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Magnetic Resonance Either in Normal or Superconducting Species.

Spin-Lattice Relaxation Time
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The spin-lattice relaxation time 77 either in the superconducting and normal phases is investigated by the use of the
Green’s function method. The lattice, in this case, means the conduction electrons and the interaction is mainly due to the
Fermi contact term. Electrons and nuclei are treated on the same footing, namely both are in the second quantized form.
The coherent terms are summarized in a general fashion at the beginning.

In the BCS superconductor, the spin-lattice relaxation time
(rate-constant) in considerably enhanced just below the crit-
ical temperature. This phenomenon has been observed and
explained by Hebel and Slichter,” and it is one of the great
triumphs of the BCS theory. However, in the recent obser-
vation of the high-temperature superconductor (HTS), or the
copper oxide superconductor, this enhancement is lost. One
of the probable origins of this is told that the pair working
in this species is the d wave. Before the detailed analysis,
it seems necessary to prepare the relaxation theory in the
magnetic resonance useful not only for the normal state but
also for the superconducting state.

Letus begin by reviewing the coherent factors in the theory
of superconductivity from which the Slichter enhancement is
explained.>— The BCS ground state of the superconductor
is written as

|0Bcs >= TkI(uk +vicprclyg |0 >,

where ¢* and c are respectively the creation and annihilation
operators for the true vacuum |0>, and u and v are the
variation parameters. However, as is known,” ¢* and ¢
are no longer the creation and annihilation operators for the
BCS vacuum |Opcs >, but the operators for the quasi-particles
introduced by the Bogoliubov transformation bear such roles.
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When we describe various properties of the superconducting
state in terms of the quasi-particle operators, the cross terms,
u and v yield new effects. The coherent terms arise from
these cross terms.
The external perturbation on the electron is written as
H= % Biow ot Cltack’ o' (1

ko k' o’
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where By o is the matrix element of the perturbing oper-
ator. When we rewrite cj,, and cf, etc. by the Bogoliubov
operators, various combinaitons of u and v arise. These are
called the coherent factors.

The first condition for classification is the behavior un-
der the time reversal: The time reversal to the above,
B_p_g' —r—g has the same absolute value but the phase
is the same or the reverse. Combining this with the spin
flip—flop, we can classify as follows:
1+. The spin flip—flop does not arise,

+ +
Biop o(CroCr o £ € i — gC—k—0)-
2+. The spin flip—flop does arise,
+
Biow —o(Ciotu—o £ Ly oC—i—0).

The extended Nambu representation is introduced: for the
ordinary states,

CZ = (C}:T C—k| C—i7 C;l), Cp = 5 2)

and for the quasi-particles,
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These are connected by the Bogoliubov transformation with
each other as,

n=Uec, ¥ =aUs, (€]
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where

Uk=("" O+) withuk=(uk "’;). 5)
0 U —Vr U

It is instructive to manipulate:
Case 1+.

;(C;ack'a + p_gemea) =i e = U Uiy, (6)

3
z3=(" _03). 0

This is the 4-4 matrix manipulation; however, it is enough to
note the upper half of the result.

where

The upper half of Eq. 6

Cy' 1t
r 1 0
- (CkT C_kl) ( 0 -1 ) .
= ) u v 1 0
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where 1 and v are abbreviations of u; and v; respectively,
while ' and v/ are those of uyr and vy, Similarly
Case 1—.

b (croCro — €Ly _gCai—o) =ciley = i UAUpve.  (9)

The upper half of the above is,

u’ +w'

! ’ Yk’T
uv +vu ) . (10)

w +uu

- i 7o)

! !
vu +uv }’: L
In the quasi-particle representation of Eqs. 8 and 10, the
diagonal elements refer to the scattering terms, while the off-
diagonal elements correspond to the pair creation of particle
and hole. These matrix elements are called the coherent
factors.
Let us turn to the case where the spin flip—flop is allowed.
Case 2+.

z (Chocr—o+CtpoCoto) =ciZ cw

-_-')/;UkZJU-]:I Yee! - (11)

This relation connects the left half of y; and the lower half
of v, giving

u' +w

—vi' +uy - (12)

—w —uy’

- V—k’T
- (}/]::T y#kl)< uy vu )

yk+’1

Case 2—.
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This relation also connects the left half of ;" and the lower
half of y, and we have

V—k'1

7 _ 7
= (v y-u)( o . (14)

w' +vu’
v —uy —w +u

Note that, in this case, the scattering terms are off diagonal,
and the creation and annihilation terms are diagonal. Here

)

1 / 1
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=

By the use of relations®?

