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Abstract 

The incineration fly ash (IFA), molten fly ash (MFA), thermal power plant fly ash (TPP-

FA), and nonferrous metal processing plant ash (MMA) have been screened in terms of the 

following rare-termed metal contents: B, Ce, Co, Dy, Eu, Ga, Gd, Hf, In, Li, Lu, Mn, Nb, Nd, 

Ni, Pr, Rb, Sb, Se, Sm, Sr, Ta, Tb, Te, Ti, Tm, V, W, Y, and Yb. The pseudo-potential for 

recycling of the waste ashes, as compared to the cumulative concentration in the crust (mg 

kg–1), was determined as follows: MMA > IFA > MFA > TPP-FA. The comparison with the 

crude ore contents indicates that the MMA is the best resource for reprocessing. The recovery 

of the target metals using aminopolycarboxylate chelants (APCs) has been attempted at 

varying experimental conditions and ultrasound-induced environment. A better APC-induced 

extraction yield can be achieved at 0.10 mol L–1 concentration of chelant, or if the system 

temperature was maintained between 60 to 80 °C. Nevertheless, the mechanochemical 

reaction induced by the ultrasound irradiation has been, so far, the better option for rare metal 

dissolution with chelants as it can be conducted at a minimum chelant concentration (0.01 

mol L–1) and at room temperature (25±0.5 °C).  

 

Keywords: Rare metals; Recovery; Fly ash; Solid waste; Aminopolycarboxylate chelant; 

Ultrasound irradiation 
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1.0 Introduction 

The consumption rates of the metals are continually increasing due to the diversification 

in applications. On the contrary, the supply of metals becomes more and more limited 

because the resources are nonrenewable (Guinée et al. 1999). The natural deposits of some 

metals, which have been increasingly consumed as a key material in clean energy 

applications or in designing alluring daily life gadgets, are unevenly distributed in the world 

and have an unsteady supply chain or fluctuating market price according to the policy of the 

resource country (Dodson et al. 2012, Massari & Ruberti 2013). The terminology, rare metal, 

is thus introduced to interpret such metals, which is not an academically defined one, and 

there is no consensus on which element it pertains (AIST Rare Metal Task Force 

2008, Kooroshy et al. 2010). For example, in Japan, 31 ores, including the rare earth elements 

as a group, have been designated as rare metals in terms of the concern in securing a stable 

supply of resources (Kawamoto 2008). Consequently, other than the refinery production, the 

reclaim processing of rare metals from secondary resources, such as process discards from 

the rare metal-consuming manufacturing schemes (Hsieh et al. 2009, Liu et al. 2009, Kang et 

al. 2011, Li et al. 2011, Park 2011, Virolainen et al. 2011, Hasegawa et al. 2013b) or end-of-

life electronic products (Shimizu et al. 2005, Cui & Zhang 2008, Rabah 2008, Bertuol et al. 

2009, Binnemans et al. 2013, Hasegawa et al. 2013c, Hasegawa et al. 2013a), received 

sincere focus from the researchers. 

Municipal solid waste (MSW) management is in crisis in many of the world’s largest 

urban areas as populations are continued to grow, which creates an increase in the waste 

quantities, while disposal places, such as sanitary landfills around the periphery of the cities,   

are decreasing. The alternative approach that has caught the attention of decision makers is 

the mass burn incineration that is increasingly practiced in the OECD (Organisation for 

Economic Co-operation and Development) countries (Anonymous 1999). Moreover, the 

thermal treatment of MSW not only reduces the amount of waste to be landfilled, but also 

allows the waste hygienization (Sabbas et al. 2003). Due to the effectiveness of policy 
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implementation, the trends of landfill and incineration for MSW processing are respectively 

decreasing and increasing in the high-income countries (Mazzanti & Zoboli 2008). The 

potential of waste ashes (viz., fly ash and bottom ash), a reaction by-product of the MSW 

incineration treatment, is anticipated as a secondary resource for rare metals, because the 

electronic wastes have become the foremost stream of MSW in recent years (Jung et al. 

2004, Babu et al. 2007, Kim et al. 2009, Ogunseitan et al. 2009, Hossain et al. 2012).  

The MSW management scenario of Japan has been taken into account as a 

representative scenario of the high-income countries in the current work. It has been 

estimated that Japan produces about 50 million tons of MSW per annum followed by the 

incineration treatment of an approximate 77% of the total and produces both fly ash and 

bottom ash (Jung & Osako 2009). A further contribution in the fly ash total added from the 

melting treatment of the incineration residues, as practiced in Japan, which is known as 

molten fly ash (Alorro et al. 2009). The elemental characterization of the incinerator ashes 

representing unalike resources indicates the presence of a considerable proportion of rare 

metals (e.g., Y, La, Ce, Pr, Nd, Dy, Yb, Ho, Er, Tm, Lu, Ag, Bi, Ga, Ge, Pd, In, Sb, Sn, Te, 

and Tl) other than the toxic base metals (Zhang et al. 2001, Jung et al. 2004, Jung & Osako 

2009). The coal fly ash produced during the coal processing has also been characterized with 

the enriched presence of several valuable elements, such as Ge, Ni, Ga, and V (Font et al. 

