On the holomorphic automorphism group of a generalized complex ellipsoid

メタデータ	言語：eng
	出版者：
	公開日：2017－10－03
	キーワード（Ja）：
	キーワード（En）：
	作成者：
	メールアドレス：
	所属：
URL	https：／／doi．org／10．24517／00010742

This work is licensed under a Creative Commons Attribution－NonCommercial－ShareAlike 3.0
International License．

On the holomorphic automorphism group of a generalized complex ellipsoid

Akio KODAMA

Abstract

In this paper, we completely determine the structure of the holomorphic automorphism group of a generalized complex ellipsoid. This is a natural generalization of a result due to Landucci. Also this gives an affirmative answer to an open problem posed by Jarnicki and Pflug.

Keywards: Generalized complex ellipsoids; Holomorphic automorphisms
AMS Mathematical Subject Classification: 32A07; 32M05

1 Introduction

In this paper we study the structure of the holomorphic automorphism group of a generalized complex ellipsoid

$$
\begin{aligned}
& E\left(n_{0}, \ldots, n_{K} ; p_{0}, \ldots, p_{K}\right):= \\
& \qquad\left\{\left(z_{0}, \ldots, z_{K}\right) \in \mathbf{C}^{n_{0}} \times \cdots \times \mathbf{C}^{n_{K}} ; \sum_{k=0}^{K}\left\|z_{k}\right\|^{2 p_{k}}<1\right\}
\end{aligned}
$$

in $\mathbf{C}^{N}=\mathbf{C}^{n_{0}} \times \cdots \times \mathbf{C}^{n_{K}}$, where n_{0}, \ldots, n_{K} are positive integers and p_{0}, \ldots, p_{K} are positive real numbers, and $N=n_{0}+\cdots+n_{K}$. In general this domain is not geometrically convex and its boundary is not smooth. In the special case where all the $p_{k}=1$, this domain reduces to the unit ball B^{N} in \mathbf{C}^{N} and the structure of its holomorphic automorphism group $\operatorname{Aut}\left(B^{N}\right)$ is well-known (cf. [7]). Also, it is known that $E\left(n_{0}, \ldots, n_{K} ; p_{0}, \ldots, p_{K}\right)$ is homogeneous if and only if $p_{k}=1$ for all k (cf. [3], [6], [8]).

For convenience and with no loss of generality, in the following we will always assume that $p_{0}=1, p_{1}, \ldots, p_{K} \neq 1, n_{1}, \ldots, n_{K}>0$. Moreover, after relabeling the indices, if necessary, we may assume that there exist positive integers k_{1}, \ldots, k_{s} such that

$$
\begin{aligned}
& k_{1}+\cdots+k_{s}=K \\
& n_{k_{1}+\cdots+k_{j-1}+1}=\cdots=n_{k_{1}+\cdots+k_{j}}, \quad 1 \leq j \leq s \\
& n_{k_{1}+\cdots+k_{j}}<n_{k_{1}+\cdots+k_{j}+1}, \quad 1 \leq j \leq s-1
\end{aligned}
$$

where we put $p_{0}=0$.
Now let us choose an arbitrary generalized complex ellipsoid \mathcal{E} in \mathbf{C}^{N} and write it in the form

$$
\begin{equation*}
\mathcal{E}=E\left(n_{0}, n_{1}, \ldots, n_{K} ; 1, p_{1}, \ldots, p_{K}\right) \tag{*}
\end{equation*}
$$

Here it is understood that 1 does not appear if $n_{0}=0$, and also this domain is the unit ball $B^{n_{0}}$ in $\mathbf{C}^{n_{0}}=\mathbf{C}^{N}$ if $K=0$.