2 1 < €k ) 2 1 ( €& )
= — _— = — 1 —_—
Uy 2 1+ Ek , Vi ) Ek 5
Ex=ci+ A, (16)
where Ay is the gap-energy, the coherent factors are expressed
substantially:

1i.(uu’¢vv’)2=1(1+

exery _ MAy )
b

2 EEy  EiEy
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24+. (wv Fvu) 3 ¥ BBy an

In the case 14, we have the ultra-sonic attenuation, while
the electro-magnetic interaction is in the case 2+ and the
magnetic resonance is in the case 2—.

T; in NMR. The detailed analysis of the spin-lattice
relaxation time T in the nuclear magnetic resonance will be
discussed in the next section. At this stage the results are
given briefly.

A Ay
EkEk/

1
lek%llBkkl 2‘2—(1+ )nk(l"‘nkl)a(Ek—‘Ekl—a)), (18)
where w is the applied radio frequency, and n is the Fermi
function. The summation can be converted to the integration,
and further using the relation of state densities,

N(E)AE = N(e)de,
then one gets

E
NE) de ) (E2—AH2 =D (19)
N(e)  dE ’

0 (E<A)

Equation 18 is written, for w< A, as

o 1 A?
n~ BN [ 5 (“ m)
E(E+ w)ksT(—0n/OE)dE

x (Ez _ A2)1/2[(E+ w)z . A2]1/2 ’ (20)

where the coupling constant and the state density are re-
placed by their suitable averages. This integral is divergent.
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Therefore T of the superconductor is strongly enhanced just
below the critical temperature, as stated previously.

General

The spin-lattice relaxation time of the nuclear spin I? is
given by the imaginary part of the magnetic susceptibility y,.,
which is equal to (4 — +x_+)/2 in the spatially homogeneous
system. Here the & correspond to (I*+il”)/2 respectively.
The ensemble average of the change,  <I*(f)> is given by
the linear response theory as

S<I'(t) >=i [ df' Te{ o [H™ (), " (1] -}, @0

where pg is the grand canonical statistical operator; however,
the chemical potential is not given explicitly unless otherwise
stated. The rotating magnetic field causing the magnetic
transition is, assuming a single mode for simplicity,

H™®) = Hr(I' (' + I (B)e ™'Y, 22)

where Hr and w are, respectively, intensity and frequency of
the radiation field. We assume that, in the later treatments,
the spin-lattice relaxation arises from the interaction between
nuclear and electron spins; in other words, the electron spins
play the role of the lattice system:?

H' =hygBaF(R,I-S, (23)

where F(R,r) is a function of spatial coordinates of the nu-
cleus R and that of the electron, r. The term ¥ is the gyro-
magnetic ratio of the nucleus, g is the g factor of the electron
and fg is the Bohr magneton of the electron.

Now the second-quantizations of the above are carried
out.” First of all, the ortho-normalized wave function de-
scribing the nuclear behaviour, & (R)|M > is introduced as

(HN +HM)§K(R)IM > = (ex +MEK1)§K(R)|M >
= GKMgK(RNM >, (24)

where Hy is the spatial part and H), the Zeeman part. Then
we have

1“— 3 < SRM|I| & RM' > agyagy
KMK'M'

= 3 <M|I°IM > aak k- (25)

MK'M'

In the present case, & (R) does nothing since Hy in Eq. 24 is
a constant for &x(R). A similar equaition for the electrons is

(Hs + Hu) Pe(r)|m > = (e + mers) u(r)|m >
= € Pu(r)|m >, (26)

so that

H —hyghs = <M|PIM >< m|S®|m' >

MM mm! KKTkk!
X < E&R)De(r)|F(R,7)| Exr (R) Pu () > Ak va? ChomCitm -
27

If the nuclear motion is that of a harmonic oscillator, ag,,
and agy are the creation and annihilation operator of the

Bull. Chem. Soc. Jpn., 71, No. 1 (1998) 59

vibrational excitation. When the nuclei carry non-integer
spins, these are considered to obey the fermi statistics, or to
satisfy the anti-commutation relation:

[a;}M, agrp 1+ = kgt Opnar - (28)

However as will be seen in the following, this selection of
statistics not fatal for the theory. It is needless to say that
operators for electrons satisfy the anti-commutation relations.

