Desymmetrization of
meso－methylenecyclopropanes by a
palladium－catalyzed asymmetric ring－opening bis（alkoxycarbonylation）reaction

メタデータ	言語：eng
	出版者：
	公開日：2017－10－03
	キーワード（Ja）：
	キーワード（En）：
	作成者：
	メールアドレス：
	所属：
URL	https：／／doi．org／10．24517／00010769

This work is licensed under a Creative Commons Attribution－NonCommercial－ShareAlike 3.0 International License．

Desymmetrization of meso-Methylenecyclopropanes by a Palladium-Catalyzed Asymmetric Ring-Opening Bis(alkoxycarbonylation) Reaction

Yasushi Yonezawa, Tomoki Furuya, Takahiro Aratani, Shuhei Fijinami, Katsuhiko Inomata, Yutaka Ukaji*
Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
E-mail: ukaji@staff.kanazawa-u.ac.jp

Abstract

Desymmetrization of various meso-methylenecyclopropanes was accomplished by a palladium-catalyzed asymmetric ring-opening bis(alkoxycarbonylation) reaction employing a chiral bioxazoline ligand. The reaction proceeded smoothly in the presence of copper(I) triflate under carbon monoxide and oxygen at ambient pressure to give the corresponding optically active α-methyleneglutarates with up to 60% ee. Desymmetrization of protected meso-(3-methylenecyclopropane-1,2-diyl)dimethanol was also carried out to give enantioenriched highly oxygen-functionalized α-methyleneglutarates.

1. Introduction

The desymmetrization of meso-compounds has become a common strategy in asymmetric synthesis since it allows the formation of multiple stereogenic centers in one symmetry-breaking operation. Among the desymmetrization techniques, methods which involve the formation of new $\mathrm{C}-\mathrm{C}$ bonds are quite useful for the synthesis of optically active natural products or biologically active substances. ${ }^{1,2}$

Carbonylation is an important reaction in organic synthesis as it provides an efficient means of making a variety of useful homologated carbonyl compounds. ${ }^{3}$ We have developed the selective mono- and bis(alkoxycarbonylation) reactions of terminal olefins catalyzed by palladium in the presence of copper salts under mixtures of carbon monoxide and oxygen at ambient pressure. ${ }^{4}$ We have also taken an interest in utilizing
cyclopropanes as three carbon units for the preparation of glutarates via direct introduction of two carbonyl groups and have developed the ring-opening reaction of methylenecyclopropanes to afford the corresponding α-methyleneglutarates. ${ }^{5}$ In order to prepare optically active glutaric acid derivatives, the asymmetric ring-opening bis(alkoxycarbonylation) reaction of methylenecyclopropanes would be effective. ${ }^{6-8}$ Herein we describe the desymmetrization of meso-methylenecyclopropanes by a palladium-catalyzed ring-opening bis(alkoxycarbonylation) reaction in the presence of a chiral bioxazoline ligand. ${ }^{9}$

2. Results and Discussion

We initially performed the asymmetric bis(alkoxycarbonylation) reaction of 7-methylenebicyclo[4.1.0]heptane (1) in the presence of 0.02 equivalents of PdCl_{2} and 0.5 equivalents of $\mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}$ under carbon monoxide and oxygen (ca. $1: 1 \mathrm{v} / \mathrm{v}$) at ambient pressure in $\mathrm{MeOH} / \mathrm{THF}$ using (S, S)-isopropyl-substituted bioxazoline $\mathbf{3 A}$ as a chiral ligand. ${ }^{9-11}$ The reaction proceeded very slowly to give methyl $(1 R$, 2S)-2-(3-methoxy-3-oxoprop-1-en-2-yl)cyclohexanecarboxylate (2) in 58\% yield. The optical yield of the obtained α-methyleneglutarate 2 was determined to be 37% ee by HPLC analysis (Table 1, Entry 1). The effect of various substituents at the 4- and 4 '-positions of the bioxazoline ligand $\mathbf{3}$ was subsequently investigated. As shown in Table 1, use of the isobutyl-substituted ligand 3B resulted in enhanced stereoselectivity (Entry 2), while desymmetrization using the benzyl-substituted bioxazoline ligand 3C proceeded with a further improved enantioselectivity of 60% ee (Entry 3). ${ }^{12}$ The use of the 1- and 2-naphthylmethyl substituted ligands $\mathbf{3 D}$ and $\mathbf{3 E}$, however, did not improve the selectivity (Entries 5 and 6), while the bulky tert-butyl-substituted ligand 3F was less effective (Entry 7). In addition, the phenyl-substituted ligand 3G resulted in the reverse stereodifferentiation (Entry 8), while the other types of oxazoline ligands 4-6 which we applied gave poor optical yields (Entries 9-11). When the amount of $\mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}$ was reduced, the chemical yield and optical yields were slightly decreased (Entry 4).

