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On the holomorphic automorphism

group of a generalized complex ellipsoid

Akio KODAMA

Abstract

In this paper, we completely determine the structure of the holomor-
phic automorphism group of a generalized complex ellipsoid. This is a
natural generalization of a result due to Landucci. Also this gives an
affirmative answer to an open problem posed by Jarnicki and Pflug.
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1 Introduction

In this paper we study the structure of the holomorphic automorphism group
of a generalized complex ellipsoid

E(n0, . . . , nK ; p0, . . . , pK) :={
(z0, . . . , zK) ∈ Cn0 × · · · × CnK ;

K∑
k=0

∥zk∥2pk < 1

}

in CN = Cn0 ×· · ·×CnK , where n0, . . . , nK are positive integers and p0, . . . , pK

are positive real numbers, and N = n0 + · · ·+nK . In general this domain is not
geometrically convex and its boundary is not smooth. In the special case where
all the pk = 1, this domain reduces to the unit ball BN in CN and the structure
of its holomorphic automorphism group Aut(BN ) is well-known (cf. [7]). Also,
it is known that E(n0, . . . , nK ; p0, . . . , pK) is homogeneous if and only if pk = 1
for all k (cf. [3], [6], [8]).

For convenience and with no loss of generality, in the following we will always
assume that p0 = 1, p1, . . . , pK ̸= 1, n1, . . . , nK > 0. Moreover, after relabel-
ing the indices, if necessary, we may assume that there exist positive integers
k1, . . . , ks such that

k1 + · · · + ks = K,

nk1+···+kj−1+1 = · · · = nk1+···+kj , 1 ≤ j ≤ s,

nk1+···+kj < nk1+···+kj+1, 1 ≤ j ≤ s− 1,
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where we put p0 = 0.
Now let us choose an arbitrary generalized complex ellipsoid E in CN and

write it in the form

(∗) E = E(n0, n1, . . . , nK ; 1, p1, . . . , pK).

Here it is understood that 1 does not appear if n0 = 0, and also this domain is
the unit ball Bn0 in Cn0 = CN if K = 0.

The purpose of this paper is to establish the following theorem that gives a
full description of the holomorphic automorphism group of generalized complex
ellipsoids:

THEOREM Let E be the generalized complex ellipsoid appearing in (∗). Then
the holomorphic automorphism group Aut(E) of E consists of all transformations

φ : (z0, z1, . . . , zK) 7−→ (z̃0, z̃1, . . . , z̃K)

of the form
z̃0 = H(z0), z̃k = γk(z0)Ukzσ(k), 1 ≤ k ≤ K

(think of zk as column vectors), where

(1) H ∈ Aut(Bn0),

(2) γk(z0) are nowhere vanishing holomorphic functions on Bn0 defined by

γk(z0) =

(
1 − ∥a∥2(

1 − ⟨z0, a⟩
)2
)1/2pk

, a = H−1(o) ∈ Bn0 ,

where ⟨·, ·⟩ denotes the standard Hermitian inner product on Cn0 and
o ∈ Bn0 is the origin of Cn0 ,

(3) Uk ∈ U(nk), the unitary group of degree nk, and

(4) σ is a permutation of {1, . . . ,K} satisfying the following:{
σ(k1 + · · · + kj−1 + 1), . . . , σ(k1 + · · · + kj)

}
={

k1 + · · · + kj−1 + 1, . . . , k1 + · · · + kj

}
, 1 ≤ j ≤ s,

and σ(µ) = ν can only happen when pµ = pν .

In particular, considering the special case where nk = 1 and 2 ≤ pk ∈ N for
all k, we obtain a natural generalization of Landucci [4; Corollary to Theorem].
This also gives an affirmative answer to an open problem posed in Jarnicki and
Pflug [2; Remark 2.5.11].

In the next Section 2 we prove the Theorem and, in Section 3, we give a
concrete example illustrating our result.
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2 Proof of the Theorem

As mentioned in the introduction, the structure of the holomorphic automor-
phism group of the unit ball BN in CN is well-known. So we prove the Theorem
in the case where K ≥ 1.

For the given generalized complex ellipsoid E in CN = Cn0 × · · · ×CnK , let
us consider the subset G of Aut(E) consisting of all elements

φ : (z0, z1, . . . , zK) 7−→ (z̃0, z̃1, . . . , z̃K)

having the form

(2.1) z̃0 = H(z0), z̃k = γk(z0)Ukzk, 1 ≤ k ≤ K,

where H ∈ Aut(Bn0), Uk ∈ U(nk) and γk(z0) are the same objects appearing
in the statement of the Theorem. Then one can see that G is a connected Lie
subgroup of the Lie group Aut(E) of dimension

d(E) := n2
0 + 2n0 +

K∑
k=1

n2
k.