The change of I'* in Eq. 21 is now written as (retain the /~
term in Eq. 22)

t : /
§<I'()> =inR/ df'e™"
xTr{pe = <M—1|I"|M>< MI'M—1>
X [aEM— 1 (t,)aK,M(tl)a a;gM(l‘)aK,M— 101-}

t st
= —}’HR/ dtle_m” DK,M_LM(I‘I -1
—oo

1 —i o —i
= ——EJ/HRC wr /_ N dse™'" P Dg pr—1,m(s)

- % yHRe~ia}t

From this result, the magnetic susceptibility of the present
system is

KZAII Dgy—1m(w). (29)

Y
2
In the course of the derivation, the matrix elements of spin
operators are put to be unity. Here Dg 51 a(s) is a retarded
Green’s function,

Yo (w)=— KEA:/IDK,M—I,M(W)- (30)

Dgy—1,m(8) = —i0S)Tr{pclagm 1 ()axm(s), agmaxm—11-}, (31)

and Dg y—1 u(w) is its Fourier transform. Now our problem
is to estimate this Green’s function.

The retarded Green’s function is easily obtained by the
analytical continuation of the Matubara function (or the tem-
perature Green’s function with imaginary time 7) which is
causal with respect to 7,

D m-1m(T) = —Tr{pcTrlagu_(Daxu(Dag maxu-11},  (32)
for which the Feynman diagram analysis is available.”

Non-Interacting Case

The case without the spin-lattice interaction is trivial; how-
ever, it seems instructive for the later investigation. By the
use of the simplified notation, <--->=Tr(pg- ), the Green’s
function in this case is written as

7 0K,M-1,M(T)= — < Trlagy_ (Dagu(D)agyarm—11 >0
=Zxu(M T xu-1(=), (33)

where

(,)<M = — < Trlagm(T)agy] > - (34)

The corresponding Fourier transform is
1
B

-9(1)(,M—1,M(60n) = %} oG o1 (v — @), (35)

where
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L) = ———. (36)
IV, — €EKkM
Therefore
g(l)(,M——l,M(wn)
1y !
T B Vive— ek iVn— in — €xm—1
_ l ( 1 _ 1 ) -1
B aNive—exm  iVe— iWn — €km—1/ iWn+€xM—1 — €KM
1
= [n(ekm—1) — exm)] ————, 37
LWy — €K1

where the fact that w, is even is used. The retarded Green’s
function is obtained simply by replacing iw, by w,+in (nis
the positive infinitesimal). Thus we obtain

0 <I'()>= e Hyglntex) —nlexs) o (G8)

The magnetic susceptibility y,_ thus becomes,

Yo (@) = yZ2(n(ex-) — nlexs) — (39

—€K1+iT]’

of which the imaginary part is
Y (W)= —ﬂ}’%(n(q—) — n(ex+))6 (@ — k). (40)

Next, the procedure to estimate & <I~(¢f)> is entirely
the same except for interchanging egpr<>€xp—1, so that the
value of & <I~(f)> is the minus of that of d <I*(f)> with
exm<— —€k;. As has been said at the beginning,

17 1 1" n
X (@)= §(x+_(w) +x—(w))
= y%;[n(q@) — n(exk)[0(w — exr) — 8(@ +exn)).
41

The result consists of two parts: The first concerns with
a statistical difference between the nuclear spin states, for
which the Fermi statistics was assumed. Besides this, nuclei
behave classically. Therefore the statistical terms of nuclei
never change even in interacting cases. The non-interacting
character is represented by the delta functions. In the real
case, when the @ integration is performed, the very small
quantity eg; is varied in the line width, so that both § func-
tions behave to give the same results, and y;” and y”/, cancel
out with each other. That is to say, the nuclear spin is in its
equilibrium state.