Table 1. Optimization of Reaction Conditions

 1				
Entry	Ligand	$t \mathrm{~h}$	Yield/\%	
1	3A	41	58	37
2	3B	49	65	51
3	3C	60	53	60
$4^{\text {b }}$	3C	59	50	56
5	3D	37	54	50
6	3E	37	57	43^{c}
7	3F	47	47	8
8	3G	72	62	$-45^{\text {d }}$
9	4	44	56	7
10	5	41	60	7
11	6	43	59	6

${ }^{a}$ Enantioselectivities were determined by HPLC analysis (DAICEL CHIRALPAK IA).
${ }^{b}$ The amount of $\mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}$ was 0.01 equivalent.
${ }^{c}$ Actual reaction was carried out by the use of $(R, R)-\mathbf{3 E}$ as a ligand to mainly give ($1 S, 2 R$)-2.
${ }^{d}$ Actual reaction was carried out by the use of $(R, R)-\mathbf{3 G}$ as a ligand to mainly give ($1 R, 2 S$)-2.

3A: $\mathrm{R}=i-\mathrm{Pr}$
3D: $\mathrm{R}=1-\mathrm{NapCH}_{2}$
3B: $\mathrm{R}=i-\mathrm{Bu}$
3E: $\mathrm{R}=2-\mathrm{NapCH}_{2}$
3C: $\mathrm{R}=\mathrm{PhCH}_{2}$
3F: $\mathrm{R}=t$ - Bu
3G: $\mathrm{R}=\mathrm{Ph}$

5

The asymmetric ring-opening reactions of the methylene cyclopropanes $\mathbf{7}$ and $\mathbf{9}$, with a fused 5 - or 8 -membered ring, were next investigated using the benzyl-substituted bioxazoline ligand $\mathbf{3 C}$. The ring-opening reaction did not proceed at rt and, when the reaction temperature was increased to $60{ }^{\circ} \mathrm{C}$, a complex mixture of products resulted (Eqs. 1 and 2). In the case of 9, the desired ring-opening product $\mathbf{1 0}$ was obtained in only 5% yield with 45% ee.

Next, in order to synthesize optically active oxygen-functionalized glutarate derivatives, ${ }^{13}$ meso-methylene cyclopropanes (11) with alkoxymethyl groups at the 1and 2-positions were used as substrates. The desymmetrization reaction of the (benzyloxy)methyl-substituted methylene cyclopropane 11a using the bioxazoline ligand (S, S)-3C proceeded to afford the ring-opened product 12a in 70\% yield, although unfortunately the enantiomeric excess was quite poor (Table 2, Entry 1). Employing the 1-naphthylmethyl-substituted ligand 3D gave very little improvement in the
stereoselectivity of the reaction (Entry 2), while the use of the phenyl-substituted bioxazoline ligand 3G resulted in reversal of the stereoselection in addition to continued low enantioselectivity (Entry 3). When the sterically bulky triphenylmethyl group was introduced in place of the benzyl group on 11a, however, desymmetrization proceeded more efficiently to give the oxygen-functionalized α-methylene glutarate 12b with 42% ee (Entry 4). The triphenylsilyl ether 11c allowed slightly improved enatioselectivity (Entry 5) and, when the tert-butyldiphenylsily ether 11d was subjected to the desymmetrization, the corresponding product 12d was obtained with a selectivity of 51% ee (Entries 6 and 7). By the use of phenyl bioxazoline ligand 3G, the reversal of enantioselection was again observed (Entry 8).

