A New Synthetic Method for the Preparation of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Didehydroamino Acid Derivatives by Means of a Wittig-Type Reaction. Syntheses of ($2 S, 4 S$)- and ($2 R, 4 R$)-4-Hydroxyprolines

Rumi Kimura, Tanemasa Nagano, and Hideki Kinoshita*
Department of Chemistry, Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192

(Received June 12, 2002)

Abstract

Ethyl N-Boc- and N-Z- α-tosylglycinates were reacted with a variety of aldehydes in the presence of tributylphosphine and a base to afford the corresponding α, β-didehydroamino acid derivatives with high (Z)-selectivity in good yields. Moreover, ethyl (4S)- and (4R)-2-(N-Boc-amino)-4,5-isopropylidenedioxy-2-pentenoates prepared by the present method were converted to $(2 S, 4 S)$ - and $(2 R, 4 R)$-4-hydroxyprolines, respectively.

Increasing interest in α, β-didehydroamino acids has developed in recent years based both on their importance as chemical products and on their existence in biologically active natural products. ${ }^{\text {1a-g }}$ Many reports related to the preparation of α, β-didehydroamino acids have been published. ${ }^{2 a-i}$ Moreover, intensive studies on the asymmetric hydrogenation of α, β-didehydroamino acid derivatives have also been established since they would provide a quite efficient route to optically active usual and unusual amino acid derivatives, ${ }^{3 a-d}$ which are widely used in various fields. Therefore, the development of a new and effective method for the preparation of α, β-didehydroamino acid derivatives is one of the important and attractive subjects in organic chemistry.

In previous papers, we reported that 3,4 -disubstituted 5 -to-syl-1,5-dihydro- 2 H -pyrrole-2-one reacted with 2 -formyl pyrroles in the presence of tributylphosphine $\left(\mathrm{Bu}_{3} \mathrm{P}\right)$ and a base to afford the corresponding C / D ring component of phycobilins, ${ }^{4 a-c}$ and ethyl N - t-butoxycarbonyl (Boc)- and N-benzyloxycarbonyl (Z)- α-tosylglycinates ($\mathbf{1 a}$ and $\mathbf{1 b}$) were reacted with a variety of nitro compounds in the presence of a base to afford the corresponding α, β-didehydroamino acid derivatives with high (Z)-selectivity in good yields. ${ }^{5}$

In this paper, we now wish to report on a new method for preparing α, β-didehydroamino acid derivatives starting from $\mathbf{1 a}$ or $\mathbf{1 b}$ and a variety of aldehydes in the presence of $\mathrm{Bu}_{3} \mathrm{P}$ and a base. The results are summarized in Table 1.

First, compound 1a was treated with 2.0 molar amounts of acetaldehyde in the presence of 1.5 molar amounts of $\mathrm{Bu}_{3} \mathrm{P}, 1.2$ molar amounts of sodium carbonate, and a catalytic amount of tetrabutylammonium bromide in THF at room temperature to afford the desired ethyl 2-(N-Boc)amino-2-butenoate (2a) as a mixture of (Z) - and (E)-isomers in 96% yield, in which the (Z) isomer was predominantly formed (Entry 1). The reaction of 1a with simple aldehydes succeeded in the formation of a variety of N-Boc- α, β-didehydroamino acid derivatives (3a, 4a, and 5a) in satisfactory yields, respectively (Entries 2-4). Upon the treatment of $\mathbf{1 a}$ with p-methoxybenzaldehyde, $\mathbf{6 a}$ was obtained in unsatisfactory yield (Entry 5). When the reaction was
carried out in toluene in the presence of 2.0 molar amounts of tetraethyl orthotitanate $\left[\mathrm{Ti}(\mathrm{OEt})_{4}\right]$, the yield of $\mathbf{6 a}$ could be improved up to 70% yield (Entry 6). With 4-nitrobutanal (13) bearing both nitro- and aldehyde groups, only the aldehyde group reacted with 1a chemoselectively to provide 7a in good yield (Entry 7). Furthermore, the reaction of $\mathbf{1 a}$ with $N, N^{\prime}, N^{\prime \prime}-$ protected 3-guanidinopropanal (14) underwent very smoothly at $60^{\circ} \mathrm{C}$ for 1.5 h under the same reaction conditions to afford the desired product $8 \mathbf{8}$ as a single isomer with (Z)-configuration in good yield.

Similarly, the reaction of $\mathbf{1 a}$ with $1-Z$-indole-3-carboxaldehyde (15), 1-Boc-indole-3-carboxaldehyde (16), and 1-Boc-Imidazole-4-carboxaldehyde (17) afforded the corresponding 9a, 10a, and 11a with only the (Z)-configuration in good yields, respectively (Entries 9-11). With (R)-isopropylideneglyceraldehyde, ${ }^{6}$ compound 12a with predominantly the (Z) configuration ($Z / E=95 / 5$) was obtained in 94% yield (Entry 12). In the same way, a variety of α, β-didehydroamino acid derivatives $\mathbf{2 b} \mathbf{- 1 1 b}$ were successfully synthesized by the reaction of $\mathbf{1 b}$ and various aldehydes in good yields, respectively (except for Entry 19).

Although the precise mechanism of the present coupling reaction is still an open question, one possible reaction pathway is shown in Scheme 1. Initially, the Schiff base was generated from $\mathbf{1 a}$ or $\mathbf{1 b}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$; a subsequent addition of the $\mathrm{Bu}_{3} \mathrm{P}$ to the resulting base resulted in the formation of the ylide, which was reacted with aldehyde and converted into a fourmembered cyclic intermediate. Finally, elimination of $\mathrm{Bu}_{3} \mathrm{P}=\mathrm{O}$ through transition state T_{2} with less steric repulsion than that of transition state T_{1} occurred to provide a product with predominantly the (Z)-configuration.

In the past, it had been reported that ($2 S, 4 S$)-4-hydroxyproline (28a) has biological activities, ${ }^{7 a-c}$ and that 28a and 28b ${ }^{8}$ are also useful as chiral building blocks for the syntheses of a variety of valuable substances. Concerning synthetic studies of 28, the interconversion of ($2 S, 4 R$)-4-hydroxyproline and its enantiomer to 28 has been positively developed; ${ }^{9 \mathrm{a}-\mathrm{c}}$ however, there are only a few reports concerning asymmetric synthesis,

Table 1. Preparation of Dehydroamino Acid Derivatives

Entry	Substrate	R^{1}	a	Temp	Time	Solvent	Product	Yield/\%	$Z / E^{\text {a }}$
1	1a	Me	2.0	r.t.	overnight	THF	2 a	96	89/11
2	1a	Et	2.0	r.t.	overnight	THF	3 a	82	90/10
3	1a	${ }^{i} \mathrm{Pr}$	2.0	r.t.	48 h	THF	4 a	84	93/7
4	1a	Ph	2.0	r.t.	overnight	THF	5a	79	100/0
5	1a	$p-\mathrm{MeOC} \mathrm{C}_{6} \mathrm{H}_{4}$	1.5	r.t.	24 h	THF	6 a	55	86/14
$6^{\text {b) }}$	1a	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	1.5	r.t.	24 h	PhCH_{3}	6 a	70	89/11
7	1a	$\mathrm{O}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3}$	2.0	r.t.	48 h	THF	7a	84	89/11
8	1a		2.0	$60^{\circ} \mathrm{C}$	1.5 h	THF	8a	84	100/0
$9^{\text {c }}$	1a		3.0	r.t.	67 h	PhCH_{3}	9a	73	100/0
$10^{\text {c) }}$	1a		3.0	r.t.	67 h	PhCH_{3}	10a	77	100/0
11	1a	BocN=N	2.0	r.t.	overnight	THF	11a	79	100/0
12	1a	知	2.0	r.t.	6 h	THF	12a	94	95/5
13	1b	Me	2.0	r.t.	overnight	THF	2b	78	85/15
14	1b	Et	2.0	r.t.	overnight	THF	3b	79	90/10
15	1b	${ }^{i} \mathrm{Pr}$	2.0	r.t.	48 h	THF	4b	76	84/16
16	1b	Ph	2.0	r.t.	overnight	THF	5b	71	100/0
$17^{\text {b }}$	1b	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	1.5	r.t.	24 h	PhCH_{3}	6b	77	93/7
18	1b	$\mathrm{O}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3}$	2.0	r.t.	48 h	THF	7b	73	90/10
19	1b		2.0	r.t.	70 h	THF	8b	<25	-
20	1b		2.0	$60^{\circ} \mathrm{C}$	1.5 h	THF	8b	76	100/0
$21^{\text {c) }}$	1b	(3.0	r.t.	67 h	PhCH_{3}	9b	60	100/0
$22^{\text {c) }}$	1b		3.0	r.t.	67 h	PhCH_{3}	10b	77	100/0
23	1b	$\begin{array}{cc} \infty \\ \text { Bock } \\ =N \end{array}$	2.0	r.t.	overnight	THF	11b	85	100/0

a) Determined by NOE measurement. b) In cases of entries 6 and 17, 2.0 molar amounts of $\mathrm{Ti}(\mathrm{OEt})_{4}$ were added. c) In cases of entries $9,10,21$, and 22, 3.0 molar amounts of $\mathrm{Ti}(\mathrm{OEt})_{4}$ were added.
in which an α-amino acid derivative is used as the starting material. ${ }^{10, \mathrm{~b}}$ We are thus interested in the asymmetric synthesis of $\mathbf{2 8}$ using compound $\mathbf{1 2}$ (Scheme 2).