Interacting Case; Normal

In the interacting system, & in Eq. 35 must be replaced
by Zincluding the interaction which, in the present case, is
the spin-spin interaction between nuclei and electrons, has
been given in Eq. 23:

gKM—l,M(a)n) = %{M(Vn)%M—l(Vn - wn)y (42)

1
B %
where

G () = [(Z o)™ — Sk (v)] ™" 43)

The most important (divergent) self-energy part of this
self-energy arises from the ring diagram in the Fig. 1. There
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Fig. 1. Feynman diagram: the mechanism of spin-lattice
relaxtion of nuclear spin due to the spin—spin interaction
with electron.

the two-dot-interrupted line represents the propagator of the
nuclear motion, the full line the electron propagator, and the
dotted line the spin-spin interaction between electron and
nucleus.

Skm(W) = ~ |<M|IFM—1><m—1|S"|m>[
Pn
x < iR (N FR, 1| o (") (R) > |*
X L2t 1) T o o)L tmr(pn+ I — Vo), (44)

where the minus sign is due to a fermion loop, and .#is
the electron propagator. The propagator part is calculated as
follows:

2 &t 10T o (0n)T V1 (P + e — Vi)

. 1 1 1
Inpn 1 — €kIp—1 iPn — €km ipn+ iy — Ve — €1
1 1
=2 s .
T i —€gip—1 Ay — IVh — €11 + €tm

1 1
x pzn (ip,l —€tm  ipntihn— iVh — €1 )
=[n(ewm) — e m—1)1
1
% E i, — exrp—1 .i/l,, — iV — €t m—a1 + €km
=[n(exm) — nlep m—1)1[n(egr 1) — M€m — €xrm—1)1
—1
Vo — €grp—1 — Ekm + EkIm—1

X 45)
Here (e, — €xm—1)] is the bose function since A, — ¥, is
even. Note that

_1_ s 1 =x 1

B O i, — € - eﬁfk:Fl
However, since we are at a low enough temperature such
that €xm — €xrm—1>>1/, the classical limit is still employed,
namely

wy is even or odd.

_ﬁ(ekm_ek’m—l) =

M(€tm — €Extm—1) = € np(€m — €'m—1),  (46)
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where np is the Boltzmann function. Thus we obtain
Teu()= 2 | <M|I'|M—~1><m—1|S"|m > [
X < &R G(|FR, 1| & (& (R) > |
X[n(egrp—1) — np(ers — € =) [n(€rm) — nexrm—1)]

! @)

Vo — €kIM—1 + €m—1 — €km

X

Similarly, in order to get %y —1(Vv; — @,) which is another
mate in the retarded Green’s function, Zxy_1(V, — @,) is
evaluated as

Zrm—1(Vn — w”)zK'Zkk’ |<M—1I" M><m|S|m—1>
X < xR G| FR, 1| o R) e (r) > |2
X [n(exrar) — np(€rr — € -)1[€tm) — (e m—1)]

—1 48)

X - - .
Wn — 10y — €x'y + €km — €/m—1

Note that, in getting the retarded Green’s function, w, is
replaced by w+in in Zgy_1(V, — @,), while Zg(v,) does
not need this step since it has no w,.

Hereafter in order to avoid the unnecessary complexity,
it is restricted to the case that /=1/2 and S=1/2; further
z components, +1/2 and —1/2, are indicated by + and —
respectively.

Considering that, in the real problem, the electron staying
in the k level sees the nucleus at its equilibrium position,
and the interaction term F(R,r) is dominated by the Fermi
contact term, we can integrate our y functions, yielding dx .
This implies the classical treatment of the nuclear spin as is
usually done. Also we restrict ourselves to the case of k=k’
for electron; this term seems to contribute dominantly for the
Fermi contact interaction. Then

Zi(n) =3 |Fue*|n(ex—) — np(es — ex-)n(ers) — ner—)]

-1
X—
IV — €Kk— — €S
K,
k Vp— €K— — €ks
K,
~— . (49)
k €K1 — €S

Here the final equality is obtained by putting iv,=ex., and
€4S = €t — Ef— (50)
is the electron Zeeman energy and