2005, 2007). Leaching via acidic and alkaline treatments, followed by a subsequent step of 

metal recovery from leachates involving either solvent extraction, selective precipitation, or 

solid-phase separation (Tsuboi et al. 1991, Vitolo et al. 2000, Font et al. 2007, Navarro et al. 

2007, Yang et al. 2010), and vapor phase extraction (Murase et al. 1998) is attempted to 

reclaim rare metals from the waste ashes.  

The present study discusses the comparative recycling potential of the representative ash 

types in terms of the rare metal content from the direct incineration of MSW, the melting 

treatment of the incineration residues, the coal combustion in the thermal power plants, or the 

smelting plants of nonferrous metals. The work also includes investigation of the reclamation 
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of rare metals from the real waste ashes at varying conditions with the use of 

aminopolycarboxylate chelants (APCs), which has not been carried out before.  

2.0 Experimental 

2.1 Materials 

2.1.1 Waste ash 

The waste ash samples used in this study represent the following origin: (a) incineration 

fly ash (IFA) (S-1 to S-9), (b) molten fly ash (MFA) (S-10 to S-13), (c) thermal power plant 

fly ash (TPP-FA) (S-14 to S-18 ), and (d) nonferrous metal processing plant ash (MMA) (S-

19). The IFA and MFA samples are from the MSW operations, while the TPP-FA or MMA 

samples have been collected from the respective operating plants situated in several different 

locations of Japan. However, the locations or names of the participating establishments have 

not been disclosed as per request from the responsible personnel of the organizations to avoid 

violating any corporate rules related to the information sharing policy. 

2.1.2 Aminopolycarboxylate chelants 

Disodium dihydrogen ethylenediamine tetraacetate dihydrate (EDTA), [S,S]-

ethylenediaminedisuccinic acid (EDDS), and 3-hydroxy-2,2'-iminodisuccinic acid (HIDS) are 

the APCs used, which have been procured, respectively, from Wako Pure Chemical (Osaka, 

Japan), Chelest (Osaka, Japan), and Nippon Shokubai (Tokyo, Japan). Some general 

information about the APCs is listed in Table 1.  

2.1.3 Other materials 

Analytical reagent grade materials are used throughout. The PlasmaCAL multielement 

solutions in 5% HNO3 from SCP Science (Québec, Canada) have been used as the standards 

during metal concentration measurements. The 2-[4-(2-hydroxyethyl)-1-

piperazinyl]ethanesulfonic acid (HEPES) from Nacalai Tesque (Kyoto, Japan) has been used 

as the buffer reagent to maintain the solution pH at neutral conditions, while the HCl or 
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NaOH solution (1 mol L–1) from Kanto Chemical (Tokyo, Japan) has been used for pH 

adjustment.  

The low-density polyethylene bottles, perfluoroalkoxy tubes, and micropipette tips have 

been used as the laboratory accessories, which were purchased either from the Nalge Nunc 

(Rochester, NY) or Nichiryo (Tokyo, Japan). The careful cleaning of each of the laboratory 

wares has been performed with overnight soaking in an alkaline detergent (Scat 20X-PF; 

Nacalai Tesque, Kyoto, Japan) and then in HCl solution (4 mol L–1; Kanto Chemical, Tokyo, 

Japan), followed by rinsing with ultrapure water after each of the aforementioned phases. 

2.2 Instrumentation 

The iCAP 6300 inductively coupled plasma optical emission spectrometer (ICP-OES) 

from Thermo Fisher Scientific (Waltham, MA) have been used to perform the metal analysis, 

which have been equipped with an EMT duo quartz torch, glass spray chamber, and 

concentric glass nebulizer. The RF power at the torch was maintained at 1.15 kW; the plasma 

gas flow, the auxiliary gas flow, and the nebulizer gas flow have been sustained, respectively 

at 12, 1 and 0.5 L min–1 and the integration time was 30 s.  

The TOSOH 8020 high-performance liquid chromatography (HPLC) system from 

Tosoh (Tokyo, Japan) have been used to confirm the chelant concentration. A DP-8020 pump, 

an AS-8021 auto sample injector, a CO-8020 column oven, a PD-8020 UV-Vis detector, and 

the PD-8020 data processing software have been included within the assembly of the HPLC 

system. The TSK-gel ODS-80TM octadecylsilica columns (4.6 mm i.d. × 250 mm and 4.6 

mm i.d. × 150 mm) have been used. The 5 mM solution of ammonium dihydrogenphosphate 

of pH 2.4 has been used as the mobile phase with a pumping flow rate of 0.5 mL min–1 at 

25 °C. The injection volume was 20 µL, and the detection has been performed at 254 nm. 