Table 2. Scope of Substrates

		PdCl_{2} (0.02 equiv) $\mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}$ (0.5 equiv)				
	 11					
Entry	R'		R (3)	t / h	Yield/\%	ee/\%
1	PhCH_{2}	a	$\mathrm{PhCH}_{2}(\mathbf{3 C)}$	43	70	18^{a}
2			1- NapCH_{2} (3D)	24	47	22^{a}
3			$\mathrm{Ph}(\mathbf{3 G})$	36	69	$-28^{a, b}$
4	$\mathrm{Ph}_{3} \mathrm{C}$	b	$\mathrm{PhCH}_{2}(\mathbf{3 C)}$	67	65	42^{a}
5	$\mathrm{Ph}_{3} \mathrm{Si}$	c	$\mathrm{PhCH}_{2}(\mathbf{3 C)}$	72	48	$48^{\text {c }}$
6	$t-\mathrm{BuPh}_{2} \mathrm{Si}$	d	$\mathrm{PhCH}_{2}(\mathbf{3 C)}$	49	67	51^{a}
7			1- NapCH_{2} (3D)	30	82	51^{a}
8			Ph (3G)	71	76	$-24^{a, b}$

${ }^{a}$ Enantioselectivitiy was determined by HPLC analysis (DAICEL CHIRALPAK IA).
${ }^{b}$ Actual reaction was carried out by the use of (R, R)-3G as a ligand to mainly give the same enantiomer with that by the use of $(S, S)-\mathbf{3 C}$.
${ }^{c}$ Enantioselectivitiy was determined by HPLC analysis (DAICEL CHIRALPAK IC).

To establish the absolute configuration of $\mathbf{2}$, the compound was converted to $\mathbf{1 4}$ as follows. Enantiomerically rich $2(60 \%$ ee) obtained by the use of (S, S)-benzyl-substituted bioxazoline ligand (S, S) - 3C was reduced to the corresponding diol 13 with LiAlH_{4}. The diol was subsequently transformed into the bis-camphanic ester $\mathbf{1 4}$ by treatment with ($1 S$)-camphanic chloride and $\mathrm{Et}_{3} \mathrm{~N}$ in the presence of a catalytic amount of 4-(N,N-dimethylamino)pyridine (DMAP) (Scheme 1). Recrystallization gave the diastereomerically pure compound $\mathbf{1 4}$ and the absolute stereochemistry at each of its two chiral centers was determined (Figure 1) by X-ray crystallographic analysis. In this manner, the absolute configuration of 2 obtained by using the ($4 S, 4$ ' S)-benzyl-substituted bioxazoline ligand (S, S)-3C was determined to be $1 R, 2 S$. This assignment also demonstrated that the relative stereochemistry of the two substituents on the cyclohexane ring of $\mathbf{2}$ was cis. The absolute configuration of $\mathbf{1 0}$ was also tentatively assigned as $1 R, 2 S$. In the case of the $\mathbf{1 2}$ series of products shown in Table 2, the stereochemistries of the molecules were assumed to correspond to the same configurational arrangements as the substituents of $\mathbf{2}$ as depicted in Table 2, in which case the manner of chiral induction is similar to that which occurs in the bis(alkoxycarbonylation) reaction of $\mathbf{1}$ using $(S, S)-\mathbf{3 C}$.