On the other hand, we know from Naruki [6] and Sunada [8] that Aut(E) is a
real Lie group of dimension d(E); hence, G is exactly the identity component of
Aut(E). In particular, G is a normal subgroup of Aut(E).

By making use of the concrete description in (2.1) of elements of G, it is an
easy matter to check that the G-orbit passing through the origin o ∈ E ⊂ CN

is of lowest dimension in the set of all G-orbits, i.e.,

dim(G · o) < dim(G · p) for any point p ∈ E \G · o.

Hence, recalling the normality of G in Aut(E), we obtain that

(2.2) g · (G · o) = G · o =
{
(z0, 0, . . . , 0) ∈ Cn0 ×Cn1 × · · · ×CnK ; ∥z0∥ < 1

}
for each element g ∈ Aut(E). This combined with a well-known theorem of H.
Cartan (cf. [5; p. 67] assures us that every element g ∈ Aut(E) can be expressed
as g = ψg · ℓg, where ψg ∈ G and ℓg is a linear automorphism of E , that is, a
non-singular linear transformation of CN leaving E invariant. Hence, the proof
of our Theorem is now reduced to showing the following:

LEMMA Every linear automorphism L : (z0, z1, . . . , zK) 7→ (z̃0, z̃1, . . . , z̃K)
of E can be written in the form

(2.3) z̃0 = Az0, z̃k = Ukzσ(k), 1 ≤ k ≤ K,

where A ∈ U(n0), Uk ∈ U(nk) and σ is a permutation of {1, . . . ,K} satisfying
the same condition (4) as in the Theorem.

Proof. We will show this Lemma by generalizing the argument used in the
proofs of [4; Proposition 2.1] and [1; Lemma 8.5.3]. It is clear that the linear
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transformation L of CN written in the form (2.3) induces a linear automorphism
of E . So, taking an arbitrary linear automorphism L of E , we would like to show
that L can be described as in (2.3). To this end, we define the coordinate vector
subspaces Vk, Wk of CN by setting

Vk =
{
(z0, z1, . . . , zK) ∈ CN ; zj = 0, j ̸= k

}
,

Wk =
{
(z0, z1, . . . , zK) ∈ CN ; zk = 0

}
for 0 ≤ k ≤ K; accordingly

∩
j ̸=k Wj = Vk for 0 ≤ k ≤ K. Here, recalling our

assumption that K ≥ 1 and all the pk ̸= 1, we put

W =
{
(z0, z1, . . . , zK) ∈ CN ; ∥z1∥ · · · ∥zK∥ = 0

}
and W = W ∩ ∂E ,

where ∂E stands for the boundary of E . Then, by routine computations it follows
that ∂E \ W is just the set consisting of all Cω-smooth strongly pseudoconvex
boundary points of E ; consequently, L(W) = W. This, combined with the
facts that W is invariant under the dilations δr : z 7→ rz (r > 0) on CN and
L(δr(z)) = δr(L(z)) on CN , yields at once that L(W ) = W .

With respect to the coordinate system (z0, z1, . . . , zK) in CN , the linear
automorphism L can be expressed as L = (L0, L1, . . . , LK). Recall here the fact
in (2.2). It then follows that

• each Lk (1 ≤ k ≤ K) does not depend on the variable z0,

and

• the restriction L0|V0 : V0 → V0 of L0 to V0 gives rise to a holomorphic auto-
morphism of the unit ball Bn0 ; and hence, it has to be a unitary transformation
of V0 ≡ Cn0 .

Therefore, one may assume that L has the form:

L(z) =
(
z0 +A(z1, . . . , zK), L1(z1, . . . , zK), . . . , LK(z1, . . . , zK)

)
for z = (z0, z1, . . . , zK) ∈ CN , where A, Lk (1 ≤ k ≤ K) are all linear mappings.

Now we will proceed in steps.

1) There exists a permutation τ of {1, . . . ,K} such that Lτ(k)(Wk) = {0}
for every 1 ≤ k ≤ K. In particular, we have L(Wk) ⊂ Wτ(k) for 1 ≤ k ≤ K.
Indeed, let 1 ≤ k ≤ K and assume that Lj(Wk) ̸= {0} for all j, 1 ≤ j ≤ K.
Then, considering the proper complex analytic subset A of Wk consisting of all
points z ∈Wk with Lj(z) = 0 for some j, 1 ≤ j ≤ K, we have

∥L1(zo)∥ · · · ∥LK(zo)∥ > 0 for any point zo ∈Wk \ A.