The Multiwave 3000 microwave reaction system from Anton Paar GmbH (Graz, 

Austria) equipped with 8-position rotor and hydraulic pressurized sensing system has been 

used for the acid-assisted solid sample digestion. The digestion vessels within the instrument 
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assembly are designed to sustain a controlled pressure of 6 MPa, maximum operating 

pressure of 12 MPa, and highest temperature of 2,600 °C.  

The Navi F-52 pH meter from Horiba Instruments (Kyoto, Japan) with a combination 

electrode was the instrument for measuring the solution pH. The Arium Pro water 

purification system from Sartorius Stedim Biotech GmbH (Göttingen, Germany) was 

employed for preparing the ultrapure water of resistivity > 18.2 MΩ cm–1, which has been 

used throughout for dilution or washing purpose.  

2.3 Methods 

2.3.1 Determination of rare metal content in the waste ashes 

The ash samples (0.5 g) have been transferred into the pre-cleaned PTFE vessels of the 

microwave reaction system and mixed with hydrofluoric acid (5 mL), nitro-hydrochloric acid 

(5 mL), and 60% perchloric acid (1 mL) to conduct the digestion at 180 ± 5 °C for 2 h. The 

EPA method 3052, which is often recommended for the multielemental analysis, was 

followed for the sample preparation, reagent selection, and adjustment of the digestion 

conditions (EPA 1996, Kingston & Walter 1998). The digestion extracts have been separated 

from the residue (if any) using the assembly of a cellulose membrane filter (0.45 µm; 

Advantec, Tokyo, Japan) and an MAS-1 suction system (AS ONE, Osaka, Japan), which has 

been further treated at 60 °C to concentrate the volume to a few milliliters. The concentrated 

extracts have been finally diluted to a volume of 100 mL with ultrapure water and stored at 

4 °C until the analysis. The reported values are averaged from at least three replicates of 

digestion of each of the ash samples. 

2.3.2 Extraction of rare metals from waste ashes using chelants 

The EDTA, EDDS, or HIDS solutions have been prepared at 0.01, 0.05, 0.10, and 0.15 

mol L–1 concentrations, and the solution pH was adjusted at pH 7 with HEPES (0.1 mol L–1). 

A control experiment was simultaneously performed using ultrapure water only. The pH-

adjusted chelant solutions (10 mL) were added to the waste ash (0.1 g), and the mixtures have 

been shaken at a rotating speed of 240 rpm for 24 h in an end-over-end shaker at 25 ± 2 °C. 
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The suspension was then centrifuged at 3,000 rpm for 10 min using the Kokusan H-701FR 

centrifuge (Kokusan Corporation, Tokyo, Japan) and parted using the previously mentioned 

filtration assembly that consists of a cellulose membrane filter and an MAS-1 suction system. 

The filtered extracts were stored at 4 °C until the analysis.  

2.3.3 Chelant-assisted extraction of rare metals under the influence of temperature or 

ultrasound irradiation 

The effect of temperature changes or ultrasound (US) irradiation on the chelant-assisted 

rare metal extraction was checked using a mixture of chelant and ash waste prepared at a 

100:1 ratio of chelant and ash. The Digiprep Jr. block heater from SCP Science (Quebec, 

Canada) has been used to create the varying temperature conditions within the range of 25 to 

98 °C, and to maintain for 6 h. The US irradiation effect was generated using an UO 300 FB-

P US bath from Kokusai Alpha (Toyama, Japan). A reaction vessel (50 mL) was placed in the 

center of the US bath and was sonicated for 6 h. The temperature was maintained at 

25±0.5 °C.  

The separation process of the supernatant from the solid residue and the storing 

conditions were the same as mentioned before. In each of the cases, the extractions were 

performed in triplicate with and without the chelant solutions, and an averaged value is 

considered. 

3.0 Results and discussion 

3.1 Characterization of the waste ashes 

3.1.1 Rare metal loading in the waste ashes 

The contents (mg kg–1) of 30 rare-termed elements (B, Ce, Co, Dy, Eu, Ga, Gd, Hf, In, 

Li, Lu, Mn, Nb, Nd, Ni, Pr, Rb, Sb, Se, Sm, Sr, Ta, Tb, Te, Ti, Tm, V, W, Y, and Yb) in the 

19 samples of different waste ashes (IFA, MFA, TPP-FA, or MMA) are compiled in Table 2. 