The purpose of this paper is to establish the following theorem that gives a full description of the holomorphic automorphism group of generalized complex ellipsoids:

THEOREM Let \mathcal{E} be the generalized complex ellipsoid appearing in (*). Then the holomorphic automorphism group $\operatorname{Aut}(\mathcal{E})$ of \mathcal{E} consists of all transformations

$$
\varphi:\left(z_{0}, z_{1}, \ldots, z_{K}\right) \longmapsto\left(\tilde{z}_{0}, \tilde{z}_{1}, \ldots, \tilde{z}_{K}\right)
$$

of the form

$$
\tilde{z}_{0}=H\left(z_{0}\right), \quad \tilde{z}_{k}=\gamma_{k}\left(z_{0}\right) U_{k} z_{\sigma(k)}, \quad 1 \leq k \leq K
$$

(think of z_{k} as column vectors), where
(1) $H \in \operatorname{Aut}\left(B^{n_{0}}\right)$,
(2) $\gamma_{k}\left(z_{0}\right)$ are nowhere vanishing holomorphic functions on $B^{n_{0}}$ defined by

$$
\gamma_{k}\left(z_{0}\right)=\left(\frac{1-\|a\|^{2}}{\left(1-\left\langle z_{0}, a\right\rangle\right)^{2}}\right)^{1 / 2 p_{k}}, \quad a=H^{-1}(o) \in B^{n_{0}}
$$

where $\langle\cdot, \cdot\rangle$ denotes the standard Hermitian inner product on $\mathbf{C}^{n_{0}}$ and $o \in B^{n_{0}}$ is the origin of $\mathbf{C}^{n_{0}}$,
(3) $U_{k} \in U\left(n_{k}\right)$, the unitary group of degree n_{k}, and
(4) σ is a permutation of $\{1, \ldots, K\}$ satisfying the following:

$$
\begin{aligned}
& \left\{\sigma\left(k_{1}+\cdots+k_{j-1}+1\right), \ldots, \sigma\left(k_{1}+\cdots+k_{j}\right)\right\}= \\
& \quad\left\{k_{1}+\cdots+k_{j-1}+1, \ldots, k_{1}+\cdots+k_{j}\right\}, \quad 1 \leq j \leq s
\end{aligned}
$$

and $\sigma(\mu)=\nu$ can only happen when $p_{\mu}=p_{\nu}$.
In particular, considering the special case where $n_{k}=1$ and $2 \leq p_{k} \in \mathbf{N}$ for all k, we obtain a natural generalization of Landucci [4; Corollary to Theorem]. This also gives an affirmative answer to an open problem posed in Jarnicki and Pflug [2; Remark 2.5.11].

In the next Section 2 we prove the Theorem and, in Section 3, we give a concrete example illustrating our result.

2 Proof of the Theorem

As mentioned in the introduction, the structure of the holomorphic automorphism group of the unit ball B^{N} in \mathbf{C}^{N} is well-known. So we prove the Theorem in the case where $K \geq 1$.

For the given generalized complex ellipsoid \mathcal{E} in $\mathbf{C}^{N}=\mathbf{C}^{n_{0}} \times \cdots \times \mathbf{C}^{n_{K}}$, let us consider the subset G of $\operatorname{Aut}(\mathcal{E})$ consisting of all elements

$$
\varphi:\left(z_{0}, z_{1}, \ldots, z_{K}\right) \longmapsto\left(\tilde{z}_{0}, \tilde{z}_{1}, \ldots, \tilde{z}_{K}\right)
$$

having the form

$$
\begin{equation*}
\tilde{z}_{0}=H\left(z_{0}\right), \quad \tilde{z}_{k}=\gamma_{k}\left(z_{0}\right) U_{k} z_{k}, \quad 1 \leq k \leq K \tag{2.1}
\end{equation*}
$$

where $H \in \operatorname{Aut}\left(B^{n_{0}}\right), U_{k} \in U\left(n_{k}\right)$ and $\gamma_{k}\left(z_{0}\right)$ are the same objects appearing in the statement of the Theorem. Then one can see that G is a connected Lie subgroup of the Lie group $\operatorname{Aut}(\mathcal{E})$ of dimension