Fu=< ¢(r)|FR, )| u(r) >,
Ki = |Fi|*n(ek-) — na(ers)]-[n(exs) — new )] 51

Similarly

K,
Sk (G — @) = =3 ————— . (52)
k 1Vy — 1y — €Ex+ T+ €4S

If we here put iw,— w+in,

1
Sk (% — 0n) = SKif{P—————
k w +

— lﬂé(&) +€Exr — Eks}, (53)
€KI — €kS
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where P stands for the principal part and in the final line, iv,
is put equal to ex_.
Let us turn to estimating the retarded Green’s function,

9K,—+(w) = 9K—+(iwn)|ia),,—>w+i7]

1
=—2 E{+(Vn)r%(~(vn - wn)

:6 Y iWy— W+iT]

1 1
== _—

/3 Y 1V — €y — 2K+('Vn)

1
X N
iV — in — €k— — 2k~ (Vo — n) lig,—wsig

1 1
- B_ 12" { iV — €x+ — 2I(+(‘Vn)

1
iV — i — ek — Sk (Vo — wn)}
o —1
iwn+ex— —ex+Zk— (Vo — W) — Zg+ ()

i@y — O+iT)
(54

Here considering that 3k.(%,) is a small, we may approxi-

mate as
1 1

ﬁ Vo ivy — €k — Zge (V)
This term merely gives the particle density, so it is not so
important for the present investigation. Thus, noticing that
w, is even, and substituting Eqs. 49 and 55 into Eq. 54, we
obtain

~ n(eks). (55)

Di,—+(n) = (n(ex—) — nlex+))

K
/{w+i77+61(1—2 ——t > Kk }
KK’ (0 — L1] — €K1 — €ks Kk €K1+ €ks

= (n(ex-) — n(ek+))

1 1
/{w~6K1+2Kk[P -
k W +€xkr — €k €KI — €kS

—imS(a) + €xr — éks)] }

1
= (n(eK*) - n(€K+))m 5 (56)

where the first i7 in the second line is useless because the
physical imaginary part has been obtained from Zg_ (v, —
w,). Here

A = sz I:P 1 - 1 ] El
k O — €k1 — €ks  €KI — €S
B= %Kkmi(w — €K1 — €x5),
= Kk:res- (57)

In the final result, the k summation (integration) is carried
out to obtain the value at the resonance point (k : res). Then
the imaginary part of Dg _,(w) is

B

(W — exr — A)2 +B% %)

ImDg,—+(@n) = (n(ex-) — n(ex+))
Thus we arrive at the imaginary part of the magnetic suscep-
tibility, y,— (@),
7B

(a) — €K1 —A)2 +B2 ’ (59)

2 (@) = yXn(ex-) — nlexs))

The line shape obtained from this looks Lorenzian, but pre-
cisely observing the factor ng(exs) in K of B (see also Eq. 51)
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indicates the Gaussian shape at the center of the resonance
curve.

Evaluating y”, gives the result in which the interchange
n(eg.n(eg_) arises. The final result is obtained from

@) = 30 @) 1 1(0) 60)

This requires a complicated manipulation which is not so
fruitful from the physical view-point. The following approx-
imation procedures are employed. In the real problem, the
very small quantiy eg; is varied in the line width. When we
carry out the @ integration, the peaks at the slightly differ-
ent resonance points give almost the same contribution with
different statistical weights. This almost cancelling scheme
is given in such a way that

1/(a—x)—1/(a+x)52x/a2, a>x
Thus
" 4((0 —A)E
Xz = ySlnlex-) —n(eK+)JW+%-nB. (61)

Comparing this with the non-interacting case of Eq. 41, we
note that the delta function in the latter salters to the line shape
function which looks Lorenzian with a Gaussian envelope
around the center.

Interacting System; Superconducting

Green’s Function. In this case, the electron propa-
gators in the previous chapter are replaced by those in the
superconducter. As has been done by BCS, let us assume the
attractive, constant two-body potential g.

1
Hq= kgﬁ {Eka‘CZaCka + ’Z‘g(CZaCikﬂ)(C—kﬁcka)} ) (62)

where the electron is restricted to the Cooper pairs, and €,
is the orbital energy, which also includes the Zeeman energy
at the present case.