An utmost concentration of above 50 mg kg–1 has been commonly found for nine species of 

rare metals, which were as follows: B, Li, Mn, Ni, Rb, Sb, Sr, Ti, and W. The Ce loading in 
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the TPP-FA was above the 50 mg kg–1, while it appeared at a low amount in the other ash 

variants. The Ta or Tm loading was below the limit of instrumental detection irrespective of 

the ash variants, and the Co and Hf were limited to S-15 and S-13, respectively.  

The comparative distribution of rare metals in the waste ash types is illustrated in Figure 

1 averaging the values attained for the samples of each ash type. The standard deviation 

values have not been included due to the discrete pattern of the sample population size. The 

MFA is the product of the melting treatment of the incineration-generated solid reaction by-

products (bottom ash and fly ash) (Zhang & Itoh 2006), which supposed to result a higher 

content of metals in the MFA than that of the IFA. However, in the current work, in spite of 

the few instances that support the aforementioned hypothetical postulation (e.g., Ga, Ni, Rb, 

Se, Sr, Tb, and W), the common patterns indicated either lower or analogous concentration of 

metals in MFA in several cases. Some metals, such as Eu, Lu, and Nd, were remained below 

the detectable limit in the MFA even being present in the IFA. The nonexistence in 

correlation is attributable to the fluctuation in the composition of the incineration residues 

that used as the feedstocks in the melting furnaces. The data-sets for Ga, In, Sb, and Te 

element loading in the MFA manufactured from the incineration residues produced in Japan 

are available from the literature (Jung & Osako 2009), and a fairly similar pattern with the 

current work can be noted.  

The dust produced during lead smelting operation (MMA) exclusively contains a 

significant amount of In, Se, and Te as compared to the other ash types. The contents of Ce, 

Gd, Li, Lu, Nb, Nd, Sr, V, Y, and Yb in the TPP-FA were higher than those of IFA, MFA, 

and MMA. The modern thermal power plants usually employ the coal gasification technique 

during operation, and the mode of occurrence of elements in gasification fly ash puts forward 

the possibility of utilization of the TPP-FA for recovery of a number of valuable elements, 

e.g., Ga, Ni, and V (Font et al. 2005). 
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3.1.2 Recycling potential of the waste ashes 

The waste ashes, the fly ash, in particular, are practically delivered as a feed material in 

some refineries. However, the amount is not yet that significant, and the waste ashes are more 

commonly disposed of in landfills (Cobo et al. 2009). The respective crude ore quality (COQ) 

and concentration in the crust (COC) for each of rare metals (Halada et al. 2001) included in 

this study has been listed in the Table 1 to predict the recycling potential of the waste ashes.  

In terms of the crude ore contents, the MMA seems to have the most potential among 

the waste ashes for commercial recycling. The In-loading value (23,534 mg kg–1) is much 

higher than the content in the crude ore (10 mg kg–1), and the Se content (2,997 mg kg–1) is 

moderately comparable to the COQ value (2,000 mg kg–1). The COQ values were either not 

available or not significant for comparison with the other metals. However, the COC values 

suggest the pseudopotential for recycling of at least 28 metals excluding the Ta and Tm. The 

recycling potential of the waste ashes has the following order (mg kg–1): MMA (31,048 mg 

kg–1) > IFA (10,810 mg kg–1) > MFA (9,413 mg kg–1) > TPP-FA (7,137 mg kg–1), when 

compared with the cumulative values of COC (5,918 mg kg–1). 

The prime factor that gets in the way of recycling of waste ashes as a mineral resource is 

the uncertainty of composition, which includes the content of valuable metal species and 

detrimental components (Jung & Osako 2009). The metal loading (mg kg–1) in the IFA from 

the hazardous waste incinerator in Medellin, Colombia, for certain rare metals (Mn 154.8, Ni 

240.8, Sb 10465.2, V 5.9 and Yb 0.01) (Cobo et al. 2009) can be compared with the same 

reported in the current study (Mn 622.7, Ni 114.8, Sb 942.2, V 20.0 and Yb 0.71) to point 

toward the understandable discrepancy in the metal contents of waste ashes based on the 

locations, characteristics of the feed waste material, and to some extent on the operating 

conditions. 
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3.2 Chelant-assisted washing treatment of waste ashes 

3.2.1 Effect of chelant application 

The APC-assisted washing of the metal-laden solid waste materials, in combination with 

the mechanochemical processes, is one of the few enduring treatment alternatives to reclaim 

or confine the metals (Dermont et al. 2008, Hasegawa et al. 2013a, Hasegawa et al. 2013c). 

The APCs are capable of creating stable and water-soluble metal complexes, and the EDTA 

has most often been utilized due to the comparative superior competency among the APCs 

(Leštan et al. 2008). The EDTA-induced washing yield (%) of the rare metals, with content 

above 50 mg kg–1, in four representative waste samples of each ash type (IFA, MFA, TPP-FA, 

or MMA) is shown in Figure 2.  