First, the hydrolysis of the isopropylidene protecting group of $\mathbf{1 2 a}$ was carried out with 0.5 M HCl aq in ethanol at room temperature overnight to afford the corresponding diol deriva-
tive 18a and a by-product 19a in 85% and 11% yields, respectively. Subsequently, conversion of the diol compound 18a to 27a was attempted under Mitsunobu reaction conditions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Unfortunately, only the epoxide derivative $\mathbf{2 0}$ was obtained in 97% yield ${ }^{11}$ instead of the expected 27a. Therefore, we examined the conversion of 18a to 23a and the following

Scheme 1.
cyclization of 23a to compound 25a. Thus, in order to protect the primary hydroxy group of 18a selectively, compound 18a was treated with t-butylchlorodimethylsilane (TBDMS-Cl, 1.1 equiv) in the presence of 1.2 equivalents of triethylamine (TEA) and a catalytic amount of 4-dimethylaminopyridine (DMAP) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Compound 21a was obtained in 84% yield, which was furthermore converted into compound 22a in quantitative yield by protection of the secondary hydroxy group by means of t-butylchlorodiphenylsilane (TBDPS-Cl, 1.2 equiv) and imidazole (3 equiv) in DMF. Deprotection of the TBDMS group of 22a was easily achieved with 1.5 M HCl aq in ethanol at room temperature for 2 h to give compound 23a in 98% yield. The cyclization reaction was crucially dependent on the reaction temperature. Namely, when the cyclization of 23a to 25a was carried out at room temperature for 2 d using 2 equivalents of diethyl azodicarboxylate (DEAD) and 2 equivalents of $\mathrm{Ph}_{3} \mathrm{P}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ethyl 2-pyrrolecarboxylate (24) was obtained exclusively in 52% yield, whereas the reaction at $0^{\circ} \mathrm{C}$ provided the desired product 25 a in 61% yield, which was subsequently hydrogenated over $5 \% \mathrm{Pd}-\mathrm{C}$ in ethanol under a hydrogen atmosphere. Consequently, hydrogenation took place with over 99% diastereoselectivity to give the desired ($2 S, 4 S$)-4-hydroxyproline derivative 26a in quantitative yield, whose recrystallization from hexane gave optically pure 26a. The stereochemistry of 26a was determined by comparing the specific rotation value of compound 28a derived from 26a with that of an authentic sample. ${ }^{12}$ Deprotection of the TBDPS group of 26a with tetrabutylammonium fluoride (TBAF) in THF afforded 27a in 91% yield. Subsequent hydrolysis of the ester group with lithium hydroxide, and deprotection of the N-Boc group with hydrogen chloride, followed by neutralization with TEA, afforded optically pure $28 a^{12}$ in 83% yield based on 27a.

In the same pathway as described for compound 28a, optically pure ($2 R, 4 R$)-4-hydroxyproline ($\mathbf{2 8 b}$) was synthesized starting from compound 12b, as shown in Scheme 2.

We developed a new method for preparing a variety of α, β didehydroamino acid derivatives starting from $\mathbf{1 a}$ or $\mathbf{1 b}$ and various aldehydes by a Wittig-type reaction using $\mathrm{Bu}_{3} \mathrm{P}$ and a base. Also, compounds $\mathbf{1 2 a}$ and 12b, prepared by the present coupling method, proved to be useful as starting material for the asymmetric syntheses of 4-hydroxyprolines, respectively.

Experimental

All of the melting points were determined with a micro melting apparatus (Yanagimoto Seisakusho) and were uncorrected. The ${ }^{1} \mathrm{H}$ NMR, IR, and MS spectra were recorded on JEOL JNM-LA $400 \mathrm{FT}(400 \mathrm{MHz}$) and LA 300 FT (300 MHz) NMR spectrometers, a JASCO FT/IR-230 infrared spectrometer, and a JEOL SX102A mass spectrometer, respectively. The chemical shifts of NMR are reported in the δ-scale relative to TMS as an internal standard. All of the solvents were distilled and stored over a drying agent. Thin-layer chromatography (TLC) and flash column chromatography were performed using Merck's silicagel $60 \mathrm{PF}_{254}$ (Art. 7749) and Cica-merck's silicagel 60 (No. 9385-5B), respectively.

A General Procedure for Synthesis of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Didehydroamino Acid Derivatives: To a solution of acetaldehyde ($18 \mathrm{mg}, 0.40$ $\mathrm{mmol})$, $\mathbf{1 a}(72 \mathrm{mg}, 0.20 \mathrm{mmol})$, and $\mathrm{Bu}_{3} \mathrm{P}(61 \mathrm{mg}, 0.30 \mathrm{~mol})$ in THF (5 mL) was added a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}(26 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$(cat.) at room temperature under a N_{2} atmosphere. After the mixture was stirred at this temperature overnight, the solvent was removed in vacuo to afford a residue, which was partitioned between ethyl acetate and water. The aqueous layer was extracted with ethyl acetate, and the combined extracts were washed with brine, dried over anhydrous MgSO_{4}, and concentrat-

$$
\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}]{\begin{array}{l}
\text { TBDMS-Cl (1.1 eq.) } \\
\mathrm{Et}_{3} \mathrm{~N} \text { (1.2 eq.) } \\
\text { DMAP (cat.) }
\end{array}}
$$

$$
\begin{aligned}
& \operatorname{DEAD}(1.5 \mathrm{eq.}) \\
& \mathrm{Ph}_{3} \mathrm{P} \text { (1.5 eq.) }
\end{aligned} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 97 \%
$$

(OOCN

eZl

$\begin{array}{ll}\text { 19a }\left(R^{3}=\mathrm{CH}_{2} \mathrm{OH}, R^{4}=H\right) & 11 \% \\ \text { 19b }\left(R^{3}=H, R^{4}=\mathrm{CH}_{2} O H\right) & 11 \%\end{array}$
$19 \mathrm{~b}\left(\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{CH}_{2} \mathrm{OH}\right.$)

18a($R^{1}=O H, R^{2}=H$) $\quad \begin{aligned} & 85 \% \\ & 85 \%\end{aligned}$

18b ($\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{O}$

$$
R^{1} R^{2}
$$

3) $\mathrm{Et}_{3} \mathrm{~N}$ (1.05 eq.), $\mathrm{EtOH} \longrightarrow$

$\xrightarrow{\substack{\left.\text { DEAD (2.0 eq.) } \\ \mathrm{Ph}_{3} \mathrm{P} \text { (2.0 eq.) }\right)}}$

N

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.
52%
ed under reduced pressure. The residue was subjected to preparative $\operatorname{TLC}\left(\mathrm{SiO}_{2}\right.$, hexane: ethyl acetate $\left.=5: 1, \mathrm{v} / \mathrm{v}\right)$ to afford ethyl 2-(N-Boc-amino)-2-butenoate (2a); $44 \mathrm{mg}, 96 \%$: (Z)- and (E)-isomers were separable.

The physical and spectral data of compounds $\mathbf{2 a - 6 a}$ and $\mathbf{2 b}-\mathbf{6} \mathbf{b}$ were in agreement with those of products prepared previously. ${ }^{5}$ Those of prepared compounds 7a-12a and 7b-11b are given in the following.