Scheme 1. Conversion of 2 into 14

Figure 1. X-ray crystal structure of compound 14.
Although the precise mechanism of the present reaction is still an open question, one possible transition state during the desymmetrization of meso-methylenecyclopropane using the benzyl-substituted ligand (S, S)-3C is shown in Schemes 2 and 3, based on the absolute stereochemistry assigned above. Copper salt might work not only as an oxidant, but also as a co-catalyst to generate $\mathrm{Pd}-\mathrm{CO}_{2} \mathrm{Me}$ species \mathbf{C} as previously proposed. ${ }^{9 \mathrm{~b}}$ That is, CuOTf reacts with CO and MeOH successively to give the $\mathrm{CuCO}_{2} \mathrm{Me}$ species, from which $\mathrm{CO}_{2} \mathrm{Me}$ group was transferred to palladium chloride to generate complex \mathbf{C} with the chiral ligand 3C. Furthermore, CuOTf also reacts with \mathbf{C} to afford a cationic palladium intermediate \mathbf{D}, in which olefin strongly coordinate to the palladium metal (Scheme 2). The following carbopalladation proceeds from the anti direction relative to the R substituents, to give a terminal palladium intermediate \mathbf{E} regioselectively avoiding steric congestion of the olefin component (Scheme 3). ${ }^{14}$ Desymmetrization then occurs as the result of differentiation of the ring cleavage reaction via either path (a) or (b). In the transition state $\mathbf{T}_{\text {cis }}$, steric hindrance between R and the palladium complex moiety prevents the cis elimination pathway from proceeding. During trans elimination, there is steric congestion between the benzyl group of the bioxazoline ligand 3C and the cyclopropane moiety in the transition state $\mathbf{T}_{\mathbf{b}}$ and therefore the predominant enantiomer in the final product may arise from cleavage reaction (a) via transition state $\mathbf{T}_{\mathbf{a}}$ by a trans- β-carbon elimination pathway. ${ }^{15}$ Subsequent to this, a second alkoxycarbonylation can take place with retention of the carbon center to afford enantiomer \boldsymbol{A}, which corresponds to product $(1 R, 2 S)-\mathbf{2}$ obtained from the reaction of the cyclohexane-fused
methylenecyclopropane $\mathbf{1}$. The cause of the observed reversal of enatiodifferentiation with the use of the phenyl-substituted ligand $\mathbf{3 G}$ is still not well understood.

Scheme 2. A Proposed Pathway toward Generation of $\mathrm{Pd}-\mathrm{CO}_{2} \mathrm{Me}$ species

Scheme 3. A Proposed Transition State

3. Conclusions

In conclusion, we have realized the desymmetrization of meso-methylenecyclopropanes by a palladium-catalyzed asymmetric ring-opening bis(alkoxycarbonylation) reaction to afford optically active α-methyleneglutarates with up to 60% ee. This asymmetric carbonylation method provides a useful starting point for the synthesis of optically active oxygen-functionalized substrates.

4. Experimental Section

General Method. ${ }^{1} \mathrm{H}$ NMR spectroscopy was performed in CDCl_{3} using a JEOL ECS 400 NMR (400 MHz) spectrometer. Chemical shifts (δ) were determined relative to TMS ($\delta=0 \mathrm{ppm}$) as an internal standard. ${ }^{13} \mathrm{C}$ NMR spectroscopy was performed in CDCl_{3} on a JEOL ECS $400 \mathrm{NMR}(100 \mathrm{MHz})$ spectrometer and chemical shifts (δ) were determined relative to $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm})$ as an internal standard. IR spectra were acquired on a JASCO FT/IR-230 spectrometer. Melting points were determined on a micro-melting apparatus (Yanagimoto-Seisakusho) and were uncorrected. The specific optical rotations were recorded on a JASCO DIP-370 spectrometer. HPLC was performed using chiral column with JASCO PU980 plus JASCO UV970. X-ray crystallography was carried out using Mo-K α radiation. Elemental analysis was performed on a Yanaco CHN Corder MT-5 elemental analyzer. Mass spectra were obtained using JMS-700 and JMS-T100TD mass spectrometers. All solvents were distilled prior to use and stored over drying agents. Merck silica gel 60 PF254 (Art. 7749), Cica silica gel 60N spherical neutral (37563-84), and JAIGL-SIL (s-043-15) were used for thin-layer chromatography (TLC), flash column chromatography, and recycle HPLC, respectively.

