On the holomorphic automorphism group of a generalized complex ellipsoid

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00010742

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

On the holomorphic automorphism group of a generalized complex ellipsoid

Akio KODAMA

Abstract

In this paper, we completely determine the structure of the holomorphic automorphism group of a generalized complex ellipsoid. This is a natural generalization of a result due to Landucci. Also this gives an affirmative answer to an open problem posed by Jarnicki and Pflug.

Keywards: Generalized complex ellipsoids; Holomorphic automorphisms

AMS Mathematical Subject Classification: 32A07; 32M05

1 Introduction

In this paper we study the structure of the holomorphic automorphism group of a *generalized complex ellipsoid*

$$E(n_0, \dots, n_K; p_0, \dots, p_K) := \left\{ (z_0, \dots, z_K) \in \mathbf{C}^{n_0} \times \dots \times \mathbf{C}^{n_K} ; \sum_{k=0}^K \|z_k\|^{2p_k} < 1 \right\}$$

in $\mathbf{C}^N = \mathbf{C}^{n_0} \times \cdots \times \mathbf{C}^{n_K}$, where n_0, \ldots, n_K are positive integers and p_0, \ldots, p_K are positive real numbers, and $N = n_0 + \cdots + n_K$. In general this domain is not geometrically convex and its boundary is not smooth. In the special case where all the $p_k = 1$, this domain reduces to the unit ball B^N in \mathbf{C}^N and the structure of its holomorphic automorphism group $\operatorname{Aut}(B^N)$ is well-known (cf. [7]). Also, it is known that $E(n_0, \ldots, n_K; p_0, \ldots, p_K)$ is homogeneous if and only if $p_k = 1$ for all k (cf. [3], [6], [8]).

For convenience and with no loss of generality, in the following we will always assume that $p_0 = 1, p_1, \ldots, p_K \neq 1, n_1, \ldots, n_K > 0$. Moreover, after relabeling the indices, if necessary, we may assume that there exist positive integers k_1, \ldots, k_s such that

$$\begin{split} k_1 + \cdots + k_s &= K, \\ n_{k_1 + \cdots + k_{j-1} + 1} = \cdots = n_{k_1 + \cdots + k_j}, \quad 1 \leq j \leq s, \\ n_{k_1 + \cdots + k_j} < n_{k_1 + \cdots + k_j + 1}, \quad 1 \leq j \leq s - 1, \end{split}$$

where we put $p_0 = 0$.

Now let us choose an arbitrary generalized complex ellipsoid \mathcal{E} in \mathbf{C}^N and write it in the form

$$(*) \qquad \qquad \mathcal{E} = E(n_0, n_1, \dots, n_K; 1, p_1, \dots, p_K).$$

Here it is understood that 1 does not appear if $n_0 = 0$, and also this domain is the unit ball B^{n_0} in $\mathbf{C}^{n_0} = \mathbf{C}^N$ if K = 0.

The purpose of this paper is to establish the following theorem that gives a full description of the holomorphic automorphism group of generalized complex ellipsoids:

THEOREM Let \mathcal{E} be the generalized complex ellipsoid appearing in (*). Then the holomorphic automorphism group $\operatorname{Aut}(\mathcal{E})$ of \mathcal{E} consists of all transformations

$$\varphi: (z_0, z_1, \ldots, z_K) \longmapsto (\tilde{z}_0, \tilde{z}_1, \ldots, \tilde{z}_K)$$

of the form

$$\tilde{z}_0 = H(z_0), \quad \tilde{z}_k = \gamma_k(z_0)U_k z_{\sigma(k)}, \quad 1 \le k \le K$$

(think of z_k as column vectors), where

- (1) $H \in \operatorname{Aut}(B^{n_0}),$
- (2) $\gamma_k(z_0)$ are nowhere vanishing holomorphic functions on B^{n_0} defined by

$$\gamma_k(z_0) = \left(\frac{1 - \|a\|^2}{\left(1 - \langle z_0, a \rangle\right)^2}\right)^{1/2p_k}, \quad a = H^{-1}(o) \in B^{n_0},$$

where $\langle \cdot, \cdot \rangle$ denotes the standard Hermitian inner product on \mathbf{C}^{n_0} and $o \in B^{n_0}$ is the origin of \mathbf{C}^{n_0} ,

- (3) $U_k \in U(n_k)$, the unitary group of degree n_k , and
- (4) σ is a permutation of $\{1, \ldots, K\}$ satisfying the following:

$$\{ \sigma(k_1 + \dots + k_{j-1} + 1), \dots, \sigma(k_1 + \dots + k_j) \} = \{ k_1 + \dots + k_{j-1} + 1, \dots, k_1 + \dots + k_j \}, \quad 1 \le j \le s,$$

and $\sigma(\mu) = \nu$ can only happen when $p_{\mu} = p_{\nu}$.