Ethyl 2-(N-Boc-amino)-6-nitro-2-hexenoate (7a) (Z/E = 89/ 11): A pale-yellow oil; IR of a mixture of isomers (neat) 3341 , 2980, 2935, 1715, 1660, 1554, 1493, 1368, 1265, 1164, 1096, 1048, 1029, 860, $777 \mathrm{~cm}^{-1}$; (Z)-form; ${ }^{1} \mathrm{H}$ NMR (400 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 2.21$ (quintet, $J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{dt}, J=7.1,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.10-6.20(\mathrm{br}, 1 \mathrm{H}), 6.45(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H})$; When γ-methylene protons were irradiated, 2.3% and 9.3% of NOE were observed for the NH proton and the olefinic proton, respectively. (E)-form; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ $1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 2.20$ (quintet, $J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.67$ (dt, $J=7.1,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.42$ (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.65-6.75(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H})$. EI-MS m/z 302 ($\mathrm{M}^{+} ; 0.6 \%$).

Ethyl N^{α}-Boc- N^{\prime}-benzyl- $N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}-\operatorname{tris}($ Boc $)-\alpha, \beta$-didehydroargininate ($\mathbf{8 a}$) $(\boldsymbol{Z} / \boldsymbol{E}=\mathbf{1 0 0} / \mathbf{0})$: (Z)-form; An oil; IR (neat) 3345, 2979, 2932, 1731, 1713, 1659, 1496, 1455, 1371, 1245, 1134, 1078, 1047, 977, 918, 854, 813, 767, 732, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H})$, $1.46(\mathrm{~s}, 9 \mathrm{H}+9 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 2.43(\mathrm{dt}, J=6.8,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.41(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H})$, $6.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.40-6.60(\mathrm{br}, 1 \mathrm{H}), 7.22-7.40(\mathrm{~m}, 5 \mathrm{H})$. When γ-methylene protons were irradiated, 4.0% and 11.8% of NOE were observed for the NH proton and the olefinic proton, respectively. EI-MS $m / z 690\left(\mathrm{M}^{+} ; 19.9 \%\right)$.

Ethyl N^{α}-Boc- N^{\prime}-Z- α, β-didehydrotryptophanate (9a) (Z/E $=\mathbf{1 0 0} / \mathbf{0}):$ To a solution of $\mathrm{Ti}(\mathrm{OEt})_{4}(68 \mathrm{mg}, 0.30 \mathrm{mmol})$ in toluene (5 mL) was added a suspension of $\mathrm{Bu}_{3} \mathrm{P}(61 \mathrm{mg}, 0.30 \mathrm{mmol})$, 1-Z-indole-3-carboxaldehyde (14) ($90 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($26 \mathrm{mg}, 0.24 \mathrm{mmol}$), and $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$(cat.) in toluene (2 mL) at room temperature under a N_{2} atmosphere; the mixture was stirred for 67 h . Then, after the addition of a saturated aqueous solution of NaHCO_{3} to the reaction mixture, an insoluble substance was filtered and washed with ethyl acetate. The filtrate was concentrated in vacuo to afford a residue, which was partitioned between ethyl acetate and water. The aqueous layer was extracted with ethyl acetate, and the combined extracts were washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was subjected to preparative TLC $\left(\mathrm{SiO}_{2}\right.$, hexane:ethyl acetate $=5: 1, \mathrm{v} / \mathrm{v}$) to afford 9 a in 73% yield (102 mg): An oil ; IR (neat) $3329,2979,2933,1731,1707,1642$, $1485,1456,1393,1367,1244,1163,1087,1047,1028,759 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~s}$, $9 \mathrm{H}), 4.32(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 6.20-6.30(\mathrm{br}, 1 \mathrm{H})$, $7.27-7.50(\mathrm{~m}, 5 \mathrm{H}+2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.91(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$. When the proton at the 2 position of the indole ring was irradiated, 3.8% and 1.3% of NOE were observed for the NH proton and the olefinic proton, respectively. When the olefinic proton was irradiated, 1.8% and 12.9% of NOE were observed for the proton at the 2-position of the indole ring and the proton at the 4 -position of the indole ring, respectively. EI-MS $m / z 464$ ($\mathrm{M}^{+} ; 3.0 \%$).

Ethyl N^{α}-Boc- $N^{\text {in }}$-Boc- α, β-didehydrotryptophanate (10a)
$(\boldsymbol{Z} / \boldsymbol{E}=\mathbf{1 0 0} / \mathbf{0})$: \quad Compound 10a was prepared from 1a and 1-Boc-indole-3-carboxaldehyde (15) in the same way as described for compound 9a. (Z)-form; Mp 125.0-126.0 ${ }^{\circ} \mathrm{C}$ (ethyl acetatehexane); IR (KBr) 3324, 2979, 1731, 1714, 1644, 1585, 1455, 1372, 1282, 1239, 1161, 1084, 1048, 918, 895, 842, $768 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$, $1.68(\mathrm{~s}, 9 \mathrm{H}), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.10-6.30(\mathrm{br}, 1 \mathrm{H}), 7.27-$ $7.40(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}$, $1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$. Found: C, 64.00; H, 7.14; $\mathrm{N}, 6.11 \%$. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 64.17; H, 7.14; N, 6.11%. When the proton at the 2 -position of the indole ring was irradiated, 3.6% and 2.2% of NOE were observed for the NH proton and the olefinic proton, respectively. When the olefinic proton was irradiated, 2.3% and 12.4% of NOE were observed for the proton at the 2 -position of the indole ring and the proton at the 4 -position of the indole ring, respectively.

Ethyl N^{α}-Boc- $N^{\text {im }}$-Boc- α, β-didehydrohistidinate (11a) (Z/E $=100 / 0)$: Compound 11a was prepared from 1a and $1-$ Boc-imi-dazole-4-carboxaldehyde (16). (Z)-form; An oil; IR (neat) 3289, 2979, 2930, 1758, 1717, 1652, 1557, 1507, 1457, 1372, 1253, 1152, 1065, 1013, 910, 839, 771, $745 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}), 4.30$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.91$ $(\mathrm{s}, 1 \mathrm{H}), 8.96-9.06(\mathrm{br}, 1 \mathrm{H})$. When ${ }^{t} \mathrm{Bu}$ protons of the Boc group of the imidazole ring were irradiated, 6.4% of NOE was observed for the ${ }^{t} \mathrm{Bu}$ protons of the N^{α}-Boc group. EI-MS $m / z 381\left(\mathrm{M}^{+}\right.$; 12.4%).

Ethyl (4S)-2-(N-Boc-amino)-4,5-isopropylidenedioxy-2-pentenoate (12a) $(\boldsymbol{Z} / \boldsymbol{E}=\mathbf{9 5} / \mathbf{5})$: Recrystallization from hexane gave pure Z-isomer. (Z)-form; $\mathrm{Mp} 81.9-83.0^{\circ} \mathrm{C}$ (hexane); $[\alpha]_{\mathrm{D}}^{25}=$ $-11.4^{\circ}\left(c 0.77, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3329, 2983, 2936, 1730, 1715, 1666, 1504, 1455, 1370, 1318, 1247, 1160, 1057, 1030, 849, $771 \mathrm{~cm}^{-1}$; (Z)-form; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 1.32(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.47$ (s, 3H), $3.84(\mathrm{dd}, J=$ $6.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{dd}, J=6.6$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84$ (ddd, $J=6.6,8.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-6.50(\mathrm{br}, 1 \mathrm{H})$. When the γ-methine proton of the major product was irradiated, 1.5% and 3.6% of NOE were observed for the NH proton and the olefinic proton, respectively. Found: C, $57.02 ; \mathrm{H}, 8.19 ; \mathrm{N}, 4.35 \%$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{6}$: C, 57.13; H, 7.99; N, 4.44\%. (E)-form; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H})$, $3.63-3.70(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.35(\mathrm{~m}, 2 \mathrm{H}+1 \mathrm{H}), 5.30-5.38(\mathrm{~m}, 1 \mathrm{H})$, 6.74-6.87 (m, 1H). A mixture of 12a could be used in a subsequent reaction without recrystallization.