$$
d(\mathcal{E}):=n_{0}^{2}+2 n_{0}+\sum_{k=1}^{K} n_{k}^{2} .
$$

On the other hand, we know from Naruki [6] and Sunada [8] that $\operatorname{Aut}(\mathcal{E})$ is a real Lie group of dimension $d(\mathcal{E})$; hence, G is exactly the identity component of $\operatorname{Aut}(\mathcal{E})$. In particular, G is a normal subgroup of $\operatorname{Aut}(\mathcal{E})$.

By making use of the concrete description in (2.1) of elements of G, it is an easy matter to check that the G-orbit passing through the origin $o \in \mathcal{E} \subset \mathbf{C}^{N}$ is of lowest dimension in the set of all G-orbits, i.e.,

$$
\operatorname{dim}(G \cdot o)<\operatorname{dim}(G \cdot p) \quad \text { for any point } p \in \mathcal{E} \backslash G \cdot o
$$

Hence, recalling the normality of G in $\operatorname{Aut}(\mathcal{E})$, we obtain that
$(2.2) g \cdot(G \cdot o)=G \cdot o=\left\{\left(z_{0}, 0, \ldots, 0\right) \in \mathbf{C}^{n_{0}} \times \mathbf{C}^{n_{1}} \times \cdots \times \mathbf{C}^{n_{K}} ;\left\|z_{0}\right\|<1\right\}$
for each element $g \in \operatorname{Aut}(\mathcal{E})$. This combined with a well-known theorem of H . Cartan (cf. [5; p. 67] assures us that every element $g \in \operatorname{Aut}(\mathcal{E})$ can be expressed as $g=\psi_{g} \cdot \ell_{g}$, where $\psi_{g} \in G$ and ℓ_{g} is a linear automorphism of \mathcal{E}, that is, a non-singular linear transformation of \mathbf{C}^{N} leaving \mathcal{E} invariant. Hence, the proof of our Theorem is now reduced to showing the following:

LEMMA Every linear automorphism $L:\left(z_{0}, z_{1}, \ldots, z_{K}\right) \mapsto\left(\tilde{z}_{0}, \tilde{z}_{1}, \ldots, \tilde{z}_{K}\right)$ of \mathcal{E} can be written in the form

$$
\begin{equation*}
\tilde{z}_{0}=A z_{0}, \quad \tilde{z}_{k}=U_{k} z_{\sigma(k)}, \quad 1 \leq k \leq K \tag{2.3}
\end{equation*}
$$

where $A \in U\left(n_{0}\right), U_{k} \in U\left(n_{k}\right)$ and σ is a permutation of $\{1, \ldots, K\}$ satisfying the same condition (4) as in the Theorem.

Proof. We will show this Lemma by generalizing the argument used in the proofs of [4; Proposition 2.1] and [1; Lemma 8.5.3]. It is clear that the linear
transformation L of \mathbf{C}^{N} written in the form (2.3) induces a linear automorphism of \mathcal{E}. So, taking an arbitrary linear automorphism L of \mathcal{E}, we would like to show that L can be described as in (2.3). To this end, we define the coordinate vector subspaces V_{k}, W_{k} of \mathbf{C}^{N} by setting

$$
\begin{aligned}
V_{k} & =\left\{\left(z_{0}, z_{1}, \ldots, z_{K}\right) \in \mathbf{C}^{N} ; z_{j}=0, j \neq k\right\}, \\
W_{k} & =\left\{\left(z_{0}, z_{1}, \ldots, z_{K}\right) \in \mathbf{C}^{N} ; z_{k}=0\right\}
\end{aligned}
$$

for $0 \leq k \leq K$; accordingly $\bigcap_{j \neq k} W_{j}=V_{k}$ for $0 \leq k \leq K$. Here, recalling our assumption that $K \geq 1$ and all the $p_{k} \neq 1$, we put