In particular, considering the special case where $n_k = 1$ and $2 \le p_k \in \mathbf{N}$ for all k, we obtain a natural generalization of Landucci [4; Corollary to Theorem]. This also gives an affirmative answer to an open problem posed in Jarnicki and Pflug [2; Remark 2.5.11].

In the next Section 2 we prove the Theorem and, in Section 3, we give a concrete example illustrating our result.

2 Proof of the Theorem

As mentioned in the introduction, the structure of the holomorphic automorphism group of the unit ball B^N in \mathbb{C}^N is well-known. So we prove the Theorem in the case where $K \geq 1$.

For the given generalized complex ellipsoid \mathcal{E} in $\mathbf{C}^N = \mathbf{C}^{n_0} \times \cdots \times \mathbf{C}^{n_K}$, let us consider the subset G of $\operatorname{Aut}(\mathcal{E})$ consisting of all elements

$$\varphi: (z_0, z_1, \dots, z_K) \longmapsto (\tilde{z}_0, \tilde{z}_1, \dots, \tilde{z}_K)$$

having the form

(2.1)
$$\tilde{z}_0 = H(z_0), \quad \tilde{z}_k = \gamma_k(z_0)U_k z_k, \quad 1 \le k \le K,$$

where $H \in \operatorname{Aut}(B^{n_0})$, $U_k \in U(n_k)$ and $\gamma_k(z_0)$ are the same objects appearing in the statement of the Theorem. Then one can see that G is a connected Lie subgroup of the Lie group $\operatorname{Aut}(\mathcal{E})$ of dimension

$$d(\mathcal{E}) := n_0^2 + 2n_0 + \sum_{k=1}^K n_k^2.$$

On the other hand, we know from Naruki [6] and Sunada [8] that $\operatorname{Aut}(\mathcal{E})$ is a real Lie group of dimension $d(\mathcal{E})$; hence, G is exactly the identity component of $\operatorname{Aut}(\mathcal{E})$. In particular, G is a normal subgroup of $\operatorname{Aut}(\mathcal{E})$.

By making use of the concrete description in (2.1) of elements of G, it is an easy matter to check that the G-orbit passing through the origin $o \in \mathcal{E} \subset \mathbb{C}^N$ is of lowest dimension in the set of all G-orbits, i.e.,

$$\dim(G \cdot o) < \dim(G \cdot p) \quad \text{for any point } p \in \mathcal{E} \setminus G \cdot o.$$

Hence, recalling the normality of G in $Aut(\mathcal{E})$, we obtain that

(2.2)
$$g \cdot (G \cdot o) = G \cdot o = \{(z_0, 0, \dots, 0) \in \mathbf{C}^{n_0} \times \mathbf{C}^{n_1} \times \dots \times \mathbf{C}^{n_K}; ||z_0|| < 1\}$$

for each element $g \in \operatorname{Aut}(\mathcal{E})$. This combined with a well-known theorem of H. Cartan (cf. [5; p. 67] assures us that every element $g \in \operatorname{Aut}(\mathcal{E})$ can be expressed as $g = \psi_g \cdot \ell_g$, where $\psi_g \in G$ and ℓ_g is a linear automorphism of \mathcal{E} , that is, a non-singular linear transformation of \mathbf{C}^N leaving \mathcal{E} invariant. Hence, the proof of our Theorem is now reduced to showing the following:

LEMMA Every linear automorphism $L : (z_0, z_1, \ldots, z_K) \mapsto (\tilde{z}_0, \tilde{z}_1, \ldots, \tilde{z}_K)$ of \mathcal{E} can be written in the form

(2.3)
$$\tilde{z}_0 = Az_0, \quad \tilde{z}_k = U_k z_{\sigma(k)}, \quad 1 \le k \le K,$$

where $A \in U(n_0)$, $U_k \in U(n_k)$ and σ is a permutation of $\{1, \ldots, K\}$ satisfying the same condition (4) as in the Theorem.