In a neutral pH environment and at a room-temperature condition (25±2 °C), the EDTA 

(0.01 mol L–1) has shown better extractability than the control experiments performed using 

ultrapure water as expected in most cases. The extracted contents of some rare metals, such 

as Mn, Ni, In, Sb, Ti, and Te, have been either very negligible or below the detectable limit 

with EDTA and the ultrapure water irrespective of the ash types. The extraction of few metals 

has been achieved from certain ash types only, e.g., B was available from TPP-FA and MMA 

and remained confined in the IFA or MFA. The overall rate of extraction achieved with 

chelant application cannot be defined as promising though. The metals in the ash particles 

may exist in the form of oxide, carbonate, chloride, and sulfate, while the oxide form 

predominates (Verhulst et al. 1995). The lower rate of extraction achieved with chelant 

application is thus attributable to the decreasing tendency in the solubility of oxides and other 

solid phases at the neutral conditions because of the formation of metal-hydroxy complexes 

(Elliott & Brown 1989).  

3.2.2 Effect of chelant types and corresponding metal-chelant stability constants 

The lower biodegradability of EDTA evokes environmental concern (Nowack & 

VanBriesen 2005), and, hence, eco-friendly biodegradable chelants are preferred as a 

replacement of EDTA for the treatment of metal-contaminated solids. In the current work, we 
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have used two biodegradable chelants, EDDS and HIDS, and the comparative performances 

have been illustrated in Figure 2. A better recovery with EDTA than that with the 

biodegradable chelants was accomplished in several cases, whereas there also have been 

occasional exceptions (W: EDDS, IFA, and MFA; B: HIDS, TPP-FA, and MMA; Sb: HIDS, 

MFA, and MMA; Li: HIDS, TPP-FA; V: HIDS, TPP-FA). The comparative decrease in the 

extraction ability among the chelants can be correlated to the corresponding stability of the 

respective metal-chelant complexes (logKML) in solution, which depend on the total number 

of donor atoms and coordinating sites, and types of the donor atoms in the chelant (Martell & 

Hancock 1996). The stability information of the metal-chelant complexes with EDTA and 

EDDS have been extracted from the “NIST Critically Selected Stability Constants of Metal 

Complexes Database” (Martell et al. 2004) and compiled in the Table 1, while the relevant 

information for HIDS is not available in the literature. The extraction yield of Sr metal with 

EDTA (IFA 25.1, MFA 30.4, TPP-FA 5.5) and EDDS (IFA 21, MFA 21.6, TPP-FA 0.3) 

followed the comparative order of logKML (EDTA 8.72, EDDS 3.7). The instance of Sr metal 

can be used as an example of the predicted correlation between the extraction yield and 

corresponding logKML values. However, the correlation might not be sustained if the 

extraction process has been influenced by other interrelated factors, such as changes in the 

acidity, changes in solution ionic strength, or changes in the redox potential (Pickering 

1986, Begum et al. 2013).  

3.2.3 Effect of chelant concentrations 

The incineration fly ashes are reported to contain a remarkably higher amount of Cl, Ca, 

K and Na compared to the other elements, which makes up approximately 60% of the total 

elements in the fly ashes and remains in the form of soluble salt  (Hong et al. 2000, Jung & 

Osako 2009). The APCs are nonselective toward metals, and the chelant-assisted extraction 

yield of the target metal species has often been hindered or reduced to a considerable extent 

due to the presence of competitive ionic species at a higher concentration (Begum et al. 

2012a, Begum et al. 2013). Therefore, the application of varying EDTA concentrations has 
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been evaluated with the postulation that a higher chelant concentration may increase the 

extraction capability. The findings are illustrated in Figure 3, which shows a gradual increase 

in the extraction yield (%) with the higher chelant concentration in solution. The changes 

have been frequently remarkable with 0.10 mol L–1 chelant compared to those of 0.01 mol L–

1.  

3.2.4 Effect of temperature conditions 

The affirmative impact of temperature conditions during the extraction of metals with 

chelants has been witnessed during the reclamation of indium from the waste liquid-crystal 

display panels (Hasegawa et al. 2013a, Hasegawa et al. 2013c). An intensified temperature 

environment in the range of 40 to 98 °C with an approximate interval of 20 °C has been used 

to test the comparative extraction yield, and the results showed that the conditions above 

room temperatures cause a higher metal leaching with chelants (Figure 4). There is a 

possibility of chelant degradation at higher temperatures (Hasegawa et al. 2013a). A better 

extraction can be achieved even in the range of 60 to 80 °C and, hence, is recommended to 

avoid any loss in chelant due to the boiling effect or degradation.  