Ethyl 2-(N-Z-Amino)-6-nitro-2-hexenoate (7b) (Z/E = 90/ 10): An oil; IR of a mixture of isomers (neat) $3320,3065,3033$, 2981, 1707, 1660, 1549, 1499, 1455, 1378, 1227, 1149, 1097, 1049, 905, 864, 772, 753, $699 \mathrm{~cm}^{-1}$; (Z)-form; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.23$ (quintet, $J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{dt}, J=6.8 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.38$ (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.14 (s, 2H), 6.30-6.40 (br, $1 \mathrm{H}), 6.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 5 \mathrm{H})$. When γ-methyl protons were irradiated, 2.1% and 9.0% of NOE were observed for the NH proton and the olefinic proton, respectively. (E)-form; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}$), 2.19 (quintet, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{dt}, J=6.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.42(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{t}, J=7.3$ Hz, 1H), 6.90-7.00 (br, 1H), 7.30-7.40 (m, 5H). EI-MS $m / z 336$ ($\mathrm{M}^{+} ; 1.1 \%$).

Ethyl $\quad N^{\alpha}-Z-N^{\prime \prime}-$ Benzyl- $N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}-\operatorname{tris}($ Boc $)-\alpha, \beta$-didehydro-
argininate $(\mathbf{8 b})(\boldsymbol{Z} / \boldsymbol{E}=\mathbf{1 0 0} / \mathbf{0})$: (Z)-form; An oil; IR (neat) 3331, 2979, 2934, 1731, 1715, 1651, 1498, 1455, 1369, 1247, 1141, 1078, 1050, 978, 916, 854, 813, 734, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.44$ $(\mathrm{s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 2.30(\mathrm{dt}, J=6.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H})$, 6.37 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.90(\mathrm{br}, 1 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}+$ $5 \mathrm{H})$. When the γ-methylene protons were irradiated, 5.7% and 12.4% of NOE were observed for the NH proton and the olefinic proton, respectively. EI-MS $m / z 724$ ($\mathrm{M}^{+} ; 6.6 \%$)

Ethyl $N^{\alpha}-Z-N^{\text {in }}-Z-\alpha, \beta$-Didehydrotryptophanate (9b) (Z/E $=$ 100/0): Compound 9 b was prepared from $\mathbf{1 b}$ and 1-Z-indole-3carboxaldehyde (14) in the same way as described for compound 9a. (Z)-form; Mp 91.0-92.0 ${ }^{\circ} \mathrm{C}$ (ethyl acetate-hexane); IR (KBr) 3313, 2929, 2853, 1738, 1715, 1643, 1586, 1498, 1455, 1394, 1308, 1245, 1141, 1088, 757, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.15$ $(\mathrm{s}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 6.36-6.44(\mathrm{br}, 1 \mathrm{H}), 7.30-7.41(\mathrm{~m}, 5 \mathrm{H}+5 \mathrm{H}$ $+2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 8.17$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$. When the proton at the 2 -position of the indole ring was irradiated, 4.1% and 2.5% of NOE were observed for the NH proton and the olefinic proton, respectively. When the olefinic proton was irradiated, 2.6% and 11.9% of NOE were observed for the proton at the 2-position of the indole ring and the proton at the 4-position of the indole ring, respectively. Found: C , $69.58 ; \mathrm{H}, 5.28 ; \mathrm{N}, 5.39 \%$. Calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}, 69.87 ; \mathrm{H}$, 5.26; N, 5.62\%.

Ethyl N^{α}-Z- $N^{\text {in }}$-Boc- α, β-didehydrotryptophanate (10b) (Z/E $=100 / 0)$: Compound 10 b was prepared from 1 b and 1-Boc-in-dole-3-carboxaldehyde (15) in the same way as described for compound 9a. (Z)-form; An oil; IR (neat) 3036, 2927, 2933, $1732,1706,1642,1545,1497,1455,1370,1329,1308,1251$, $1153,1088,1052,1027,907,861,842,747,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H}), 4.30$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 6.25-6.40(\mathrm{br}, 1 \mathrm{H}), 7.28-7.50$ $(\mathrm{m}, 5 \mathrm{H}+2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H})$, $8.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$. When the proton at the 2-position of the indole ring was irradiated, 4.7% and 2.3% of NOE were observed for the NH proton and the olefinic proton, respectively. When the olefinic proton was irradiated, 2.5% and 12.0% of NOE were observed for the proton at the 2-position of the indole ring and the proton at the 4-position of the indole ring, respectively. EI-MS $m / z 464\left(\mathrm{M}^{+} ; 9.8 \%\right)$.

Ethyl N^{α}-Z- $N^{\text {im }}$-Boc- α, β-didehydrohistidinate (11b) (Z/E= 100/0): (Z)-form; An oil; IR (neat) 3274, 2982, 2943, 2917, $1766,1732,1652,1555,1473,1371,1253,1149,1061,1014$, 910, $840,731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 1.29(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H})$, $6.46(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 5 \mathrm{H}+1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 9.42-9.48(\mathrm{br}$, $1 \mathrm{H})$. When ${ }^{t} \mathrm{Bu}$ protons of the Boc group of the imidazole ring were irradiated, 2.1% of NOE was observed for the benzylic protons of the Z-group. EI-MS $m / z 415$ ($\mathrm{M}^{+} ; 21.6 \%$).

4-Nitrobutanal (13): To a suspension of pyridinium chlorochromate $(405 \mathrm{mg}, 2.00 \mathrm{mmol})$ and molecular sieves $4 \mathrm{~A}(1.00 \mathrm{~g})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of 4-nitro-1-butanol $(119 \mathrm{mg}, 1.0 \mathrm{mmol})^{5}$ in 0.3 mL of acetone at room temperature with vigorous stirring. After 1 h the solvent was removed in vacuo and the residue was triturated with ether. An insoluble substance was filtered off and the filtrate was concentrated under reduced pressure to afford a residue, which was subjected to preparative TLC $\left(\mathrm{SiO}_{2}\right.$; hexane: ethyl acetate $\left.=2: 1, \mathrm{v} / \mathrm{v}\right)$. An oily product
was obtained in 47% yield (56 mg). IR (neat) $2935,1720,1548$, 1436, 1381, 1271, 1221, 1077, 988, 947, 872, 830, $759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 2.31$ (quintet, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.68 $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.80(\mathrm{~S}, 1 \mathrm{H})$. $3-\left[N^{\prime \prime}\right.$-Benzyl- $N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$-tris(Boc)guanidino]-1-propanal (14): To a solution of $N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$-tris(Boc)guanidine (3.769 g, $10.49 \mathrm{mmol}),{ }^{13} \mathrm{Ph}_{3} \mathrm{P}(4.126 \mathrm{~g}, 15.73 \mathrm{mmol})$, and benzyl alcohol $(1.699 \mathrm{~g}, 15.73 \mathrm{mmol})$ in dry toluene $(20 \mathrm{~mL})$ was slowly added DEAD ($2.740 \mathrm{~g}, 15.73 \mathrm{mmol}, 40 \%$ toluene solution) at room temperature under a N_{2} atmosphere. The solution was warmed at 60 ${ }^{\circ} \mathrm{C}$ for 2 h and evaporated under reduced pressure to give a residue, which was treated with $\mathrm{CH}_{3} \mathrm{OH}$. An insoluble substance was filtered and the filtrate was concentrated in vacuo. The residual oil was purified by silica-gel column chromatography (eluent, hexane:ethyl acetate $=20: 1 \mathrm{v} / \mathrm{v}$) to give $N^{\prime \prime}$-benzyl- $N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$ tris(Boc)guanidine in 81% yield (a pale yellow oil, 3.832 g). IR (neat) $3240,2970,2931,1718,1655,1458,1076,980,948,855$, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}$ $+9 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}), 10.6-10.70(\mathrm{br}, 1 \mathrm{H})$; EIMS m/z 449 ($\left.\mathrm{M}^{+} ; 3.6 \%\right)$.