$$
W=\left\{\left(z_{0}, z_{1}, \ldots, z_{K}\right) \in \mathbf{C}^{N} ;\left\|z_{1}\right\| \cdots\left\|z_{K}\right\|=0\right\} \quad \text { and } \quad \mathcal{W}=W \cap \partial \mathcal{E}
$$

where $\partial \mathcal{E}$ stands for the boundary of \mathcal{E}. Then, by routine computations it follows that $\partial \mathcal{E} \backslash \mathcal{W}$ is just the set consisting of all C^{ω}-smooth strongly pseudoconvex boundary points of \mathcal{E}; consequently, $L(\mathcal{W})=\mathcal{W}$. This, combined with the facts that W is invariant under the dilations $\delta_{r}: z \mapsto r z(r>0)$ on \mathbf{C}^{N} and $L\left(\delta_{r}(z)\right)=\delta_{r}(L(z))$ on \mathbf{C}^{N}, yields at once that $L(W)=W$.

With respect to the coordinate system $\left(z_{0}, z_{1}, \ldots, z_{K}\right)$ in \mathbf{C}^{N}, the linear automorphism L can be expressed as $L=\left(L_{0}, L_{1}, \ldots, L_{K}\right)$. Recall here the fact in (2.2). It then follows that

- each $L_{k}(1 \leq k \leq K)$ does not depend on the variable z_{0},
and
- the restriction $L_{0 \mid V_{0}}: V_{0} \rightarrow V_{0}$ of L_{0} to V_{0} gives rise to a holomorphic automorphism of the unit ball $B^{n_{0}}$; and hence, it has to be a unitary transformation of $V_{0} \equiv \mathbf{C}^{n_{0}}$.

Therefore, one may assume that L has the form:

$$
L(z)=\left(z_{0}+A\left(z_{1}, \ldots, z_{K}\right), L_{1}\left(z_{1}, \ldots, z_{K}\right), \ldots, L_{K}\left(z_{1}, \ldots, z_{K}\right)\right)
$$

for $z=\left(z_{0}, z_{1}, \ldots, z_{K}\right) \in \mathbf{C}^{N}$, where $A, L_{k}(1 \leq k \leq K)$ are all linear mappings.
Now we will proceed in steps.

1) There exists a permutation τ of $\{1, \ldots, K\}$ such that $L_{\tau(k)}\left(W_{k}\right)=\{0\}$ for every $1 \leq k \leq K$. In particular, we have $L\left(W_{k}\right) \subset W_{\tau(k)}$ for $1 \leq k \leq K$. Indeed, let $1 \leq k \leq K$ and assume that $L_{j}\left(W_{k}\right) \neq\{0\}$ for all $j, 1 \leq j \leq K$. Then, considering the proper complex analytic subset \mathcal{A} of W_{k} consisting of all points $z \in W_{k}$ with $L_{j}(z)=0$ for some $j, 1 \leq j \leq K$, we have

$$
\left\|L_{1}\left(z^{o}\right)\right\| \cdots\left\|L_{K}\left(z^{o}\right)\right\|>0 \quad \text { for any point } z^{o} \in W_{k} \backslash \mathcal{A} .
$$

However, since $W_{k} \subset W$ for every $1 \leq k \leq K$ and $L(W)=W$, this is absurd. Therefore we have shown that, for every $1 \leq k \leq K$, there exists at least one integer $j, 1 \leq j \leq K$, such that $L_{j}\left(W_{k}\right)=\{0\}$. Let us fix, once and for all, the correspondence $\tau: k \mapsto j$. Then this τ is injective. Indeed, assume contrarily that $\tau(k)=\tau(\ell)=: j_{0}$ for some k, ℓ with $1 \leq k \neq \ell \leq K$. Then, since $\mathbf{C}^{N}=$
$W_{k}+W_{\ell}$, the sum of the vector subspaces W_{k} and W_{ℓ}, and since $L: \mathbf{C}^{N} \rightarrow \mathbf{C}^{N}$ is a linear isomorphism, we obtain a contradiction: $\mathbf{C}^{N}=L\left(\mathbf{C}^{N}\right) \subset W_{j_{0}} \varsubsetneqq \mathbf{C}^{N}$. As a result, τ is a permutation of $\{1, \ldots, K\}$ satisfying the condition required in 1).
2) Let τ be the permutation of $\{1, \ldots, K\}$ appearing in 1$)$. Then we have