However, since Wk ⊂ W for every 1 ≤ k ≤ K and L(W ) = W , this is absurd.
Therefore we have shown that, for every 1 ≤ k ≤ K, there exists at least one
integer j, 1 ≤ j ≤ K, such that Lj(Wk) = {0}. Let us fix, once and for all, the
correspondence τ : k 7→ j. Then this τ is injective. Indeed, assume contrarily
that τ(k) = τ(ℓ) =: j0 for some k, ℓ with 1 ≤ k ̸= ℓ ≤ K. Then, since CN =
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Wk +Wℓ, the sum of the vector subspaces Wk and Wℓ, and since L : CN → CN

is a linear isomorphism, we obtain a contradiction: CN = L(CN ) ⊂Wj0 $ CN .
As a result, τ is a permutation of {1, . . . ,K} satisfying the condition required
in 1).

2) Let τ be the permutation of {1, . . . ,K} appearing in 1). Then we have{
τ(k1 + · · · + kj−1 + 1), . . . , τ(k1 + · · · + kj)

}
={

k1 + · · · + kj−1 + 1, . . . , k1 + · · · + kj

}
, 1 ≤ j ≤ s,

where we put k0 = 0. Indeed, for every 1 ≤ k ≤ K, we have

L(Vk) =
∩

0≤j≤K,j ̸=k

L(Wj) ⊂ L(W0)
∩ ∩

1≤j≤K,j ̸=k

Wτ(j)


by 1); consequently,

(2.4) Lτ(k)(Vk) ⊂ Vτ(k) and Lτ(j)(Vk) = {0}, 1 ≤ j ≤ K, j ̸= k.

From now on, putting M = n1 + · · · + nK , we identify in the obvious way
CM = Cn1 × · · · × CnK with the coordinate vector subspace W0 of CN . Then
the linear transformation L̃ := (L1, . . . , LK) : CM → CM induced by L is non-
singular; and hence, we see that Lτ(k)(Vk) = Vτ(k) in (2.4) and nk = nτ(k). This,
together with the ordering among the integers n1, . . . , nK as in the previous
section, guarantees that τ has to satisfy the condition in 2), as desired.

Let σ := τ−1 be the inverse of τ in 1). Then, by (2.4) L can be written in
the form

(2.5) L(z) =
(
z0 +A(z1, . . . , zK), U1zσ(1), . . . , UKzσ(K)

)
for z = (z0, z1, . . . , zK) ∈ CN (think of zk as column vectors), where Uk are
non-singular nk × nk matrices for 1 ≤ k ≤ K. Here we wish to verify the
following:

3) For every 1 ≤ k ≤ K, we have Uk ∈ U(nk). To show this, we first
assert that A (z1, . . . , zK) ≡ 0 in (2.5). Indeed, the fact L(∂E) = ∂E yields that

∥z0 +A (z1, . . . , zK) ∥2 +
K∑

k=1

∥Ukzσ(k)∥2pk = 1, z ∈ ∂E .

For any point z = (z0, z1, . . . , zK) ∈ ∂E , write z0 =
(
z1
0 , . . . , z

n0
0

)
. Then, by

taking a suitable point ẑ0 of the form

ẑ0 =
(
ξ1z

1
0 , . . . , ξn0z

n0
0

)
, ξj ∈ C, |ξj | = 1, 1 ≤ j ≤ n0,

we see that Re⟨z0, A (z1, . . . , zK)⟩ = 0; and hence,

(2.6) −
K∑

k=1

∥zk∥2pk + ∥A (z1, . . . , zK) ∥2 +
K∑

k=1

∥Ukzσ(k)∥2pk = 0, z ∈ ∂E .
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Notice that this equality holds also for any point

(z1, . . . , zK) ∈ CM with
K∑

k=1

∥zk∥2pk ≤ 1,

because one can always find a point z0 ∈ Cn0 such that (z0, z1, . . . , zK) ∈ ∂E .
Now, in order to prove that A (z1, . . . , zK) ≡ 0, take an arbitrary point z1 ∈ Cn1

with ∥z1∥ = 1 and set j = σ−1(1), for simplicity. Then

−x2p1 + x2∥A (z1, 0, . . . , 0) ∥2 + x2pj∥Ujz1∥2pj = 0, 0 ≤ x ≤ 1.

Since all the pk ̸= 1, this says that A (z1, 0, . . . , 0) = 0. Analogously, for every
2 ≤ k ≤ K one can show that A (0, . . . , 0, zk, 0, . . . , 0) = 0 for zk ∈ Cnk with
∥zk∥ = 1. Obviously this means that A (z1, . . . , zK) ≡ 0 on CM , as asserted.

Next, put j = σ(k) for a given k, 1 ≤ k ≤ K. It then follows from (2.6) that

∥Ukzj∥ = 1 for all zj ∈ Vj , ∥zj∥ = 1;

which implies that Uk ∈ U(nk) for every 1 ≤ k ≤ K; verifying the assertion 3).