To a solution of the foregoing $N^{\prime \prime}$-benzyl- $N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$-tris(Boc)guanidine $(5.008 \mathrm{~g}, 11.14 \mathrm{mmol}), \mathrm{PPh}_{3}(5.843 \mathrm{~g}, 22.28$ $\mathrm{mmol})$, and 1,3-propanediol ($2.050 \mathrm{~g}, 22.28 \mathrm{mmol}$) in dry toluene $(20 \mathrm{~mL})$ was slowly added DEAD ($7.760 \mathrm{~g}, 44.56 \mathrm{mmol}, 40 \%$ toluene solution) with vigorous stirring at room temperature under a N_{2} atmosphere. The solution was warmed at $60^{\circ} \mathrm{C}$ for 4 h and evaporated under reduced pressure. The residue was treated with ether, and an insoluble substance was filtered. Evaporation of the filtrate and purification of the residual oil by silica-gel column chromatography (eluent, hexane:ethyl acetate $=5: 1, \mathrm{v} / \mathrm{v}$) gave the desired alcohol derivative in 60% yield (a pale-yellow oil, 3.390 g); IR (neat) $3504,2977,2934,1737,1654,1476,1368$, 1247, 1140, 1078, 977, 854, 815, 765, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}+9 \mathrm{H}), 1.66(\mathrm{tt}, J=$ $5.6,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.40(\mathrm{~m}, 5 \mathrm{H})$. The proton of OH group was not assigned. EI-MS $m / z 507\left(\mathrm{M}^{+} ; 3.6 \%\right)$.

To a mixture of pyridinium chlorochromate ($80 \mathrm{mg}, 0.37 \mathrm{mmol}$) and finely powdered molecular sieves $3 \mathrm{~A}(185 \mathrm{mg})$ was added a solution of the foregoing propanol derivative ($127 \mathrm{mg}, 0.25 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at room temperature under a N_{2} atmosphere, and the mixture was stirred for 2.5 h at this temperature. The solvent was removed in vacuo to afford a residue, which was triturated with ether. An insoluble substance was filtered and the filtrate was concentrated in vacuo. The resulting residue was purified by silica-gel column chromatography (eluent, hexane: ethyl acetate $=$ $4: 1, \mathrm{v} / \mathrm{v}$) to afford the product 14 in 68% yield (a pale-yellow oil, 86 mg); IR (neat) 2979, 2934, 1792, 1731, 1645, 1497, 1477, 1368, 1249, 1130, 1077, 977, 854, 814, 768, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 2.64$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 7.20-$ $7.40(\mathrm{~m}, 5 \mathrm{H}), 9.62(\mathrm{~s}, 1 \mathrm{H})$; EI-MS m/z 505 (M^{+}; 9.6\%).

1-Z-Indole-3-carboxaldehyde (15): To a solid of indole-3carboxaldehyde $(5.760 \mathrm{~g}, 40 \mathrm{mmol})$ placed in a flask was added a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(9.328 \mathrm{~g}, 88 \mathrm{mmol})$ in 88 mL of water, followed by the addition of 50 mL of $\mathrm{CH}_{3} \mathrm{CN}$, including a catalytic amount of DMAP. Then, to the vigorously stirred solution was dropwise added $\mathrm{Z}-\mathrm{Cl}(6.823 \mathrm{~g}, 40 \mathrm{mmol})$ at room temperature under an air atmosphere; the solution was allowed to be stirred for 24 h . After dilution with a large amount of water, the mixture was extracted with ethyl acetate several times. The ethyl acetate solu-
tion was washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure to afford the product in quantitative yield (11.161 g); mp 47.0-48.0 ${ }^{\circ} \mathrm{C}$ (ethyl acetate-hexane); IR (KBr) 3141, 2822, 1753, 1608, 1546, 1454, 1402, 1376, 1346, 1264, 1230, 1167, 1125, 1095, 1043, 1031, 1015, 972, 781, 757, $732,707,691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 5.51(\mathrm{~s}, 2 \mathrm{H})$, $7.30-7.60(\mathrm{~m}, 5 \mathrm{H}+1 \mathrm{H}+1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.27$ $(\mathrm{s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 10.09(\mathrm{~s}, 1 \mathrm{H})$. Found: C, 73.23 ; $\mathrm{H}, 4.72 ; \mathrm{N}, 4.95 \%$. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}: \mathrm{C}, 73.11 ; \mathrm{H} ; 4.69$; N, 5.02\%.

1-Boc-Indole-3-carboxaldehyde (16): In the same way as described for the preparation of $\mathbf{1 5}$ using di- t-butyl dicarbonate, 16 was obtained in quantitative yield. Mp 117.0-118.0 ${ }^{\circ} \mathrm{C}$ (ethyl acetate-hexane); IR (KBr) 3002, 2814, 1742, 1678, 1558, 1482, 1472, 1398, 1359, 1330, 1309, 1277, 1242, 1157, 1102, 1046, 839, 786, 759, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 1.71$ (s, $9 \mathrm{H}), 7.35-7.45(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}$, $1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 10.11$ (s, 1H). Found: C, 68.62 ; H, 6.14; $\mathrm{N}, 5.65 \%$. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}: \mathrm{C}, 68.55 ; \mathrm{H}, 6.36 ; \mathrm{N}$, 5.71\%.

1-Boc-imidazole-4-carboxaldehyde (17): To a solid of 4-(hydroxymethyl)- imidazole hydrochloride ($135 \mathrm{mg}, 1.00 \mathrm{mmol}$) was added a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(117 \mathrm{mg}, 1.10 \mathrm{mmol})$ in water $(2 \mathrm{~mL})$, followed by the addition of a solution of a catalytic amount of DMAP in THF (2 mL). A solution of di- t-butyl dicarbonate ($240 \mathrm{mg}, 1.1 \mathrm{mmol}$) in THF (3 mL) was slowly added to the above-mentioned solution. After the solution was allowed to stand overnight with vigorous stirring, and follwing the addition of water, the mixture was extracted with ethyl acetate a couple of times. The combined extracts were washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. To a solution of oxalyl chloride ($254 \mathrm{mg}, 2.00 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added 0.22 mL of dimethyl sulfoxide (DMSO, 3.00 mmol) at $-78{ }^{\circ} \mathrm{C}$ under a N_{2} atmosphere; the solution was kept at this temperature for 15 min . A solution of the foregoing crude imidazole derivative in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added to the above solution at $-78^{\circ} \mathrm{C}$. After 15 min the mixture was gradually warmed to room temperature and concentrated in vacuo to give a residue, which was partitioned between ethyl acetate and water. The aqueous layer was extracted with ethyl acetate. The combined extracts were washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The residual oil was subjected to silica-gel column chromatography (eluent, hexane: ethyl acetate $=2: 1, \mathrm{v} / \mathrm{v}$) to give the product in 47% yield (a pale-yellow crystalline, 202 mg); $\mathrm{mp} 80.0-81.0^{\circ} \mathrm{C}$ (ethyl acetate-hexane); IR (KBr) 3134, 3115, 3061, 2996, 2938, 1751, 1698, 1540, 1493, $1462,1402,1378,1315,1281,1263,1228,1160,1120,1049$, 1017, 963, 891, 841, 771, 756, $668 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 1.65(\mathrm{~s}, 9 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 9.94(\mathrm{~s}, 1 \mathrm{H})$. Found: C, $54.94 ; \mathrm{H}, 6.15 ; \mathrm{N}, 14.28 \%$. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 55.09; H, 6.16; N, 14.28%.

Ethyl (4S)-2-(N-Boc-amino)-4,5-dihydroxy-2-pentenoate (18a): To a solution of the acetonide 12a ($441 \mathrm{mg}, 1.40 \mathrm{mmol}$) in EtOH (2 mL) was added $0.5 \mathrm{M} \mathrm{HCl}(3 \mathrm{~mL})$ at room temperature under an air atmosphere. The solution was stirred at this temperature overnight and then neutralized with a saturated aqueous solution of NaHCO_{3}. The organic solvent was removed in vacuo. The resulting aqueous layer was saturated with NaCl and then extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The residue was purified by preparative TLC $\left(\mathrm{SiO}_{2}\right.$,
hexane:ethyl acetate $=2: 1, \mathrm{v} / \mathrm{v}$) to afford 18a in 85% yield (327 mg). Mp 67.0-68.0 ${ }^{\circ} \mathrm{C}$ (ethyl acetate-hexane); $[\alpha]_{\mathrm{D}}^{25}=$ $+18.9^{\circ}$ ($c 0.15, \mathrm{CHCl}_{3}$); IR (KBr) 3311, 2981, 2935, 1718, 1508, $1369,1160,1029,857,779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) δ $1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 2.02-2.12(\mathrm{br}, 1 \mathrm{H}), 2.70-$ $2.80(\mathrm{br}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=6.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=3.9$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.49$ (ddd, $J=3.9,6.6$, $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-7.00(\mathrm{br}, 1 \mathrm{H})$; Found: C, $52.16 ; \mathrm{H}, 7.73 ; \mathrm{N}, 4.88 \%$. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{6}: \mathrm{C}, 52.35 ; \mathrm{H}$, 7.69; N, 5.09\%.