Now we use the extended Nambu representation of Eq. 2,

cr= s €k =(Cha C_ip C—ka CZﬁ)- (63)

with the equal tirﬁe commutator,
[ex, €]+ = 160 - (64)
In these terms the Hamiltonian is rewritten as
Ha= §ekc;23ck + % g T T ecl T e, (65)
where ¢, is the diagonal matrix of €,:

€ka

6 = —1p ) (66)
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Let us define

a0 ot 0 o™ 0
23'_ 12+_ 72_: s
0 —o° 0 —0" 0 —o"
67)
with
(1 0 (01 (0 —i
o=(o 1) =(V )7 %)
ot = %(01 +io?), 07 = %(01 —io%). (68)

It is pointed out that =* selects the Cooper pair in the particle
state, while 2~ selects the pair in the hole state.

The above Hamiltonian is invariant under the scale trans-
formation; then we have a current conservation; especially
the charge conservation (Noether’s theorem). If we have any
quantity which does not commute this invariant charge, we
can expect a phase transition (Goldstone’s theorem).

The charge proportional to

+ +
< Ciyory >= 3 < epoer > 69
kEJl, kyCey >= 2 < €c2Ck (69)

is invariant under the rotation about the =3 axis in the space
spaned by 3, =*, and ~. Observing that

=,3% - —257, [, =23 (70)

suggests the phase transitions on the Z*— 2~ plane.

The phase transition cannot be achieved by the pertur-
bational approach, but the effective Hamiltonian giving the
phase transition should be included at the beginning, say the
Hailtonian is modified such as '

H =§c,’§(ek +pZ" + =7 ey,
1 _ _
H'= Egk%{(cltz+ck)'(c;2 cp)— %ﬁ(ﬂy +1Z e, (71)

where p and 7 are the so-called gap enegies, which are as-
sumed independent of k for simplicity. Note that the Hamil-
tonian, H® is symmetrically broken.

The temperature Green’s function with the imaginary time
7 is defined as

G (1) = — < Ttlew(D)ep ] >, (72)
where <--->= Tr{pg---}. The equation of motion of GY,, is

BrG (1) = =37 [0(7)<er(T)ek (0)>—O(— )<t (O)er(7)>]
= —8(D)<[er(),65 ()] >—<Tlex(1),H'1_ €5 (0)>
= — S HaZ +p= +nZ )G . (73)
In the coursce of the above derivation, the commutator in

Eq. 64 was used.
‘We make the Fourier transform:

1
B

Then the equation of motion becomes

Gl (1) = 2 e™ "Gl (1), (74)

(in + &2+ p= + §Z7 )G (Wn) = S - (75)
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Namely,
Gow (@n)= !
A o+ €33 + p=t + o
B —iw,+ a2+ pZ=t + =~
= O { TE s (76)
where
E;=e+p1. an
Spin Dynamics. The matrix propagator is now obtained.

First of all we examine the effects of the normal (the particle-
hole type) part, which are diagonal parts in Eq. 76. For

example,
-7 +
G (@) = { —;—Zw':r—;‘y} : (78)
n k

is a matrix element specified by =°.
Investigations are going on as same as the previous section:
The propagator product to be estimated is

AﬂZ go_(/ln)yg-e-(pn)yg’—(pn +/1n s Vn)-
Pn

Here G%_ is the propagator for the nucleous indicated by the
capital K, and two electron propagators are different in the
Zeeman enegies, so that we can obtain the main contribution
from the term of k=k’. Only the result corresponding to
Eq. 45 is presented. Long and straightforward calculations
yield a rather ordinary result:

=l{ N 146y e gt ]
4 | —ivy+Er. — Epy tex— Ei._ Ein EnE-
+- N [—1+6k—_—eﬁ ——ek—@”]
iVa+Ep— +Epy — eg— E;_ Ei. EnE_
. N* [+3:_6k_+_6k_ek+]
—iVy+E_ +Epy +ex— E;_ Es E Ep

+ N [_1 She | S ShCh ]
iVy — Ey— +Ep +ex— Ey—  Eps Ew By ’
(79)
where
N¥ = [(Er) — (B )inex-) — np(Ers F Ex-)] (30)

Looking at Eq. 79, we find that, among multipulicative fac-
tors [---], the first term amounts to about 4, while others
nearly cancel out. Therefore we can retain only the first
term, which is nothing but that obtained in the the normal
case (see Eq. 45) by replacing ¢, by E;. Then we shall ar-
rive at the same result as Eq. 59, however with the above
replacement.

s _ B
K (W)= )’%("(GK-l) — n(exs)) @—u—AR+ B
however A,B=A(E), B(Ey). (81)

Now notations are getting more and more tedious. Let us
review: The capital E is the quasi-particle energy. The e is
that of the normal electron. The capital K refers to the nuclei,
while the small & refers to electrons.
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We turn to taking the pair propagators into account. This
is given, in the Fig. 1, by replacing the previous electron
propagators by the pair propagators.