$$
\begin{aligned}
& \left\{\tau\left(k_{1}+\cdots+k_{j-1}+1\right), \ldots, \tau\left(k_{1}+\cdots+k_{j}\right)\right\}= \\
& \quad\left\{k_{1}+\cdots+k_{j-1}+1, \ldots, k_{1}+\cdots+k_{j}\right\}, \quad 1 \leq j \leq s
\end{aligned}
$$

where we put $k_{0}=0$. Indeed, for every $1 \leq k \leq K$, we have

$$
L\left(V_{k}\right)=\bigcap_{0 \leq j \leq K, j \neq k} L\left(W_{j}\right) \subset L\left(W_{0}\right) \bigcap\left(\bigcap_{1 \leq j \leq K, j \neq k} W_{\tau(j)}\right)
$$

by 1); consequently,

$$
\begin{equation*}
L_{\tau(k)}\left(V_{k}\right) \subset V_{\tau(k)} \quad \text { and } \quad L_{\tau(j)}\left(V_{k}\right)=\{0\}, \quad 1 \leq j \leq K, j \neq k \tag{2.4}
\end{equation*}
$$

From now on, putting $M=n_{1}+\cdots+n_{K}$, we identify in the obvious way $\mathbf{C}^{M}=\mathbf{C}^{n_{1}} \times \cdots \times \mathbf{C}^{n_{K}}$ with the coordinate vector subspace W_{0} of \mathbf{C}^{N}. Then the linear transformation $\tilde{L}:=\left(L_{1}, \ldots, L_{K}\right): \mathbf{C}^{M} \rightarrow \mathbf{C}^{M}$ induced by L is nonsingular; and hence, we see that $L_{\tau(k)}\left(V_{k}\right)=V_{\tau(k)}$ in (2.4) and $n_{k}=n_{\tau(k)}$. This, together with the ordering among the integers n_{1}, \ldots, n_{K} as in the previous section, guarantees that τ has to satisfy the condition in 2), as desired.

Let $\sigma:=\tau^{-1}$ be the inverse of τ in 1). Then, by (2.4) L can be written in the form

$$
\begin{equation*}
L(z)=\left(z_{0}+A\left(z_{1}, \ldots, z_{K}\right), U_{1} z_{\sigma(1)}, \ldots, U_{K} z_{\sigma(K)}\right) \tag{2.5}
\end{equation*}
$$

for $z=\left(z_{0}, z_{1}, \ldots, z_{K}\right) \in \mathbf{C}^{N}$ (think of z_{k} as column vectors), where U_{k} are non-singular $n_{k} \times n_{k}$ matrices for $1 \leq k \leq K$. Here we wish to verify the following:
3) For every $1 \leq k \leq K$, we have $U_{k} \in U\left(n_{k}\right)$. To show this, we first assert that $A\left(z_{1}, \ldots, z_{K}\right) \equiv 0$ in (2.5). Indeed, the fact $L(\partial \mathcal{E})=\partial \mathcal{E}$ yields that

$$
\left\|z_{0}+A\left(z_{1}, \ldots, z_{K}\right)\right\|^{2}+\sum_{k=1}^{K}\left\|U_{k} z_{\sigma(k)}\right\|^{2 p_{k}}=1, \quad z \in \partial \mathcal{E}
$$