Ethyl 2-(N-Boc-amino)-4,5-epoxy-2-pentenoate (20): To a solution of compound 18a ($73 \mathrm{mg}, 0.265 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{P}$ ($104 \mathrm{mg}, 0.40 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was dropwise added a solution of DEAD ($70 \mathrm{mg}, 0.40 \mathrm{mmol}, 40 \%$ toluene solution) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at room temperature under a N_{2} atmosphere; the solution was stirred for 30 min . Then, the solvent was removed in vacuo to afford a residue, which was partitioned between ethyl acetate and water. The aqueous layer was extracted with ethyl acetate. The ethyl acetate solution was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residual oil was subjected to preparative TLC $\left(\mathrm{SiO}_{2}\right.$, hexane: ethyl acetate $=2: 1, \mathrm{v} / \mathrm{v})$ to afford the epoxide derivative 20 in 97% yield (an oil, 66 mg). IR (neat) 3340, 2980, 2934, 2871, 1731, 1714, 1505, 1392, 1368, 1257, 1161, 1102, 1075, 1024, 847, 780, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 1.28$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.74-4.90$ (m, 2H), 5.73-5.77 (m, 1H), $6.30(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.40-6.62$ (br, 1H); EI-MS m/z 257 ($\mathrm{M}^{+} ; 1.2 \%$)

Ethyl (4S)-2-(N-Boc-amino)-5- t - butyldimethylsiloxy-4-hydroxy-2-pentenoate (21a): To a mixed solution of 18a $(440 \mathrm{mg}, 1.60 \mathrm{mmol})$, TBDMS-Cl $(270 \mathrm{mg}, 1.8 \mathrm{mmol})$, and DMAP ($20 \mathrm{mg}, 0.16 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added TEA $(202 \mathrm{mg}, 2.00 \mathrm{mmol})$ at room temperature under a N_{2} atmosphere. The solution was stirred at this temperature overnight. The solvent was removed in vacuo to afford a residue, which was partitioned between ethyl acetate and water. The aqueous layer was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{SiO}_{2}\right.$, hexane: ethyl acetate $\left.=4: 1, \mathrm{v} / \mathrm{v}\right)$ to afford 21a in 84% yield (a pale-yellow oil, 843 mg). $[\alpha]_{\mathrm{D}}^{25}=+15.2^{\circ}(c 1.55$, CHCl_{3}); IR (neat) 3394, 2955, 2930, 2858, 1730, 1661, 1473, $1392,1368,1320,1254,1164,1112,1050,838,779,669 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 0.09(\mathrm{~s}, 3 \mathrm{H}+3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 3.34-3.46(\mathrm{br}, 1 \mathrm{H}), 3.69$ (dd, $J=8.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=5.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.47$ (ddd, $J=5.4,8.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.72(\mathrm{br}, 1 \mathrm{H})$; EI-MS $m / z 389\left(\mathrm{M}^{+} ; 0.8 \%\right)$.

Ethyl (4S)-2-(N-Boc-amino)-5-t-butyldimethylsiloxy-4-t-butyldiphenylsiloxy-2-pentenoate (22a): Compound 21a ($514 \mathrm{mg}, 1.30 \mathrm{mmol}$), TBDPS-Cl ($726 \mathrm{mg}, 2.60 \mathrm{mmol}$), and imidazole ($270 \mathrm{mg}, 4.00 \mathrm{mmol}$) were dissolved in DMF (5 mL) at room temperature under a N_{2} atmosphere. The solution was stirred at this temperature overnight. The solution was diluted with water and then extracted with ether. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The residue was purified by preparative $\mathrm{TLC}\left(\mathrm{SiO}_{2}\right.$, hexane: ethyl acetate $\left.=10: 1, \mathrm{v} / \mathrm{v}\right)$ to afford 22a in quantitative yield (a pale-yellow oil). $[\alpha]_{\mathrm{D}}^{25}=+37.2^{\circ}(c 3.45$, CHCl_{3}); IR (neat) $3406,3071,2930,2858,1731,1662,1589$, 1473, 1428, 1391, 1367, 1255, 1161, 1112, 836, 778, 739, 702
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 0.20(\mathrm{~s}, 3 \mathrm{H}+3 \mathrm{H}), 1.06$ ($\mathrm{s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H}), 3.75-$ $3.85(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=5.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.64-4.80(\mathrm{~m}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.80(\mathrm{br}$, $1 \mathrm{H}), 7.48-7,65(\mathrm{~m}, 3 \mathrm{H}+3 \mathrm{H}), 7.84-7.90(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H})$. EI-MS $m / z 627\left(\mathrm{M}^{+} ; 0.4 \%\right)$.

Ethyl (4S)-2-(N-Boc-amino)-4-t-butyldiphenylsiloxy-5-hy-droxy-2-pentenoate (23a): To a solution of the starting material 22a ($363 \mathrm{mg}, 0.58 \mathrm{mmol}$) in $\mathrm{EtOH}(3.0 \mathrm{~mL})$ was added dropwise $1.5 \mathrm{M} \mathrm{HCl}(0.6 \mathrm{~mL})$ at room temperature under an air atmosphere. The solution was stirred at this temperature for 2 h and then neutralized with a saturated aqueous solution of NaHCO_{3}. The organic solvent was removed in vacuo. The resulting aqueous layer was saturated with NaCl and then extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The residue was purified by preparative TLC $\left(\mathrm{SiO}_{2}\right.$, hexane: ethyl acetate $=5: 1$, v/v) to afford the desired product 23a in 98% yield (a pale-yellow oil, $297 \mathrm{mg}) .[\alpha]_{\mathrm{D}}^{25}=-27.1^{\circ}\left(c 1.04, \mathrm{CHCl}_{3}\right)$; IR (neat) 3404,2932 , 2858, 1726, 1474, 1428, 1367, 1251, 1161, 1111, 822, 741, $703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 3.69(\mathrm{dd}, J=6.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-$ $3.81(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.52-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.64-$ $5.75(\mathrm{br}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.64(\mathrm{br}, 1 \mathrm{H}), 7.32-$ $7.45(\mathrm{~m}, 3 \mathrm{H}+3 \mathrm{H}) 7.60-7.65(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H}) ;$ EI-MS m/z 513 ($\mathrm{M}^{+} ; 0.1 \%$).

Ethyl 1-Boc-2-pyrrolecarboxylate (24): To a solution of $\mathrm{Ph}_{3} \mathrm{P}(283 \mathrm{mg}, 1.08 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added DEAD ($188 \mathrm{mg}, 1.08 \mathrm{mmol}, 40 \%$ tuluene solution) at $0{ }^{\circ} \mathrm{C}$ under a N_{2} atmosphere. To the solution was slowly added a solution of 23a ($267 \mathrm{mg}, 0.52 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ over a period of 1.5 h at this temperature. After stirring for 20 h at room temperature the solvent was removed in vacuo to give a residue, which was partitioned between ether and water. The aqueous layer was extracted with ether and the combined extracts were washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residual oil was subjected to preparative TLC $\left(\mathrm{SiO}_{2}\right.$, hexane: ethyl acetate $\left.=10: 1, \mathrm{v} / \mathrm{v}\right)$ to afford pyrrole compound 24 in 52% yield (a pale-yellow oil, 65 mg). IR (neat) 2980, 2931, 1751, 1726, 1449, 1419, 1394, 1370, 1349, 1318, $1269,1213,1194,1159,1094,1064,849,775,744,705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H})$, $4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{dd}, J=1.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}$, $J=1.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=1.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;$ EI-MS m / z 239 ($\mathrm{M}^{+} ; 6.6 \%$).