Methylenecyclopropanes $\mathbf{1},{ }^{16} \mathbf{7},{ }^{16} \mathbf{9},{ }^{16}$ and $\mathbf{1 1 a}{ }^{17}$ were prepared by literature procedures. Oxygen-functionalized methylenecyclopropanes 11b, 11c, and 11d were prepared from 3-(methylenecyclopropane-1,2-diyl)dimethanol by following procedures.

1,2-Bis((trityloxy)methyl)-3-methylenecyclopropane (11b)

A DMF (3 mL) solution of 3-(methylenecyclopropane-1,2-diyl)dimethanol ${ }^{18}$ ($572 \mathrm{mg}, 5$ mmol) was added to a mixture of trityl chloride ($3.07 \mathrm{~g}, 11 \mathrm{mmol}$) and 4-(dimethylamino)pyridine ($1.83 \mathrm{~g}, 15 \mathrm{mmol}$) in DMF (9 mL) at rt under a nitrogen atmosphere, and the mixture was stirred overnight at rt. Trityl chloride ($1.12 \mathrm{~g}, 4 \mathrm{mmol}$) was added to the reaction mixture, and the solution was stirred overnight at $80^{\circ} \mathrm{C}$. This mixture was subsequently poured into a mixture of ice and water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$, after which the combined extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by recrystallization from toluene to give the corresponding methylenecyclopropane 11b $(2.00 \mathrm{~g}, 62 \%)$ as a solid. m.p. $158{ }^{\circ} \mathrm{C}$ (toluene). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=$ $1.91-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.98(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.15(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.17-7.21 (m, 18H), 7.31-7.37 (m, 12H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=19.6,62.5$, 86.4, 104.2, 126.8, 127.7, 128.6, 136.6, 144.2; IR (KBr) 3056, 3031, 2973, 2922, 2872, 1595, 1491, 1446, 1385, 1208, 1179, 1157, 1047, 1028, 891, 764, 738, $706 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{O}_{2}$: C 88.26, H 6.40; found: C 87.96, H 6.47.

1,2-Bis-((triphenylsilyloxy)methyl)-3-methylenecyclopropane (11c)

To a suspension of NaH (60% dispersion in mineral oil, $310 \mathrm{mg}, 7.8 \mathrm{mmol}$) in DMF (14 mL), 3-(methylenecyclopropane-1,2-diyl)dimethanol ($355 \mathrm{mg}, 3.1 \mathrm{mmol}$) in DMF (3 mL) was added at $0{ }^{\circ} \mathrm{C}$. After the evolution of hydrogen gas ceased, 4 -(N, N-dimethylamino)pyridine ($17 \mathrm{mg}, 0.13 \mathrm{mmol}$) and a DMF (3 mL) solution of chlorotriphenylsilane $(2.245 \mathrm{~g}, 7.6 \mathrm{mmol})$ were added, and the reaction mixture was stirred at rt for 3 d . The reaction mixture was poured into a mixture of ice and water, and the insoluble substance was filtered through a bed of Celite. The filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined extracts were washed by $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and condensed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\left.\mathrm{AcOEt}=3 / 1\right)$ to give 11c $(1.745 \mathrm{~g}, 93 \%)$ as a solid. m.p. $129{ }^{\circ} \mathrm{C}$ (hexane/AcOEt). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.94-1.96(\mathrm{~m}$, $2 \mathrm{H}), 3.79-3.81(\mathrm{~m}, 4 \mathrm{H}), 5.27(\mathrm{t}, 2 \mathrm{H}, J=1.84 \mathrm{~Hz}), 7.26-7.46(\mathrm{~m}, 30 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=22.2,62.3,104.1,127.8,129.9,135.2,135.4,136.0$; IR (KBr) 3066, 3008, 2911, 2871, 1588, 1485, 1427, 1387, 1308, 1253, 1188, 1158, 1119, 997, 887, 806, 740, $713 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}_{2}$: C 79.95, H
6.07; found: C 79.79, H 6.10.