3.2.5 Mechanochemical effect of ultrasound irradiation 

The incorporation of the metals within the solid phase of the ash particles might be one of 

the factors other than the extractant concentration, coexisting ion concentrations, or 

comparative selectivity of the chelants toward the metal ions, which controls the release of 

metals from the ash (Peters 1999, Begum et al. 2013). The metals partitioned within the 

crystalline lattice of the solid particles are unlikely to be extracted easily with the extractants 

(Barona et al. 2001). The destruction of the crystalline structure within the solid phase can be 

done with the aid of the mechanochemical treatment, which could facilitate the increased 

metal dissolution with the chelants (Hasegawa et al. 2013c). In recent years, the use of US in 

leaching processes is becoming increasingly popular in hydrometallurgy, and the competence 

of US irradiation as a mechanochemical force to intensify the metal-leaching in acid-assisted 

processes or with other solvents except that of the chelant have been reported (Swamy & 
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Narayana 2001, Öncel et al. 2005, Beşe 2007, Elik 2007, Shen et al. 2013). In the current 

work, the chelant-assisted extraction yield (%) with the US irradiation and usual shaking 

treatment has been tested, and a significant impact of the US irradiation on the metal 

extraction has been observed (Figure 5). The rate of mobility toward solution is increased 

outstandingly for almost all the metals with the chelant concentration of 0.01 mol L–1 and at 

room temperature (25 ± 0.5 °C).  

4.0 Conclusion 

The work reports the possibility of waste ash recycling as a secondary resource for the 

30 depleting metals that are important to formulate clean energy devices, as well as proposed 

an approach for reclamation. The ash varieties, abbreviated as IFA, MFA, TPP-FA, and 

MMA, represent different waste origins, and the characteristics of the feed-waste noticeably 

influence the content of rare metals in each of the ash types. The fluctuation in the rare metal 

concentrations within each of the ash types has been perceived with the observations that 

only nine metal species persist at a maximum of 50 mg kg–1 concentration. The chelant-

assisted reclamation of the rare metals has been checked using the following APCs: EDTA, 

EDDS, and HIDS, and the latter two of the APCs possess biodegradable characteristics and 

evaluated as the alternative to EDTA. The extraction yields with the EDTA remain superior 

(chelant concentration 0.01 mol L–1; pH 7) than those with the EDDS or HIDS, which can be 

explained using the comparative metal-chelant stability constants. Higher chelant 

concentration in solution (0.05, 0.10, and 0.15 mol L–1), increased system temperature (40, 60, 

80, and 98 °C), and US irradiation have been verified to improve the extraction yield. A 

chelant concentration of 0.10 mol L–1 or an increase of the system temperature within the 

array of 60 to 80 °C can increase the extraction yield favorably. The application of the US 

irradiation created the most substantial enhancement in the extraction performance of APCs. 

A better dissolution of the rare metals with the chelant-loaded washing solution at minimum 

chelant concentration and at room-temperature has been achieved due to the 

mechanochemical energy created via the US irradiation.  
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Table 1: Chemical structure, acid dissociation constants (pKa) of the chelants, and initial 
speciation of chelant in the assay mixture (at pH 7; 1:1 molar ratio), and stability constants of 
metal-chelant complexes 

 

APCs Structure pKa    Speciation of chelant in the assay 
mixture  
(% of total chelant) c pKa1 pKa2 pKa3 pKa4 

EDTA a 
COOH

COOH

HOOC

HOOC N
N

 

2.00  2.69 6.13 10.37 HEDTA3– (87.7), H2EDTA2– (12.0) 

EDDS a COOH

COOHHOOC

COOH

N
H

N
H

 

2.95 3.86 6.84 10.01 HEDDS3– (58.9), H2EDDS2– (41.1) 

HIDS b 

COOH

HOOC

COOH

COOH

O H

N
H

 

2.14 3.08 4.07 9.61 HHIDS3– (99.5) 

Stability constants (logKML) of metal-chelant complexes a 

Metal logKML Metal logKML Metal logKML 
EDTA EDDS EDTA EDDS EDTA EDDS 

B – – Lu 19.74 14.32 Sr 8.72 3.7 
Ce 15.93  12.67 Mn 13.89 8.75 Ta – – 
Co 16.45 14 Nb – – Tb 17.87 13.51 
Dy 18.3 13.59 Nd 16.51 13.03 Te – – 
Eu 17.25 13.54 Ni 18.4 16.7 Ti 21.3 0 
Ga 21.7 – Pr 16.3 12.96 Tm 19.32 14 
Gd 17.35 13.45 Rb 0.6 – V 12.7 d – 
Hf – – Sb 12.46 d – W – – 
In 25 22 Se – – Y 18.08 13.55 
Li 2.95 – Sm 17.06 13.46 Yb 19.49 14.13 

a At 25 °C (µ = 0.1 M) (Martell et al. 2004). 
b At 25 °C (µ = 0.1 M) (Begum et al. 2012c, Begum et al. 2012b). 
c The major species of chelants exist in the assay mixture is listed only, and the other species is excluded when 
the % formation of the dominant species is > 99.5. The calculations have been performed using the computer 
program HySS2009 (Alderighi et al. 1999).  
d At 20 °C (µ = 0.1 M) (Martell et al. 2004). 
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Table 2: The rare metal contents (mg kg–1) in the waste ashes (n = 3), and comparison with the crude ore quality and concentration in the earth crust.   