Proof. We will show this Lemma by generalizing the argument used in the proofs of [4; Proposition 2.1] and [1; Lemma 8.5.3]. It is clear that the linear

transformation L of \mathbb{C}^N written in the form (2.3) induces a linear automorphism of \mathcal{E} . So, taking an arbitrary linear automorphism L of \mathcal{E} , we would like to show that L can be described as in (2.3). To this end, we define the coordinate vector subspaces V_k , W_k of \mathbb{C}^N by setting

$$V_{k} = \{(z_{0}, z_{1}, \dots, z_{K}) \in \mathbf{C}^{N} ; z_{j} = 0, j \neq k \},\$$
$$W_{k} = \{(z_{0}, z_{1}, \dots, z_{K}) \in \mathbf{C}^{N} ; z_{k} = 0 \}$$

for $0 \le k \le K$; accordingly $\bigcap_{j \ne k} W_j = V_k$ for $0 \le k \le K$. Here, recalling our assumption that $K \ge 1$ and all the $p_k \ne 1$, we put

$$W = \left\{ (z_0, z_1, \dots, z_K) \in \mathbf{C}^N ; \|z_1\| \cdots \|z_K\| = 0 \right\} \text{ and } \mathcal{W} = W \cap \partial \mathcal{E},$$

where $\partial \mathcal{E}$ stands for the boundary of \mathcal{E} . Then, by routine computations it follows that $\partial \mathcal{E} \setminus \mathcal{W}$ is just the set consisting of all C^{ω} -smooth strongly pseudoconvex boundary points of \mathcal{E} ; consequently, $L(\mathcal{W}) = \mathcal{W}$. This, combined with the facts that \mathcal{W} is invariant under the dilations $\delta_r : z \mapsto rz \ (r > 0)$ on \mathbb{C}^N and $L(\delta_r(z)) = \delta_r(L(z))$ on \mathbb{C}^N , yields at once that $L(\mathcal{W}) = \mathcal{W}$.

With respect to the coordinate system (z_0, z_1, \ldots, z_K) in \mathbb{C}^N , the linear automorphism L can be expressed as $L = (L_0, L_1, \ldots, L_K)$. Recall here the fact in (2.2). It then follows that

• each $L_k (1 \le k \le K)$ does not depend on the variable z_0 ,

and

• the restriction $L_{0|V_0}: V_0 \to V_0$ of L_0 to V_0 gives rise to a holomorphic automorphism of the unit ball B^{n_0} ; and hence, it has to be a unitary transformation of $V_0 \equiv \mathbb{C}^{n_0}$.

Therefore, one may assume that L has the form:

$$L(z) = (z_0 + A(z_1, \dots, z_K), L_1(z_1, \dots, z_K), \dots, L_K(z_1, \dots, z_K))$$

for $z = (z_0, z_1, \dots, z_K) \in \mathbf{C}^N$, where A, $L_k (1 \le k \le K)$ are all linear mappings. Now we will proceed in steps.

1) There exists a permutation τ of $\{1, \ldots, K\}$ such that $L_{\tau(k)}(W_k) = \{0\}$ for every $1 \leq k \leq K$. In particular, we have $L(W_k) \subset W_{\tau(k)}$ for $1 \leq k \leq K$. Indeed, let $1 \leq k \leq K$ and assume that $L_j(W_k) \neq \{0\}$ for all $j, 1 \leq j \leq K$. Then, considering the proper complex analytic subset \mathcal{A} of W_k consisting of all points $z \in W_k$ with $L_j(z) = 0$ for some $j, 1 \leq j \leq K$, we have

$$||L_1(z^o)|| \cdots ||L_K(z^o)|| > 0$$
 for any point $z^o \in W_k \setminus \mathcal{A}$.

However, since $W_k \subset W$ for every $1 \leq k \leq K$ and L(W) = W, this is absurd. Therefore we have shown that, for every $1 \leq k \leq K$, there exists at least one integer $j, 1 \leq j \leq K$, such that $L_j(W_k) = \{0\}$. Let us fix, once and for all, the correspondence $\tau : k \mapsto j$. Then this τ is injective. Indeed, assume contrarily that $\tau(k) = \tau(\ell) =: j_0$ for some k, ℓ with $1 \leq k \neq \ell \leq K$. Then, since $\mathbb{C}^N =$ $W_k + W_\ell$, the sum of the vector subspaces W_k and W_ℓ , and since $L : \mathbf{C}^N \to \mathbf{C}^N$ is a linear isomorphism, we obtain a contradiction: $\mathbf{C}^N = L(\mathbf{C}^N) \subset W_{j_0} \subsetneq \mathbf{C}^N$. As a result, τ is a permutation of $\{1, \ldots, K\}$ satisfying the condition required in 1).