1,2-Bis-((tert-butyldiphenylsilyloxy)methyl)-3-methylenecyclopropane (11d)

To a suspension of NaH (60% dispersion in mineral oil, $430 \mathrm{mg}, 11 \mathrm{mmol}$) in THF (6 mL), 3-(methylenecyclopropane-1,2-diyl)dimethanol ($410 \mathrm{mg}, 4 \mathrm{mmol}$) in THF (3 mL) was added at $0{ }^{\circ} \mathrm{C}$. After the evolution of hydrogen gas ceased, tetrabutylammonium iodide ($66 \mathrm{mg}, 0.2 \mathrm{mmol}$) and a THF (3 mL) solution of tert-butylchlorodiphenylsilane $(2.93 \mathrm{~g}, 11 \mathrm{mmol})$ were added, and the reaction mixture was stirred at rt for 1 d . Water was added, and the insoluble substance was filtered through a bed of Celite. The filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined extracts were washed by $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and condensed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $\left./ \mathrm{AcOEt}=5 / 1\right)$ to give $\mathbf{1 1 d}(1.89 \mathrm{~g}, 89 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.01(\mathrm{~s}, 18 \mathrm{H}), 1.90-1.95(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{ddd}, J=$ $11.0,6.9,2.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.73 (ddd, $J=11.0,7.3,2.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.35 (dd, $J=2.3,1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.36-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.67(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta=19.1,22.1,26.8,62.6,103.8,127.6,129.49,129.52,133.7,133.8,135.5$, 135.6, 136.6; IR (neat) 3070, 2958, 2930, 2857, 1589, 1472, 1427, 1389, 1112, 1074, 823, 739, $702 \mathrm{~cm}^{-1}$; HRMS (EI): m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Si}_{2}: 590.30364$ [$\left.M\right]^{+}$; found: 590.30370.

The ligands (S, S)-3D and (R, R)-3E were prepared by literature procedures ${ }^{10 \mathrm{a}, 19}$ for the synthesis of other bioxazoline ligands starting from (S)-2-amino-3-(1-naphthalenyl)-1-propanol and (R)-2-amino-3-(2-naphthaleny)-1-propanol, ${ }^{20}$ respectively.
(S,S)-4,4'-Bis(1-naphthalenylmethyl)-4,4',5,5'-tetrahydro-2,2'-bioxazole (3D): m.p. $149{ }^{\circ} \mathrm{C}$ (hexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{25}-5\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=$ 3.00 (dd, $J=14.2,10.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{dd}, J=14.2,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.289(\mathrm{~d}, 2 \mathrm{H}, J=8.2$ Hz), 4.294 (d, 2H, $J=9.2 \mathrm{~Hz}$), 4.77-4.85 (m, 2H), 7.34 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ (dd, J $=8.2,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $8.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=38.5,67.2,73.1,123.4$, 125.4, 125.8, 126.3, 126.8, 127.7, 128.9, 131.7, 133.1, 133.9, 155.2; IR (KBr) 3045, 2953, 2885, 1613, 1508, 1472, 1395, 1308, 1228, 1131, 1093, 1075, 953, 795, 776, 740 cm^{-1}; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$: $443.1736[M+\mathrm{Na}]^{+}$; found:

(R, R)-4,4'-Bis(2-naphthalenylmethyl)-4,4',5,5'-tetrahydro-2,2'-bioxazole (3E):

m.p. $173{ }^{\circ} \mathrm{C}$ (hexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{25}-26\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $=2.85(\mathrm{dd}, J=13.8,9.2, \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{dd}, J=13.8,4.6, \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.37$ (dd, $J=10.1,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.67-4.75(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.42-7.48 (m, 4H), $7.63(\mathrm{~s}, 2 \mathrm{H}), 7.77-7.81(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=$ $41.2,68.1,72.7,125.6,126.2,127.3,127.5,127.6,128.4,132.3,133.5,134.6,155.1 ;$ IR (KBr) 3055, 2897, 1613, 1508, 1479, 1363, 1135, 1084, 1054, 944, 901, 861, 822, 758, $735 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}: 443.1736[M+\mathrm{Na}]^{+}$; found: 443.1734.