For any point $z=\left(z_{0}, z_{1}, \ldots, z_{K}\right) \in \partial \mathcal{E}$, write $z_{0}=\left(z_{0}^{1}, \ldots, z_{0}^{n_{0}}\right)$. Then, by taking a suitable point \hat{z}_{0} of the form

$$
\hat{z}_{0}=\left(\xi_{1} z_{0}^{1}, \ldots, \xi_{n_{0}} z_{0}^{n_{0}}\right), \quad \xi_{j} \in \mathbf{C},\left|\xi_{j}\right|=1,1 \leq j \leq n_{0}
$$

we see that $\operatorname{Re}\left\langle z_{0}, A\left(z_{1}, \ldots, z_{K}\right)\right\rangle=0$; and hence,

$$
\begin{equation*}
-\sum_{k=1}^{K}\left\|z_{k}\right\|^{2 p_{k}}+\left\|A\left(z_{1}, \ldots, z_{K}\right)\right\|^{2}+\sum_{k=1}^{K}\left\|U_{k} z_{\sigma(k)}\right\|^{2 p_{k}}=0, \quad z \in \partial \mathcal{E} \tag{2.6}
\end{equation*}
$$

Notice that this equality holds also for any point

$$
\left(z_{1}, \ldots, z_{K}\right) \in \mathbf{C}^{M} \quad \text { with } \quad \sum_{k=1}^{K}\left\|z_{k}\right\|^{2 p_{k}} \leq 1
$$

because one can always find a point $z_{0} \in \mathbf{C}^{n_{0}}$ such that $\left(z_{0}, z_{1}, \ldots, z_{K}\right) \in \partial \mathcal{E}$. Now, in order to prove that $A\left(z_{1}, \ldots, z_{K}\right) \equiv 0$, take an arbitrary point $z_{1} \in \mathbf{C}^{n_{1}}$ with $\left\|z_{1}\right\|=1$ and set $j=\sigma^{-1}(1)$, for simplicity. Then

$$
-x^{2 p_{1}}+x^{2}\left\|A\left(z_{1}, 0, \ldots, 0\right)\right\|^{2}+x^{2 p_{j}}\left\|U_{j} z_{1}\right\|^{2 p_{j}}=0, \quad 0 \leq x \leq 1
$$

Since all the $p_{k} \neq 1$, this says that $A\left(z_{1}, 0, \ldots, 0\right)=0$. Analogously, for every $2 \leq k \leq K$ one can show that $A\left(0, \ldots, 0, z_{k}, 0, \ldots, 0\right)=0$ for $z_{k} \in \mathbf{C}^{n_{k}}$ with $\left\|z_{k}\right\|=1$. Obviously this means that $A\left(z_{1}, \ldots, z_{K}\right) \equiv 0$ on \mathbf{C}^{M}, as asserted.

Next, put $j=\sigma(k)$ for a given $k, 1 \leq k \leq K$. It then follows from (2.6) that

$$
\left\|U_{k} z_{j}\right\|=1 \quad \text { for all } z_{j} \in V_{j},\left\|z_{j}\right\|=1
$$

which implies that $U_{k} \in U\left(n_{k}\right)$ for every $1 \leq k \leq K$; verifying the assertion 3$)$.
Summarizing the above, we have shown that L has the form

$$
L(z)=\left(z_{0}, U_{1} z_{\sigma(1)}, \ldots, U_{K} z_{\sigma(K)}\right), \quad z=\left(z_{0}, z_{1}, \ldots, z_{K}\right) \in \mathbf{C}^{N}
$$

where $U_{k} \in U\left(n_{k}\right), 1 \leq k \leq K$, and σ is a permutation of $\{1, \ldots, K\}$ satisfying the condition:

$$
\begin{aligned}
& \left\{\sigma\left(k_{1}+\cdots+k_{j-1}+1\right), \ldots, \sigma\left(k_{1}+\cdots+k_{j}\right)\right\}= \\
& \quad\left\{k_{1}+\cdots+k_{j-1}+1, \ldots, k_{1}+\cdots+k_{j}\right\}, 1 \leq j \leq s
\end{aligned}
$$