2) Let τ be the permutation of $\{1, \ldots, K\}$ appearing in 1). Then we have

$$\{\tau(k_1 + \dots + k_{j-1} + 1), \dots, \tau(k_1 + \dots + k_j)\} = \{k_1 + \dots + k_{j-1} + 1, \dots, k_1 + \dots + k_j\}, \quad 1 \le j \le s,$$

where we put $k_0 = 0$. Indeed, for every $1 \le k \le K$, we have

$$L(V_k) = \bigcap_{0 \le j \le K, j \ne k} L(W_j) \subset L(W_0) \bigcap \left(\bigcap_{1 \le j \le K, j \ne k} W_{\tau(j)}\right)$$

by 1); consequently,

(2.4)
$$L_{\tau(k)}(V_k) \subset V_{\tau(k)}$$
 and $L_{\tau(j)}(V_k) = \{0\}, \ 1 \le j \le K, \ j \ne k.$

From now on, putting $M = n_1 + \cdots + n_K$, we identify in the obvious way $\mathbf{C}^M = \mathbf{C}^{n_1} \times \cdots \times \mathbf{C}^{n_K}$ with the coordinate vector subspace W_0 of \mathbf{C}^N . Then the linear transformation $\tilde{L} := (L_1, \ldots, L_K) : \mathbf{C}^M \to \mathbf{C}^M$ induced by L is non-singular; and hence, we see that $L_{\tau(k)}(V_k) = V_{\tau(k)}$ in (2.4) and $n_k = n_{\tau(k)}$. This, together with the ordering among the integers n_1, \ldots, n_K as in the previous section, guarantees that τ has to satisfy the condition in 2), as desired.

Let $\sigma := \tau^{-1}$ be the inverse of τ in 1). Then, by (2.4) L can be written in the form

(2.5)
$$L(z) = (z_0 + A(z_1, \dots, z_K), U_1 z_{\sigma(1)}, \dots, U_K z_{\sigma(K)})$$

for $z = (z_0, z_1, \ldots, z_K) \in \mathbf{C}^N$ (think of z_k as column vectors), where U_k are non-singular $n_k \times n_k$ matrices for $1 \leq k \leq K$. Here we wish to verify the following:

3) For every $1 \leq k \leq K$, we have $U_k \in U(n_k)$. To show this, we first assert that $A(z_1, \ldots, z_K) \equiv 0$ in (2.5). Indeed, the fact $L(\partial \mathcal{E}) = \partial \mathcal{E}$ yields that

$$||z_0 + A(z_1, \dots, z_K)||^2 + \sum_{k=1}^K ||U_k z_{\sigma(k)}||^{2p_k} = 1, \quad z \in \partial \mathcal{E}.$$

For any point $z = (z_0, z_1, \ldots, z_K) \in \partial \mathcal{E}$, write $z_0 = (z_0^1, \ldots, z_0^{n_0})$. Then, by taking a suitable point \hat{z}_0 of the form

$$\hat{z}_0 = \left(\xi_1 z_0^1, \dots, \xi_{n_0} z_0^{n_0}\right), \quad \xi_j \in \mathbf{C}, \ |\xi_j| = 1, \ 1 \le j \le n_0,$$

we see that $\operatorname{Re}\langle z_0, A(z_1, \ldots, z_K) \rangle = 0$; and hence,

(2.6)
$$-\sum_{k=1}^{K} \|z_k\|^{2p_k} + \|A(z_1, \dots, z_K)\|^2 + \sum_{k=1}^{K} \|U_k z_{\sigma(k)}\|^{2p_k} = 0, \quad z \in \partial \mathcal{E}.$$