Ska(V) = — jﬂzp 3 |Fie [* Zx— ) F £ (o) Fr (pn+ 2o — Vi), (82)

where the minus sign is due to a fermion loop, also .7 ,’f (pn)
which is the Fourier transform of <T7(c* ,_(7)cf,)>, is the
2-1 element of GY, while % is the 1-2 element of G}. To
confirm the notation, for example —k+ means the negative k
with the up spin. The above is precisely written by the use
of Eq. 76,

1 n p
— ek PRHEL (ot n— VP +E

=— Fo .2
Z 3P

In the present case, we must to consider the case where k is
slightly different from k', since the off-diagonal propagators
under investigation are not distinct in the Zeeman energy.
The frequency sum is straightforward, giving

41%, {In(—Ex) — n(—E)]in(ex—) — na(Ex — Ex)]

1
X v+ Ep — Ertens
+{[n(—Ex) — n(Ex)[n(ex—) — ne(Ex + Ep)]
1
iV +Ep +Ep — ex—
+H [—n(Ex) + n(—Ep)]n(ex—) — np(—Ex — Ep)]
R S
—iVy+Epy + Ex+eg

=—§|Fk,k'|2

+ {[‘H(Ek) +n(Ey)][n(ex—) — ng(—Ex + Epr)]

! } . (83)

—iVy+Ey — Ep+ex—

Among these, the terms which satisfy the resonance condi-
tion, say, the first and last terms, are retained. The change
of arguments in the first term, (—E;—Ey) and (—Epy —Ey)
are allowed (the sum with repect to all the values of k and
k' makes these interchanges no trouble), and finally iv, is
approximately replaced by eg.. Thus we have

Z) == 3 |Fuas 5 In(E) = n(Ey (e~ — na(By — o)
1

- 84
><61<1+Ek—Ek' &4

Next the term Zg.(v, — w,) will be estimated to get
%% _(v,— w,) which is another mate in the retarded Green’s
function. Similarly
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1 .
> = Up) = — Fuol? )
e (3~ ) Anzpnk%’l wl (Mn—ém
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X
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After the frequency sum,

==z |Fu[* 4E E {[n(—Ex) — n(—E)]{n(ex+) — np(Ex — Ex)]
1
X
iVp— i, — Epy + Ep — ek
+{[n(—Ep) — n(E)1[n(ex+) — ne(Ex + Er)]
X — " !
—iVp+iw, +Ey +Ep — ey
+{[—n(Ep) + n(—E)][n(exs) — np(—Ex — Ep))
1
Vo — i+ Ep + Ep + €gs
+ { [—n(Ew) + n(Ex)][n(ex+) — np(Ex — Eyr)]
1
X — - } . (85)
—iVp+iWy +Ey — Ep + €+

The first and last terms which are met with the resonance
condition are retained; then we have

Sk (Vo — Wn)=— 2 |Fe |” 2E E (n(Ep) — n(Ex))
1
(n(ex+) — ne(Ex — Epr)) x o+ By —FErten
— — 3 |Fu | ((Ey) — n(Ew ))(nlex+) — np(Ex — Epr))

ki 2E E
—imd(w — Ep +Ex+ EKI)} s

1
2 —
X{ w —Ekl +Ek+€1<1
’ (86)

where the last result is for the later investigation.

We are now at the final step to estimate the retarded Green’s
function Dy _,(w) taking into account the superconducting
effect. To orient ourselves, we follow, for the time being, the
same equations as are seen in Eq. 54.