Ethyl (4S)- \boldsymbol{N}-Boc-4- \boldsymbol{t}-butyldiphenylsiloxy- $\boldsymbol{\alpha}$, β-didehydroprolinate (25a): To a solution of $\mathrm{Ph}_{3} \mathrm{P}(787 \mathrm{mg}, 3.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added DEAD $(323 \mathrm{mg}, 3.04 \mathrm{mmol}, 40 \%$ toluene solution) at $0{ }^{\circ} \mathrm{C}$ under a N_{2} atmosphere. Then, a solution of 23a ($695 \mathrm{mg}, 1.35 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added dropwise over a period of 2 h at $0^{\circ} \mathrm{C}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 2 d . The solvent was removed in vacuo to afford a residue, which was partitioned between ether and water. The aqueous layer was extracted with ether, and the combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was subjected to preparative TLC $\left(\mathrm{SiO}_{2}\right.$, hexane: ethyl acetate $=10: 1, \mathrm{v} / \mathrm{v}$) to afford 25a in 59% yield (a pale-yellow oil, $20 \mathrm{mg}) .[\alpha]_{\mathrm{D}}^{25}=+55.5^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) 3072,2935 , $2859,1735,1706,1629,1454,1431,1364,1300,1238,1177$, $1113,1069,1000,915,823,736,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 3.74$
(dd, $J=7.7,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=3.9,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.82-4.91(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30-7.50(\mathrm{~m}, 3 \mathrm{H}+3 \mathrm{H}), 7.60-7.69(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H}) ;$ EI-MS m / z $495\left(\mathrm{M}^{+} ; 11.9 \%\right)$.

Ethyl(2S,4S)- N-Boc-4-t-butyldiphenylsiloxyprolinate (26a): Compound 25a ($1.096 \mathrm{~g}, 2.20 \mathrm{mmol}$) was hydrogenated over 5\% palladium on carbon $(329 \mathrm{mg})$ in $\mathrm{EtOH}(15 \mathrm{~mL})$ at room temperature under a H_{2} atmosphere for 1 d . The catalyst was filtered through a pad of celite, and the filtrate was removed in vacuo to afford the desired product in quantitative yield (ds; $>99 \%$). The crude product was subjected to a HPLC analysis to determine the diastereoselectivity [column, CAPCELL PAK (Shiseido) UG-120 (4.6 $\AA-250 \mathrm{~nm}$); buffer A, 0.1% aqueous TFA; B, $80 \% \mathrm{CH}_{3} \mathrm{CN}$ ($0.1 \% \mathrm{TFA}$); linear gradient, $50-95 \%$ B over 40 min ; flow rate, 1.0 $\mathrm{mL} / \mathrm{min}$, detection at 210 nm]. Recrystallization from hexane afforded pure 26a as a single isomer. $\mathrm{Mp} 93.5-94.5^{\circ} \mathrm{C}$ (hexane); $[\alpha]_{\mathrm{D}}^{25}=-44.6^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right) ;$ IR (KBr) 2978, 2930, 2857, 1759, 1702 , 1588, 1471, 1429, 1395, 1220, 1191, 1157, 1111, 1083, 1054, 918, 822, 752, 742, $706 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 1.02$ and $1.03\left(\mathrm{~s}, 9 \mathrm{H}\right.$, rotamer, $\left.{ }^{t} \mathrm{Bu}\right) 1.30(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41$ and $1.44\left(\mathrm{~s}, 9 \mathrm{H}\right.$, rotamer, $\left.{ }^{t} \mathrm{Bu}\right), 2.12-2.24(\mathrm{~m}, 1 \mathrm{H}$ $+1 \mathrm{H}), 3.37-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.57(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.33(\mathrm{~m}, 2 \mathrm{H}$ $+1 \mathrm{H}+1 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 3 \mathrm{H}+3 \mathrm{H}), 7.60-7.65(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H})$; Found: C, 67.36; H, 8.04; N, 2.81%. Calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{Si}$: C, 67.57; H, 7.90; N, 2.81\%.

Ethyl (2S, 4S)-N-Boc-4-hydroxyprolinate (27a): To a solution of 26a ($845 \mathrm{mg}, 1.70 \mathrm{mmol}$) in THF (5 mL) was added 1 M TBAF solution in THF ($8.5 \mathrm{~mL}, 8.5 \mathrm{mmol}$) at room temperature under an air atmosphere. The solution was stirred at the temperature overnight. The solvent was removed in vacuo to afford a residue, which was partitioned between ethyl acetate and water. The aqueous layer was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The residue was purified by preparative TLC $\left(\mathrm{SiO}_{2}\right.$, hexane: ethyl acetate $\left.=1: 1, \mathrm{v} / \mathrm{v}\right)$ to afford the product 27 a in 91% yield (a pale-yellow oil, 598 mg). $[\alpha]_{\mathrm{D}}^{25}=$ $-6.91^{\circ}\left(c 0.86, \mathrm{CHCl}_{3}\right)$; IR (neat) $3454,2979,2935,1751,1701$, $1477,1404,1367,1256,1192,1161,1123,1089,1047,972,906$, $858,755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 1.27$ and $1.28(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, rotamer, $\left.\mathrm{CH}_{3}\right), 1.39$ and $1.43\left(\mathrm{~s}, 9 \mathrm{H}\right.$, rotamer, $\left.{ }^{t} \mathrm{Bu}\right)$, $2.00-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.35(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.44(\mathrm{br}, 1 \mathrm{H}) 3.46-$ $3.54(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.68(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.27-$ $4.33(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H})$; EI-MS m/z $257\left(\mathrm{M}^{+} ; 0.2 \%\right)$.
(2S, 4S)-4-Hydroxyproline (28a): To a solution of 27a $(386 \mathrm{mg}, 1.50 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL})$ was added 1.0 M LiOH aq $(3.0 \mathrm{~mL})$ at room temperature under an air atmosphere. The solution was stirred at room temperature for 2 h . The organic solvent was removed in vacuo. The resulting aqueous layer was extracted with ether once. The aqueous layer was acidified with 10% citric acid (pH 3), saturated with NaCl , and then extracted with ethyl acetate. The combined organic layers were dried over anhydrous MgSO_{4}, and concentrated in vacuo. The resulting crystalline was treated with 10 equivalents of hydrogen chloride (2 M hydrogen chloride in 1,4-dioxane, 5.0 mL) at room temperature for 19 h under an air atmosphere. Then, the solvent was removed in vacuo to afford the hydrogen chloride salt, which was treated with TEA (92 mg , $0.91 \mathrm{mmol})$ in cooled $\mathrm{EtOH}(3 \mathrm{~mL})$. The resulting desired product was filtered and recrystallization from $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ afforded 28a in 83% yield. $\mathrm{Mp} 250.0-252.0^{\circ} \mathrm{C}$ (decomp) $\left(\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}\right) ;[\alpha]_{\mathrm{D}}^{25}=$ $-57.7^{\circ}\left(c 0.65, \mathrm{H}_{2} \mathrm{O}\right)$; IR (KBr) 3215, 2995, 2938 1630. 1561, 1433, 1384, 1327, 1311, 1264, 1197, 1177, 1088, 1070, 1040,

1001, 976, 920, 869, 831, 811, 735, $680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) \delta 2.22-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.55(\mathrm{~m}, 1 \mathrm{H}), 3.36$ (dd, $J=3.9,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.48(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=3.9$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.67(\mathrm{~m}, 1 \mathrm{H})$; HRMS (FAB) $\left(\mathrm{M}^{+}+1\right)$ Found: m / z 132.0672. Calcd for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{3}$: 132.0660. [Lit, ${ }^{13} \mathrm{Mp} 248{ }^{\circ} \mathrm{C}$ (decomp), $\left.[\alpha]_{\mathrm{D}}^{25}=-58.0^{\circ}\left(c 2.00, \mathrm{H}_{2} \mathrm{O}\right)\right]$

The NMR and IR data of compounds 12b, 18b, 21b-23b, and $\mathbf{2 5 b} \mathbf{- 2 8 b}$ were satisfactorily in accodance with those described for the enantiomers obtained above.

Ethyl (4R)-2-(N-Boc-amino)-4,5-isopropylidenedioxy-2pentenoate (12b): 12b was prepared from 1a and (S)-isopropylideneglyceraldehyde. ${ }^{6}$ Yield: 94%; $(Z / E=95 / 5)$; Mp 75.0-76.5 ${ }^{\circ} \mathrm{C}$ (hexane); $[\alpha]_{\mathrm{D}}^{25}=+12.3^{\circ}\left(c 0.77, \mathrm{CHCl}_{3}\right)$.

Ethyl (4R)-2-(N-Boc-amino)-4,5-dihydroxy-2-pentenoate (18b): Yield: 85%; Mp $67.0-68.0^{\circ} \mathrm{C}$ (ethyl acetate-hexane); $[\alpha]_{\mathrm{D}}^{25}=-18.2^{\circ}\left(c \quad 1.57, \mathrm{CHCl}_{3}\right)$.