Therefore, in order to complete the proof of the Lemma, we have only to show the following assertion:
4) Let $k_{1}+\cdots+k_{j-1}+1 \leq \mu, \nu \leq k_{1}+\cdots+k_{j}, 1 \leq j \leq s$. Then $\sigma(\mu)=\nu$ can only happen when $p_{\mu}=p_{\nu}$. We verify this only in the case where $j=1$, since the verification in the general case is almost identical. Moreover, once the proof of 4) for $k_{1} \geq 4$ is accomplished, then that for $1 \leq k_{1} \leq 3$ follows by a simple modification of it. Taking these into account, we will carry out the proof of 4) in the case where $j=1$ and $k_{1} \geq 4$. Clearly $\sigma(\mu)=\nu$ is possible when $p_{\mu}=p_{\nu}$. So, assuming that $\sigma(\mu)=\nu$ for $1 \leq \mu, \nu \leq k_{1}, \mu \neq \nu$, we wish to prove that $p_{\mu}=p_{\nu}$. For this purpose, we first remark the following: Since $L(\partial \mathcal{E})=\partial \mathcal{E}$, with exactly the same argument as in the proof of 3), we can see that

$$
\begin{equation*}
\sum_{1 \leq k \leq k_{1}, k \neq \mu}\left\|z_{\sigma(k)}\right\|^{2 p_{k}}+\left(1-\sum_{1 \leq j \leq k_{1}, j \neq \nu}\left\|z_{j}\right\|^{2 p_{j}}\right)^{p_{\mu} / p_{\nu}}=1 \tag{2.7}
\end{equation*}
$$

for any point

$$
\left(z_{1}, \ldots, z_{\nu-1}, z_{\nu+1}, \ldots, z_{k_{1}}\right) \quad \text { with } \quad \sum_{1 \leq j \leq k_{1}, j \neq \nu}\left\|z_{j}\right\|^{2 p_{j}} \leq 1
$$

Now, since $k_{1} \geq 4$, we can always choose an integer $m, 1 \leq m \leq k_{1}$, in such a way that

$$
m \neq \mu, \nu \quad \text { and } \quad j:=\sigma(m) \neq \mu, \nu .
$$

Then, putting $z_{\ell}=0$ for $\ell \neq j$ in (2.7), we obtain that

$$
\left\|z_{j}\right\|^{2 p_{m}}+\left(1-\left\|z_{j}\right\|^{2 p_{j}}\right)^{p_{\mu} / p_{\nu}}=1, \quad\left\|z_{j}\right\| \leq 1
$$

Accordingly, by taking the points $x z_{j}^{o}$ with $0 \leq x \leq 1,\left\|z_{j}^{o}\right\|=1$, we have

$$
x^{2 p_{m}}+\left(1-x^{2 p_{j}}\right)^{p_{\mu} / p_{\nu}}=1, \quad 0 \leq x \leq 1 .
$$

A simple computation shows that this can only happen when $p_{m}=p_{j}$ and $p_{\mu}=p_{\nu}$; completing the proof of the Lemma.

Hence we have completed the proof of our Theorem.

