group in terms of ecological functions.

Acknowledgements

1 2	573	Henry Disney has been able to continue his studies of world Phoridae, despi	ite
3 4	574	losing much of his vision in 2012, through Professor Stephen Salter and	
5 6 7	575	Margaret Donaldson's generous donation towards an advanced microscope	
8 9	576	digital camera system. His studies of Phoridae are currently supported by	
10 11 12	577	grants from the Balfour-Browne Trust Fund (University of Cambridge).	
12 13 14	578	MN, MK, and NT acknowledge Ishikawa mushroom association for their help) in
15 16	579	mushroom collection and identification. The two anonymous reviewers and t	he
17 18 19	580	editors are deeply acknowledged for their sincere cooperation to improve the	÷
20 21	581	manuscript.	
22 23 24	582		
25 26	583	References	
27 28 29	584		
30 31	585	Borgmeier T (1966) Revision of the North American Phorid flies. Part III. The	;
32 33	586	species of the genus <i>Megaselia</i> , subgenus <i>Megaselia</i> (Diptera, Phoridae)	-
34 35 36	587	Studia Entomologica, Petropolis 8:1–160	
37 38	588	Borgmeier T (1967) Studies on Indo-Australian phorid flies, based mainly on	
39 40 41	589	material of the Museum of Comparative Zoology and the United State	s
42 43	590	National Museum. Part II. Studia Entomologica, Petropolis 10:81–276	i
44 45 46	591	Buxton PA (1961) British Diptera associated with fungi. III. Flies of all	
47 48	592	families reared from about 150 species of fungi. Entomologist's	
49 50	593	Monthly Magazine 96:61–94	
51 52 53	594	Colyer CN (1954) A new species of <i>Megaselia</i> (Dipt., Phoridae) from Britain;	
54 55	595	notes on fungicolous Phoridae. Entomologist's Monthly Magazine 89:	
56 57 58	596	108–112	
59 60			
61 62 63			-
64 65			25

1 2	597	Disney RHL (1983) Scuttle Flies-Diptera, Phoridae (except Megaselia).
3 4	598	Handbooks for the Identification of British Insects 10(6):1-81
5 6 7	599	Disney RHL (1989a) Scuttle Flies-Diptera, Phoridae Genus Megaselia.
8 9	600	Handbooks for the Identification of British Insects 10(8):1–155
10 11 12	601	Disney RHL (1989b) Six new species of Megaselia (Diptera, Phoridae) reared
13 14	602	from fungi in Japan. Acta Entomologica Bohemoslovaca 86, 368–380.
15 16	603	Disney RHL (1994) Scuttle Flies: The Phoridae. London, Chapman & Hall. xii +
17 18 19	604	467 pp
20 21	605	Disney RHL (2001) The preservation of small Diptera. Entomologist's
22 23 24 25 26	606	Monthly Magazine 137:155–159
	607	Disney RHL, Chou W-N (1996) A new species of Megaselia (Diptera:
27 28 29	608	Phoridae) reared from the fungus <i>Termitomyces</i> (Agaricales:
29 30 31 32 33 34	609	Amanitaceae) in Taiwan. Zoological Studies 35:215–219
	610	Disney RHL, Evans RE (1982) Records of Phoridae (Diptera) reared from fungi.
34 35 36	611	Entomologist's Record and Journal of Variation 94:104–105
37 38 39	612	Disney RHL, Evans RE (1988) New host records for fungus-breeding Phoridae
39 40 41	613	(Diptera). Entomologist's Record and Journal of Variation 100:208–210
41 42 43	614	Disney RHL, Evans RE (1996) Further new records of fungus-breeding
44 45 46	615	Phoridae (Diptera). Dipterists Digest 2(1):29–30
47 48	616	Disney RHL, Evans RE (1999) New records of Phoridae (Diptera) reared from
49 50 51	617	fungi. Entomologist's Record and Journal of Variation 111:235–238
52 53	618	Disney RHL, Ševčík J (2009) New rearing records of scuttle flies (Diptera:
54 55	619	Phoridae) associated with fungi from the Czech and Slovak Republics.
56 57 58	620	Casopis Slezského Zemského Muzea Opava (A) 58:47–48
59 60		
61 62 63 64 65		26

1	621	Eisfelder I (1956) Die haufigsten Pilzbewohner (Fliegen als Pilzverzehrer).
3 4	622	Zeitschrift für Pilzkunde 22:108–17
5 6 7	623	Fallén CF (1823) Phytomyzides et Ohctidia Sveciae. Lundae. 10pp
8 9	624	Fang H, Xia, F, Liu G-C (2009) Two new species and one new record of
10 11 12	625	Megaselia Rondani from China (Diptera, Phoridae). Acta Zootaxonomica
12 13 14	626	Sinica 34:261-264
15 16	627	Hosaka K, Hosoya T, Nagasawa E (2011) Fungi of Japan new edited. Yama-
17 18 19	628	Kei Publ Co., Ltd. Tokyo (In Japanese.)
20 21	629	Khalidov AB (1984) Insects-destroyers of fungal fruiting bodies. Kazan State
22 23 24	630	University, Kazan (In Russian.)
25 26	631	Kiyoku M (1958) Studies on the insect fauna of the Japanese pine mushroom
27 28 29 30 31 32 33 34 35 36 37 38 39	632	and the damage due to the insect pests. Scientific Reports of the
	633	University of Okayama University Faculty of Agriculture 11:49-59
	634	Lacy RC (1984) Predictability, toxicity, and trophic niche breadth in fungus-
	635	feeding Drosophilidae (Diptera). Ecol Entomol 9:43-54
	636	Marshall SA (2012) Flies: the natural history and diversity of Diptera. NY, Firefly
39 40 41	637	Books. 615 pp
42 43	638	Sasaki C (1935) On a new phorid fly infesting our edible mushroom.
44 45 46	639	Proceedings of the Imperial Academy of Japan 11:112-114
47 48	640	Schmitz H (1948) Zur Kenntnis der fungicolen Buckelfliegen. Natuurhistorisch
49 50 51 52 53 54 55	641	Maandblad 37:37-44
	642	Ševčík J (2001) Diptera (excluding Mycetophilidae s. str.) associated with fungi
	643	in Czech and Slovak Republics: a survey of rearing records from 1998-
56 57 58	644	2000. Acta Universitatis Carolinae Biologica 45:157-68
59 60		
61 62 63		
64 65		27