D, —+(0) = Dg— (i) |ico,— w+ing
- %gﬂ G () G~ (v —
1 1
= 3-
/3 Vo iV — €x+ — Zg+(Va)
1
iVy — iy — ex— — Zg— (Vo — W)
1
— 2+ (W)

wn)lia),,—>w+m

X

iy — W+in

Va { iVy — €k+

R =

1
CiVy— i — ex— — Sk (Ve — wn)}
—1

X .
iWn +ex— — €gs + 2g— (Vo — Wn) — Zg (W)

Wy — W+in)

®&7)

Here, as Xk, (V;,) is a small correction term, approximately

B % v — exr — Sgev) o

Thus, noticing that  is even, and substituting Eqs. 85 and
86 into Eq. 87, we have

(8%)

Magnetic Resonance Either in Normal or Superconductor

D, (@) = (n(ex—) — n(ek+))

Xl/{ —€K1+E |Fiar [*

(n(E) — n(Ey))

2E E
1
X [P m'(ﬂ(em) — np(Ex — Ep))
1
m «(n(ex—) — np(Ey — Er))
— 8 (w — Ep +Ex + em)} . (89)
This is rewritten as
1
Dg,—+(n) = (n(ex—) — nlek+)) o TA —inB’ (90)
where
A"k% 2L, E |Frer | [(Ex) — n(Ep)]
1
X [P m ‘(n(€K+) —np(ErE))
1
+m (n(ex—) — np(Ep — Ey)),
B'= k%?, 7 E E |Fuer |*(n(Ex) — n(Ew))(n(exs) — ns(Ex — Exr))
xé(a) Ekl +Ek+€1(1). (91)

Thus we obtain the imaginary part of the magnetic suscepti-
bility as

B’
0 — exr +A'? + B’

wo(w)=y SAn(ex—) — nlex+)) ( 92)

The partner, y”, is obtained by the interchange n(eg.) —
n(ex_.) in the above. The final result is thus obtained from

1

K@) = 5()(+~(60) + Y—+(@)). 93)

This requires a complicated manijpulation. We are satisfied

with a approximate procedure which has been carried out in
the case of normal state (see above Eq. 61). Thus, we have

4w +A ek

/
w+ap+pr B O

= YE[H(EKV) — n(ex+)]
Combining the result in Eq. 81 and the above, we can obtain
the final result in the superconducting phase. However in the
former where, when dealing with electrons with k+ and k' —
which are distinct in the spin states, we can put k = k’. But

in the latter we cannot. Comparing Eq. 91 with Eq. 57, leads

A= PN A B = on

= = 9
2EEy 2EE ©3)

In obtaining this, we assumed Ej — Ey =¢;s, which is the
electron Zeeman energy. We thus obtain the coherent factor,

1 PN )

(1 .

2 ( T EEe
However it should be noted that, as is seen in the course of

derivation, the present result is not exactly identical with that
shown in the introduction.

(96)
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Conclusion

If we review the present investigations from the view
points of the line shape problem in the magnetic resonance,
three cases can be clearly distingushed: In the non-inter-
acting case, the line shape is written in terms of the delta
function, in the interacting case of the normal phase, this is
written by the Lorenz like function, and in the superconduct-
ing phase, this is further multiplied by the coherent factor.
But the statistical factors referring to the nuclear states never
change throughout.

From the view point of superconductivity, the present the-
ory has almost nothing to give more than the current theories
have done. However the theory is not merely to reproduce
the experimental result, but to predict the mechanism hidden
in the observations, in such a way that the manipulations tell
step by step what is acting inside the matter. We might be
satisfied with a little deeper understanding of superconduc-
tivity. )

In the framework of the present investigation, the absence
of the Slichter enhancement in the copperoxide supercon-
ductor may be attributed to anisotropy of the gap functions.
Throuout this treatment, the gap functions are treated as if
they were isotropic. This is not true when the electrons tak-
ing part in superconductivity are in the d orbitals. If we carry
out a numerical estimation, the shape of d orbitals should be
taken into account.
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Scalapino” has presented the sophisticated discussions on
possibilities that the 77 enhancement is lost, from the singular
character of the d- and s gap functions.

If the spin-spin interaction of interest here is regarded as a
source of the impurity scattering, the problem of the gapless
superconductor might be considered, though we afraid that
this mechanism will reduce the critical temperature.®
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