3 An example

As a concrete example illustrating our result, we here give the following generalized complex ellipsoid \mathcal{E} in \mathbf{C}^{11} defined by

$$
\begin{aligned}
\mathcal{E}=\{ & \left(z, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right) \in \mathbf{C} \times \mathbf{C} \times \mathbf{C} \times \mathbf{C} \times \mathbf{C}^{2} \times \mathbf{C}^{2} \times \mathbf{C}^{3} \\
& \left.|z|^{2}+\left|w_{1}\right|^{2 / 3}+\left|w_{2}\right|^{3}+\left|w_{3}\right|^{2 / 3}+\left\|w_{4}\right\|^{3}+\left\|w_{5}\right\|^{3}+\left\|w_{6}\right\|^{3}<1\right\} .
\end{aligned}
$$

So, with the notation of the introduction, we have:

$$
\begin{aligned}
& K=6, n_{1}=n_{2}=n_{3}=1<n_{4}=n_{5}=2<n_{6}=3, k_{1}=3, k_{2}=2, k_{3}=1 \\
& \text { and } \mathcal{E}=E(1,1,1,1,2,2,3 ; 1,1 / 3,3 / 2,1 / 3,3 / 2,3 / 2,3 / 2)
\end{aligned}
$$

And our Theorem tells us that every element φ of $\operatorname{Aut}(\mathcal{E})$ can be described as

$$
\begin{gathered}
\varphi(u)=\left(\xi \frac{z-a}{1-\bar{a} z}, \rho(z)^{3 / 2} \xi_{1} w_{\sigma(1)}, \rho(z)^{1 / 3} \xi_{2} w_{\sigma(2)}, \rho(z)^{3 / 2} \xi_{3} w_{\sigma(3)}\right. \\
\left.\rho(z)^{1 / 3} U_{4} w_{\sigma(4)}, \rho(z)^{1 / 3} U_{5} w_{\sigma(5)}, \rho(z)^{1 / 3} U_{6} w_{\sigma(6)}\right)
\end{gathered}
$$

for $u=\left(z, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right) \in \mathcal{E}$, where

$$
\begin{aligned}
& a, \xi, \xi_{1}, \xi_{2}, \xi_{3} \in \mathbf{C} \text { with }|a|<1,|\xi|=\left|\xi_{1}\right|=\left|\xi_{2}\right|=\left|\xi_{3}\right|=1 \\
& U_{4}, U_{5} \in U(2), \quad U_{6} \in U(3), \quad \rho(z)=\frac{1-|a|^{2}}{(1-\bar{a} z)^{2}},|z|<1
\end{aligned}
$$

and σ is a permutation of $\{1, \ldots, 6\}$ such that

$$
\{\sigma(1), \sigma(3)\}=\{1,3\}, \quad\{\sigma(4), \sigma(5)\}=\{4,5\}, \sigma(2)=2, \sigma(6)=6 .
$$

Therefore we conclude that $\operatorname{Aut}(\mathcal{E})$ is a 23 -dimensional Lie group with four connected components.

Acknowledgement

The author is partially supported by the Grant-in-Aid for Scientific Research (C) No. 24540166, the Ministry of Education, Science, Sports and Culture, Japan.

References

[1] M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis, De Gruyter Exp. Math. 9, Walter de Gruyter \& Co., Berlin, 1993.
[2] M. Jarnicki and P. Pflug, First steps in several complex variables: Reinhardt domains, EMS Textbooks in Math., Euro. Math. Soc., Zürich, 2008.
[3] A. Kodama, A remark on bounded Reinhardt domains, Proc. Japan Acad. 54 (1978), 179-182.
[4] M. Landucci, On the proper holomorphic equivalence for a class of pseudoconvex domains, Trans. Amer. Math. Soc. 282 (1984), 807-811.
[5] R. Narasimhan, Several complex variables, Chicago Lectures in Math., Univ. Chicago Press, Chicago, 1971.
[6] I. Naruki, The holomorphic equivalence problem for a class of Reinhardt domains, Publ. Res. Ins. Math. Sci., Kyoto Univ. 4 (1986), 527-543.
[7] W. Rudin, Function theory in the unit ball in \mathbf{C}^{n}, Grundlehren d. math. Wiss. 241, Springer-Verlag, New York, Heidelberg, Berlin, 1980.
[8] T. Sunada, Holomorphic equivalence problem for bounded Reinhardt domains, Math. Ann. 235 (1978), 111-128.