Metal IFA a MFA a TPP-FA a MMA a COQ b  COC b S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 S-14 S-15 S-16 S-17 S-18 S-19 
B 212±42 190±18 189±3 196±22 168±15 203±7 220±6 400±11 541±16 275±9 289±7 380±9 71±5 151±5 100±1 144±9 353±1

5 
622±2
3 

87±1 – 10 

Ce 10±0.3 16±2 8±1 10±1 14±1 8±0.2 18±1 8±0.3 9±0.5 –  –  –  –  91±4 35±1 59±3 51±0.4 7±0.2 0 – 33 
Co –  –  –  –  –  –  –  –  –  –  –  –  –  –  76±1 –  –  –  –  2300 29 
Dy –  –  –  –  –  –  –  –  –  –  –  –  –  11±0.3 8±0.2 9±0.2 1±0.1 –  –  – 3.7 
Eu 2±0.02 2±0.1 1±0.1 1±0 1±0.1 1±0.02 1±0.02 1±0.02 1±0.01 –  –  –  –  2±0.1 2±0.1 2±0.03 1±0.1 –  –  – 1.1 
Ga - 4±0.3 4±1 11±0.2 3±0.2 10±1 8±0.1 10±1 10±1 96±6 17±0.4 9±3 15±1 49±1 41±1 33±1 17±1 5±0.3 8±0.4 – 18 
Gd 26±1.2 26±2 21±3 11±0.3 23±1 17±0.4 21±1 17±1 20±1 4±0.4 0 8±1 0 34±1 42±0.2 24±1 26±2 56±2 0 – 3.3 
Hf –  –  –  –  –  –  –  –  –  –  –  –  8±0.6 –  –  –  –  –  –  – 3 
In –  –  –  –  –  –  –  –  –  2±0.3 –  –  –  –  –  –  –  –  23534±

118 
10 0.05 

Li 40±1.3 55±6 61±4 89±3 47±2 108±4 80±4 68±2 110±4 34±1 35±1 58±3 77±4 187±3 167±5 94±2 142±1 56±1 9±0.3 1400 13 
Lu 1±0.03 1±0 1±0.1 –  1±0.02 –  –  –  1±0.02 –  1±0.2 –  –  2±0.1 2±0.02 2±0.04 2±0.1 1±0.03 –  – 0.3 
Mn 1345±4

1 
588±36 480±42 537±9 612±2 521±3 558±6 424±3 539±4 368±1

2 
490±5 609±1

2 
280±9 275±4 72±0.3 141±3 629±1 664±1

0 
14±0.3 250000 1400 

Nb 15±1 16±1 14±2 23±1 16±1 12±0.3 15±1 12±1 13±0.3 –  –  10±0.2 –  41±1 53±0.4 33±1 24±1 33±1 –  1400 11 
Nd –  –  –  –  –  –  7±0.3 –  –  –  –  –  –  43±2 18±1 29±1 13±1 –  –  – 16 
Ni 69±7 140±15 247±13 47±2 214±8 111±1 77±2 50±3 80±4 8±1 170±7 94±4 20±3 57±1 155±2 55±1 115±1 148±3 7±0.4 10200 105 
Pr –  –  –  –  –  –  –  –  –  –  –  –  –  12±1 1±0.01 8±0.3 7±1 –  –  – 3.9 
Rb 124±3 146±4 143±1 186±6 120±1 183±2 174±3 163±7 174±4 1221±

15 
1120±1
5 

811±1
8 

1119±
12 

134±3 118±5 137±4 166±1 117±1 113±3 – – 

Sb 274±10 557±17 895±62 1454±2
5 

310±7 1222±3 1049±9 612±8 2107±3
8 

255±9 836±24 828±2
4 

545±2
3 

1±0.3 1±0.03 1±0.1 –  1406±
31 

242±14 9900 0.2 

Se 1±0.2 1±0 1±0.2 4±0.1 1±0.01 3±0.2 3±0.4 2±0.1 3±0.1 3±0.3 19±4 2±0.5 20±1 3±0.2 2±0.1 2±0.3 2±1 –  2997±5
3 

2000 0.05 

Sm - - - 1±0.1 0 1±0.1 0 1±0.2 0 17±0.4 5±0.6 22±3 1±0.5 10±1 3±0.5 7±0.4 –  –  –  – 3.5 
Sr 262±6 244±17 216±12 189±5 234±2 192±1 224±2 212±6 253±1 63±2 191±7 435±1