Notice that this equality holds also for any point

$$(z_1, \dots, z_K) \in \mathbf{C}^M$$
 with $\sum_{k=1}^K ||z_k||^{2p_k} \le 1$,

because one can always find a point $z_0 \in \mathbf{C}^{n_0}$ such that $(z_0, z_1, \ldots, z_K) \in \partial \mathcal{E}$. Now, in order to prove that $A(z_1, \ldots, z_K) \equiv 0$, take an arbitrary point $z_1 \in \mathbf{C}^{n_1}$ with $||z_1|| = 1$ and set $j = \sigma^{-1}(1)$, for simplicity. Then

$$-x^{2p_1} + x^2 \|A(z_1, 0, \dots, 0)\|^2 + x^{2p_j} \|U_j z_1\|^{2p_j} = 0, \quad 0 \le x \le 1.$$

Since all the $p_k \neq 1$, this says that $A(z_1, 0, \ldots, 0) = 0$. Analogously, for every $2 \leq k \leq K$ one can show that $A(0, \ldots, 0, z_k, 0, \ldots, 0) = 0$ for $z_k \in \mathbb{C}^{n_k}$ with $||z_k|| = 1$. Obviously this means that $A(z_1, \ldots, z_K) \equiv 0$ on \mathbb{C}^M , as asserted. Next, put $j = \sigma(k)$ for a given $k, 1 \leq k \leq K$. It then follows from (2.6) that

$$||U_k z_j|| = 1$$
 for all $z_j \in V_j, ||z_j|| = 1;$

which implies that $U_k \in U(n_k)$ for every $1 \le k \le K$; verifying the assertion 3).

Summarizing the above, we have shown that L has the form

$$L(z) = (z_0, U_1 z_{\sigma(1)}, \dots, U_K z_{\sigma(K)}), \quad z = (z_0, z_1, \dots, z_K) \in \mathbf{C}^N,$$

where $U_k \in U(n_k)$, $1 \le k \le K$, and σ is a permutation of $\{1, \ldots, K\}$ satisfying the condition:

$$\{\sigma(k_1 + \dots + k_{j-1} + 1), \dots, \sigma(k_1 + \dots + k_j)\} = \{k_1 + \dots + k_{j-1} + 1, \dots, k_1 + \dots + k_j\}, \ 1 \le j \le s.$$

Therefore, in order to complete the proof of the Lemma, we have only to show the following assertion:

4) Let $k_1 + \cdots + k_{j-1} + 1 \leq \mu, \nu \leq k_1 + \cdots + k_j, 1 \leq j \leq s$. Then $\sigma(\mu) = \nu$ can only happen when $p_{\mu} = p_{\nu}$. We verify this only in the case where j = 1, since the verification in the general case is almost identical. Moreover, once the proof of 4) for $k_1 \geq 4$ is accomplished, then that for $1 \leq k_1 \leq 3$ follows by a simple modification of it. Taking these into account, we will carry out the proof of 4) in the case where j = 1 and $k_1 \geq 4$. Clearly $\sigma(\mu) = \nu$ is possible when $p_{\mu} = p_{\nu}$. So, assuming that $\sigma(\mu) = \nu$ for $1 \leq \mu, \nu \leq k_1, \mu \neq \nu$, we wish to prove that $p_{\mu} = p_{\nu}$. For this purpose, we first remark the following: Since $L(\partial \mathcal{E}) = \partial \mathcal{E}$, with exactly the same argument as in the proof of 3), we can see that

(2.7)
$$\sum_{1 \le k \le k_1, \, k \ne \mu} \|z_{\sigma(k)}\|^{2p_k} + \left(1 - \sum_{1 \le j \le k_1, \, j \ne \nu} \|z_j\|^{2p_j}\right)^{p_\mu/p_\nu} = 1$$

for any point

$$(z_1, \dots, z_{\nu-1}, z_{\nu+1}, \dots, z_{k_1})$$
 with $\sum_{1 \le j \le k_1, \ j \ne \nu} \|z_j\|^{2p_j} \le 1$

Now, since $k_1 \ge 4$, we can always choose an integer $m, 1 \le m \le k_1$, in such a way that

$$m \neq \mu, \nu$$
 and $j := \sigma(m) \neq \mu, \nu$.

Then, putting $z_{\ell} = 0$ for $\ell \neq j$ in (2.7), we obtain that

$$||z_j||^{2p_m} + (1 - ||z_j||^{2p_j})^{p_\mu/p_\nu} = 1, \quad ||z_j|| \le 1.$$

Accordingly, by taking the points xz_j^o with $0 \le x \le 1$, $||z_j^o|| = 1$, we have

$$x^{2p_m} + (1 - x^{2p_j})^{p_\mu/p_\nu} = 1, \quad 0 \le x \le 1.$$

A simple computation shows that this can only happen when $p_m = p_j$ and $p_\mu = p_\nu$; completing the proof of the Lemma.