1	645	Takahashi KH, Tuno N, Kagaya T (2005) The relative importance of spatial
3 4	646	aggregation and resource partitioning on the coexistence of
5 6 7	647	mycophagous insects. Oikos 109:125-134
, 8 9	648	Toda MJ, Kimura MT, Tuno N (1999) Coexistence mechanisms of
10 11 12	649	mycophagous drosophilids on multi-species fungal hosts: Aggregation
13 14	650	and resource partitioning. J Anim Ecol 68:794-803
15 16 17	651	Tuno N (2001) Community structure of mycophagous insect assembly in Kyoto,
17 18 19	652	Japan. Jap J Ecol 51:73-86 (In Japanese with English abstract.)
20 21	653	Yakovlev EB (1986) Nasekomye-mitsebionty yuzhoi Karelii
22 23 24	654	(ekologofaunisticheskii spisok). In: Yakovlev EB, Uzenbaev SD (eds),
25 26	655	Fauna i ekologiya Chlenistonogikh Karelii. Petrozavodsk: Karelbskii Filial
27 28 29	656	AN SSSR, 83-123.
30 31	657	Yakovlev EB (1994) Dvukrylye Palearktiki svyazannyes gribamii Miksomitsetami.
32 33 24	658	[Palaearctic Diptera associated with fungi and myxomycetes].
34 35 36	659	Petrozavodsk: Karelian Research Center Russian Academy of Sciences
37 38	660	Forest Research Institute.
39 40 41	661	Yamashita H, Tanaka C, Nakayama H, Tuno N, Osawa N (2005) New host
42 43	662	record for three scuttle flies, Megaselia flava, M. kanekoi and M. gotoi
44 45 46	663	(Diptera: Phoridae), on three poisonous fungus Amanita ibotengutake
47 48	664	(Agaricales: Amanitaceae). Entomol Sci 8:223-225
49 50 51	665	
52 53 54 55 56	666	
57 58 59		
60 61		
62 63		28
ь4 65		

Captions for figures for paper on New records of scuttle flies (Diptera:
 Phoridae) reared from fungus sporophores in Japan, including five new
 species

Figure 1. *Megaselia donaldsonae* sp. nov., male (A-D) and female (E, F). (A)
dorsal (frontal) view of anterior (lower) part of head; (B) left face of hypopygium;
(C) mid tarsus; (D) right wing; (E) abdominal tergites 5 and 6 (anterior end to
right); (F) abdominal sternite 7 (anterior end to right).

Figure 2. *Megaselia margaretae* sp. nov., male (A-E) and female (F-H). (A)
antennae, palps and proboscis from above; (B) left face of hypopygium; (C)
mid tarsus; (D) hind femur; (E) right wing; (F) dorsal (frontal) view of anterior
(lower) part of head; (G) dorsal face of abdomen from tergite 5 onwards; (H)
abdominal sternite 7 and tips of lobes at rear of sternum 8 (anterior end to left).

Figure 3. *Megaselia nakayamai* sp. nov., male (A-C). (A) left antenna and palp
from above; (B) left face of hypopygium; (C) right wing.

Figure 4. *Megaselia salteri* sp. nov., male (A-E) and female (F, G). (A) frontal
view of head; (B) proboscis, palps and antennae, but focused down to ventral
view of labella; (C) left face of hypopygium; (D) hind femur; (E) right wing; (F)
abdominal tergites 3-7; (G) abdominal sternite 7 and tips of lobes at rear of
sternum 8.

1 2	691	Figure 5. Megaselia stepheni sp. nov., male (A-E) and female (F, G). (A)	
3 4 5	692	proboscis and right palp and antenna; (B) left face of hypopygium; (C) mid	
6 7 8	693	tarsus; (D) hind femur; (E) right wing; (F) abdominal tergites 5-7; (G) sternite	e 7
9 10 11	694	to tip of abdomen.	
12 13	695		
14 15	696	Figure 6. Megaselia lutea female, abdominal tergite 5 to tip of abdomen.	
16 17 18	697		
19 20 22 22 22 22 22 22 22 22 22 22 22 22	698	Figure 7. <i>Megaselia scutellaris</i> female, abdominal tergite 5 to tip of abdomen	1.
59 60 61			
62 63			20
64 65			30

Α

β B