9 
475±2
4 

946±1
6 

347±5 549±1
2 

587±2 284±7 3±0.1 – 260 

Ta –  –  –  –  –  –  –  –  –  –  –  –  –  –  –  –  –  –  –  170 1 
Tb 2±0.2 2±0.2 1±0.1 2±0.2 2±0.1 2±0.2 1±0.1 1±0.1 2±0.2 5±0.4 10±1 8±1 6±0.4 3±0.2 2±0.03 2±0.03 2±0.1 0 1±0.01 – 0.6 
Te 5±0.4 5±0.4 5±1 2±0.4 128±2 5±0.1 6±0.7 5±0.4 10±0.3 10±1 4±1 1±0.5 –  –  –  –  –  13±1 2616±1

26 
– 0.02 

Ti 8536±1
81 

9329±2
1 

9004±1
27 

5296±1
19 

8155±8
2 

7300±1
1 

8691±9 7489±1
12 

7826±8
9 

383±7 3299±1
3 

15380
±155 

152±8 5766±
51 

10577
±92 

4060±
34 

3956±
22 

–  5±0.5 310000 5400 

Tm –  –  –  –  –  –  –  –  –  –  –  –  –  –  –  –  –  –  –  – 0.32 
V 21±1 21±1 19±2 28±1 22±1 18±0.3 18±1 16±1 17±1 47±3 52±3 48±3 32±2 179±4 296±3 156±3 132±1 26±1 0 1400 230 
W 218±13 225±16 270±21 443±8 144±3 518±2 326±1 354±8 629±14 2781±

14 
1607±1
9 

517±1
6 

1334±
17 

12±0.4 14±2 10±1 13±0.3 99±1 1410±5
6 

12000 1 

Y 10±2 13±2 8±1 11±0.3 11±0.3 13±1 14±1 10±0.4 12±1 1±0.3 5±0.1 7±1 4±0.3 64±2 41±1 51±2 25±2 1±0.04 –  – 20 
Yb 1±0.01 1±0.1 –  1±0.01 2±0.2 1±0.02 1±0.01 –  1±0.02 –  1±0.2 1±0.2 1±0.2 9±0.2 7±0.04 7±0.2 4±0.3 1±0.03 –  – 2.2 

 ‘–‘stands for ‘Below Detection Limit’ or ‘Data Not Available’. a IFA Incineration Fly Ash, MFA Molten Fly Ash, TPP-FA Thermal Power Plant Fly Ash, MMA Non-Ferrous Metal Processing Plant Ash.  
 b COQ: Crude Ore Quality (mg kg–1) ; COC: Concentration in the crust (mg kg–1); Data extracted from Halada et al. (Halada et al. 2001).  
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Figure 1: Comparative availability of rare metals in different waste ash types (IFA Incineration Fly Ash, MFA Molten Fly Ash, TPP-FA 
Thermal Power Plant Fly Ash, MMA Non-Ferrous Metal Processing Plant Ash).  
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Figure 2: Chelant-assisted extraction yield of rare metals from the different waste ash types 

with different chelants (EDTA, EDDS, and HIDS) (IFA Incineration Fly Ash, S-6; MFA 

Molten Fly Ash, S-11; TPP-FA Thermal Power Plant Fly Ash, S-17; MMA Non-Ferrous 

Metal Processing Plant Ash, S-19; chelant concentration, 0.01 mol L– 1; pH 7; temperature, 

25 ± 2 °C; n = 3).  
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Figure 3: Effect of chelant concentration on the extraction yield of rare metals from the 

different waste ash types (IFA Incineration Fly Ash, S-6; MFA Molten Fly Ash, S-11; TPP-

FA Thermal Power Plant Fly Ash, S-17; MMA Non-Ferrous Metal Processing Plant Ash, S-

19; chelant, EDTA; pH 7; temperature, 25 °C; n = 3).  
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Figure 4: Effect of varying temperature conditions on the extraction yield of rare metals from 

the different waste ash types (IFA Incineration Fly Ash, S-6; MFA Molten Fly Ash, S-11; 

TPP-FA Thermal Power Plant Fly Ash, S-17; MMA Non-Ferrous Metal Processing Plant Ash, 

S-19; chelant, EDTA; chelant concentration, 0.01 mol L–1; pH 7; temperature, 25 °C; n = 3).  
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Figure 5: Effect of ultrasound irradiation on the extraction yield of rare metals from the 

different waste ash types (IFA Incineration Fly Ash, S-6; MFA Molten Fly Ash, S-11; TPP-

FA Thermal Power Plant Fly Ash, S-17; MMA Non-Ferrous Metal Processing Plant Ash, S-

19; chelant, EDTA; chelant concentration, 0.01 mol L–1; pH 7; temperature, 25 °C; n = 3). 
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