Ethyl (4R)-2-(N-Boc-amino)-5-t-butyldimethylsiloxy-4-hy-droxy-2-pentenoate (21b): Yield: 84%; a pale yellow oil; $[\alpha]_{D}^{25}$ $=-15.1^{\circ}\left(c 1.10, \mathrm{CHCl}_{3}\right)$.

Ethyl (4R)-2-(N-Boc-amino)-5-t-butyldimethylsiloxy-4-t-butyldiphenylsiloxy-2-pentenoate (22b): Yield: Quantitative; a pale yellow oil; $[\alpha]_{\mathrm{D}}^{25}=-37.0^{\circ}\left(c 0.72, \mathrm{CHCl}_{3}\right)$.

Ethyl (4R)-2-(N-Boc-amino)-4-t-butyldiphenylsiloxy-5-hy-droxy-2-pentenoate (23b): Yield: Quantitative; a pale-yellow oil; $[\alpha]_{\mathrm{D}}^{25}=+26.5^{\circ}\left(c 1.04, \mathrm{CHCl}_{3}\right)$.

Ethyl (4R)- N-Boc-4- \boldsymbol{t}-butyldiphenylsiloxy- α, β-didehydroprolinate (25b): Yield: 59\%; a pale yellow oil; $[\alpha]_{\mathrm{D}}^{25}=-55.9^{\circ}$ (c 0.96, CHCl_{3}).

Ethyl (2R, 4R)-N-Boc-4-t-butyldiphenylsiloxyprolinate (26b): Yield: Quantitative. Recrystallization from hexane afforded pure 26b. Mp $94.0-95.0^{\circ} \mathrm{C}$ (hexane); $[\alpha]_{\mathrm{D}}^{25}=+45.0^{\circ}(\mathrm{c}$ $1.85, \mathrm{CHCl}_{3}$).

Ethyl (2R, 4R)-N-Boc-4-hydroxyprolinate (27b): Yield: 90%; a pale-yellow oil; $[\alpha]_{\mathrm{D}}^{25}=+7.15^{\circ}\left(c 0.95, \mathrm{CHCl}_{3}\right)$.
($\mathbf{2 R}, \mathbf{4 R}$)-4-hydroxyproline (28b): Yield: 63%; Mp 245.0$248.0^{\circ} \mathrm{C}$ (decomp) $\left(\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}\right) ;[\alpha]_{\mathrm{D}}^{25}=+58.6^{\circ}\left(c 0.65, \mathrm{H}_{2} \mathrm{O}\right)$ $\left[\mathrm{Lit},{ }^{\mathrm{8b}} \mathrm{Mp} 252-257^{\circ} \mathrm{C}\right.$ (decomp), $\left.[\alpha]_{\mathrm{D}}^{25}=+58.6^{\circ}\left(c 2.00, \mathrm{H}_{2} \mathrm{O}\right)\right]$.

Authors express their sincere thanks to Prof. N. Sakura and Dr. K. Ooki of Faculty of Pharmaceutical Sciences, Hokuriku University, for their kind help for HPLC measurement.

References

1 a) T. Ueno, T. Nakashima, Y. Hayashi, and H. Fukami, Agric. Biol. Chem., 39, 1115 (1975). b) R. D. Durbin, "Toxins in Plant Disease," Physiological Ecology Series, Academic Press (1981), p. 357. c) M. F. Mackay, A. Van Donkelaar, and C. C. J. Culvenor, J. Chem. Soc., Chem. Commun., 1986, 1219. d) E. D. de Silva, D. E. Williams, R. J. Anderson, H. Klix, C. F. B. Holmes, and T. M. Allen, Tetrahedron Lett., 33, 1561 (1992). e) D. Botes, A. Tuinman, P. Wessels, C. Vilzoen, H. Kruger, D. H. Williams, S. Santikarn, R. Smith, and S. Hammond, J. Chem. Soc., Perkin, Trans. 1, 1984, 2311. f) K. L. Reinhart, K. Harada, M.

Namikoshi, M. H. G. Munro, J. W. Blunt , P. E. Mulligan, Y. R. Beasley, A. M. Dahlem, and W. W. Carmichael, J. Am. Chem. Soc., 110, 8557 (1988). g) K. Nagaoka, M. Matsumoto, J. Oono, K. Yokoi, S. Ishizeki, and T. Nakashima, J. Antibiot., 36, 1527 (1986).

2 a) H. E. Carter, "Organic Reactions," John Wiley and Sons Inc. (1949), Vol. 3, p. 198. b) I. Photaki, J. Am. Chem. Soc., 85, 1123 (1963). c) D. H. Rich and J. P. Tam, J. Org. Chem., 42, 3815 (1977). d) C. Shin, Y. Yonezawa, K. Unoki, and J. Yoshimura, Tetrahedron Lett., 1979, 1049. e) S. Nomoto, A. Sano, and T. Shiba, Tetrahedron Lett., 1979, 521. f) P. A. Manis and M. W. Rathke, J. Org. Chem., 45, 4952 (1980). g) Y. Shimohigashi and G. H. Stammer, J. Chem. Soc., Perkin Trans. 1, 1983, 803. h) U. Schmidt, A. Lieberknecht, and J. Wild, Synthesis, 1984, 53. i) N. M. Okeley, Y. Zhu, and W. A. van der Donk, Org. Lett., 2, 3603 (2000).

3 a) W. S. Knowles, M. J. Sabacky, B. D. Vineyard, and D. J. Weinkauff, J. Am. Chem. Soc., 97, 2567 (1975). b) A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi, and R. Noyori, J. Am. Chem. Soc., 102, 7932 (1980). c) R. Noyori, "Asymmetric Catalysis in Organic Syntheses," Wiley-interscience, New York (1994), p. 16. d) E. N. Jacobsen, A. Pfaltz, and H. Yamamoto, "Comprehensive Asymmetric Catalysis," SpringerVerlag, Berlin and Heiderberg (1999), Vol. 1, p. 145.

4 a) H. Kinoshita, H. Ngwe, K. Kohori, and K. Inomata, Chem. Lett., 1993, 1441. b) T. Kakiuchi, H. Kato, K. P. Jayasundera, H. Higashi, K. Watabe, D. Sawamoto, H. Kinoshita, and K. Inomata, Chem. Lett., 1998, 1001. c) T. Kakiuchi, H. Kinoshita, and K. Inomata, Synlett, 1999, 901.

5 T. Nagano and H. Kinoshita, Bull. Chem. Soc. Jpn., 73, 1605 (2000).

6 J. Jurczack, S. Pikul, and T. Bauer, Tetrahedron, 42, 447 (1986).

7 a) W. M. Lewko, L. A. Liotta, M. S. Wicha, B. K. Vonderhaar, and W. R. Kidwell Cancer Res., 41, 2855 (1981). b) E. M. Tan, L. U. Ryhanen, and J. Uitto, J. Invest Delmatol., 80, 261(1983). c) W. D. Klohs, R. W. Steinkampf, M. S. Wicha, A. E. Mertus, J. B. Tunas, and W. R. Leopold, J. Natl. Cancer Inst., 75, 353 (1985).

8 J. C. Sheehan, H.G. Zachau, and W.B. Lawson, J. Am. Chem. Soc., 80, 3348 (1958).

9 a) A. A. Patchett and B. Witkop, J. Am. Chem. Soc., 79, 185 (1957). b) G. L. Baker, S. J. Fritschel, J. R. Stille, and J. K. Stille, J. Org. Chem., 46, 2954 (1981). c) M. Seki and K. Matsumoto, Biosci. Biotech. Biochem., 59, 1161 (1995).
10 a) C. Eguchi and A. Kakuta, Bull. Chem. Soc. Jpn., 47, 1704 (1974). b) K. Burger, M. Rudolph, and S. Fehn, Angew. Chem., Int. Ed. Engl., 32, 285 (1993).
11 L. A. Paquette, "Encyclopedia for Reagent of Organic Syntheses," John Wiley \& Sons, New York (1995), Vol. 8, p. 5379.
12 A. Neuberger, J. Chem. Soc., 1945, 429.
13 K. Feichtinger, H. L. Sings, T. J. Baker, K. Matthews, and M. Goodman, J. Org. Chem., 63, 8432 (1998).