Summarizing the above, we have shown that L has the form

L(z) =
(
z0, U1zσ(1), . . . , UKzσ(K)

)
, z = (z0, z1, . . . , zK) ∈ CN ,

where Uk ∈ U(nk), 1 ≤ k ≤ K, and σ is a permutation of {1, . . . ,K} satisfying
the condition:{

σ(k1 + · · · + kj−1 + 1), . . . , σ(k1 + · · · + kj)
}

={
k1 + · · · + kj−1 + 1, . . . , k1 + · · · + kj

}
, 1 ≤ j ≤ s.

Therefore, in order to complete the proof of the Lemma, we have only to show
the following assertion:

4) Let k1 + · · ·+kj−1 +1 ≤ µ, ν ≤ k1 + · · ·+kj , 1 ≤ j ≤ s. Then σ(µ) = ν
can only happen when pµ = pν . We verify this only in the case where j = 1,
since the verification in the general case is almost identical. Moreover, once the
proof of 4) for k1 ≥ 4 is accomplished, then that for 1 ≤ k1 ≤ 3 follows by
a simple modification of it. Taking these into account, we will carry out the
proof of 4) in the case where j = 1 and k1 ≥ 4. Clearly σ(µ) = ν is possible
when pµ = pν . So, assuming that σ(µ) = ν for 1 ≤ µ, ν ≤ k1, µ ̸= ν, we wish
to prove that pµ = pν . For this purpose, we first remark the following: Since
L(∂E) = ∂E , with exactly the same argument as in the proof of 3), we can see
that

(2.7)
∑

1≤k≤k1, k ̸=µ

∥zσ(k)∥2pk +

1 −
∑

1≤j≤k1, j ̸=ν

∥zj∥2pj

pµ/pν

= 1
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for any point

(z1, . . . , zν−1, zν+1, . . . , zk1) with
∑

1≤j≤k1, j ̸=ν

∥zj∥2pj ≤ 1.

Now, since k1 ≥ 4, we can always choose an integer m, 1 ≤ m ≤ k1, in such a
way that

m ̸= µ, ν and j := σ(m) ̸= µ, ν.

Then, putting zℓ = 0 for ℓ ̸= j in (2.7), we obtain that

∥zj∥2pm +
(
1 − ∥zj∥2pj

)pµ/pν = 1, ∥zj∥ ≤ 1.

Accordingly, by taking the points xzo
j with 0 ≤ x ≤ 1, ∥zo

j ∥ = 1, we have

x2pm +
(
1 − x2pj

)pµ/pν = 1, 0 ≤ x ≤ 1.

A simple computation shows that this can only happen when pm = pj and
pµ = pν ; completing the proof of the Lemma. �

Hence we have completed the proof of our Theorem.

3 An example

As a concrete example illustrating our result, we here give the following gener-
alized complex ellipsoid E in C11 defined by

E =
{

(z, w1, w2, w3, w4, w5, w6) ∈ C × C × C × C × C2 × C2 × C3 ;

|z|2 + |w1|2/3 + |w2|3 + |w3|2/3 + ∥w4∥3 + ∥w5∥3 + ∥w6∥3 < 1
}
.

So, with the notation of the introduction, we have:

K = 6, n1 = n2 = n3 = 1 < n4 = n5 = 2 < n6 = 3, k1 = 3, k2 = 2, k3 = 1
and E = E(1, 1, 1, 1, 2, 2, 3; 1, 1/3, 3/2, 1/3, 3/2, 3/2, 3/2).

And our Theorem tells us that every element φ of Aut(E) can be described as

φ(u) =
(
ξ
z − a

1 − āz
, ρ(z)3/2ξ1wσ(1), ρ(z)1/3ξ2wσ(2), ρ(z)3/2ξ3wσ(3),

ρ(z)1/3U4wσ(4), ρ(z)1/3U5wσ(5), ρ(z)1/3U6wσ(6)

)
for u = (z, w1, w2, w3, w4, w5, w6) ∈ E , where

a, ξ, ξ1, ξ2, ξ3 ∈ C with |a| < 1, |ξ| = |ξ1| = |ξ2| = |ξ3| = 1,

U4, U5 ∈ U(2), U6 ∈ U(3), ρ(z) =
1 − |a|2(
1 − āz

)2 , |z| < 1,
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and σ is a permutation of {1, . . . , 6} such that

{σ(1), σ(3)} = {1, 3}, {σ(4), σ(5)} = {4, 5}, σ(2) = 2, σ(6) = 6.

Therefore we conclude that Aut(E) is a 23-dimensional Lie group with four
connected components.
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