Hence we have completed the proof of our Theorem.

3 An example

As a concrete example illustrating our result, we here give the following generalized complex ellipsoid \mathcal{E} in \mathbf{C}^{11} defined by

$$\mathcal{E} = \left\{ (z, w_1, w_2, w_3, w_4, w_5, w_6) \in \mathbf{C} \times \mathbf{C} \times \mathbf{C} \times \mathbf{C} \times \mathbf{C}^2 \times \mathbf{C}^2 \times \mathbf{C}^3; \\ |z|^2 + |w_1|^{2/3} + |w_2|^3 + |w_3|^{2/3} + ||w_4||^3 + ||w_5||^3 + ||w_6||^3 < 1 \right\}.$$

So, with the notation of the introduction, we have:

$$K = 6$$
, $n_1 = n_2 = n_3 = 1 < n_4 = n_5 = 2 < n_6 = 3$, $k_1 = 3$, $k_2 = 2$, $k_3 = 1$
and $\mathcal{E} = E(1, 1, 1, 1, 2, 2, 3; 1, 1/3, 3/2, 1/3, 3/2, 3/2, 3/2).$

And our Theorem tells us that every element φ of $Aut(\mathcal{E})$ can be described as

$$\varphi(u) = \left(\xi \frac{z-a}{1-\bar{a}z}, \, \rho(z)^{3/2} \xi_1 w_{\sigma(1)}, \, \rho(z)^{1/3} \xi_2 w_{\sigma(2)}, \, \rho(z)^{3/2} \xi_3 w_{\sigma(3)}, \\ \rho(z)^{1/3} U_4 w_{\sigma(4)}, \, \rho(z)^{1/3} U_5 w_{\sigma(5)}, \, \rho(z)^{1/3} U_6 w_{\sigma(6)}\right)$$

for $u = (z, w_1, w_2, w_3, w_4, w_5, w_6) \in \mathcal{E}$, where

a,
$$\xi$$
, ξ_1 , ξ_2 , $\xi_3 \in \mathbf{C}$ with $|a| < 1$, $|\xi| = |\xi_1| = |\xi_2| = |\xi_3| = 1$,
 $U_4, U_5 \in U(2), U_6 \in U(3), \rho(z) = \frac{1 - |a|^2}{(1 - \bar{a}z)^2}, |z| < 1$,

and σ is a permutation of $\{1, \ldots, 6\}$ such that

 $\{\sigma(1), \sigma(3)\} = \{1, 3\}, \ \{\sigma(4), \sigma(5)\} = \{4, 5\}, \ \sigma(2) = 2, \ \sigma(6) = 6.$

Therefore we conclude that $\operatorname{Aut}(\mathcal{E})$ is a 23-dimensional Lie group with four connected components.

Acknowledgement

The author is partially supported by the Grant-in-Aid for Scientific Research (C) No. 24540166, the Ministry of Education, Science, Sports and Culture, Japan.

References

- M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis, De Gruyter Exp. Math. 9, Walter de Gruyter & Co., Berlin, 1993.
- [2] M. Jarnicki and P. Pflug, First steps in several complex variables: Reinhardt domains, EMS Textbooks in Math., Euro. Math. Soc., Zürich, 2008.
- [3] A. Kodama, A remark on bounded Reinhardt domains, Proc. Japan Acad. 54 (1978), 179–182.
- [4] M. Landucci, On the proper holomorphic equivalence for a class of pseudoconvex domains, Trans. Amer. Math. Soc. 282 (1984), 807–811.
- [5] R. Narasimhan, Several complex variables, Chicago Lectures in Math., Univ. Chicago Press, Chicago, 1971.
- [6] I. Naruki, The holomorphic equivalence problem for a class of Reinhardt domains, Publ. Res. Ins. Math. Sci., Kyoto Univ. 4 (1986), 527–543.
- [7] W. Rudin, Function theory in the unit ball in Cⁿ, Grundlehren d. math. Wiss. 241, Springer-Verlag, New York, Heidelberg, Berlin, 1980.
- [8] T. Sunada, Holomorphic equivalence problem for bounded Reinhardt domains, Math. Ann. 235 (1978), 111–128.