A Representative Procedure for the Asymmetric Bis(alkoxycarbonylation)

 Reaction of 1 (Table 1, Entry 3): Under an Ar atmosphere, $\operatorname{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}(253 \mathrm{mg}$, 1.0 mmol) was placed in a flask, and a $\mathrm{MeOH}(12 \mathrm{~mL})$ solution of 7-methylenebicyclo[4.1.0]heptane (1) ($217 \mathrm{mg}, 2.0 \mathrm{mmol}$) and a THF (12 mL) solution of (S, S)-3C $(26 \mathrm{mg}, 0.08 \mathrm{mmol})$ were added. To the mixture, $\mathrm{PdCl}_{2}(7.1 \mathrm{mg}, 0.04$ mmol) was added. The Ar atmosphere was replaced with $\mathrm{CO} / \mathrm{O}_{2}(\mathrm{ca} .1 / 1$, v/v), and the reaction mixture was stirred for 60 h at rt . A saturated aq solution of NaHCO_{3} was added to the reaction mixture at rt , and the insoluble substance was filtered off. After the filtrate was extracted with AcOEt, the combined extracts were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and condensed in vacuo. The residue was purified by TLC on SiO_{2} (hexane/ $\mathrm{AcOEt}=7 / 1, \mathrm{v} / \mathrm{v}$) to give $2(237 \mathrm{mg}, 53 \%)$ with a selectivity of 60% ee.In a similar manner, the glutaric acid dimethyl esters $\mathbf{1 0}$, and $\mathbf{1 2}$, were prepared from the corresponding methylenecyclopropanes $\mathbf{9}$, and $\mathbf{1 1}$, respectively.
(1R,2S)-Methyl 2-(3-methoxy-3-oxo-1-propen-2-yl)cyclohexanecarboxylate (2):
Compound 2 ($237 \mathrm{mg}, 53 \%$) was obtained as an oil. $[\alpha]^{25}{ }_{\mathrm{D}}-49$ (c 0.6, EtOH); The ee was determined to be 60% by HPLC (DAICEL CHIRALPAK IA $\times 2$, hexane $/ \mathrm{AcOEt}=$ $50 / 1,0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$, major 54 min and minor 50 min$) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta=1.29-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.90(\mathrm{~m}$,

1H), 1.91-2.04 (m, 2H), 2.75-2.84 (m, 1H), 3.04-3.09 (m, 1H), $3.55(\mathrm{~s}, 3 \mathrm{H}), 3.77$ (s, $3 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta=21.6,25.68,25.72$, 28.3, 39.4, 42.6, 50.7, 51.8, 124.8, 142.7, 167.5, 174.4; IR (neat) 2949, 2859, 1735, $1720,1628,1437,1281,1247,1194,1165,1143,1030,995,949,937,819 \mathrm{~cm}^{-1}$; HRMS (EI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}: 226.12051\left[M^{+}\right.$; found: 226.12062 .
(1R,2S)-Methyl 2-(3-methoxy-3-oxo-1-propen-2-yl)cyclooctanecarboxylate (10):
9-Methylenebicyclo[6.1.0]nonane (9) ($68 \mathrm{mg}, 0.50 \mathrm{mmol}$) was subjected to the carbonylation using $\mathrm{PdCl}_{2}(1.8 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}(63 \mathrm{mg}, 0.25 \mathrm{mmol})$, and ligand $(S, S)-\mathbf{3 C}(7 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(3 \mathrm{~mL} / 3 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ for 47 h . Compound 10 ($6 \mathrm{mg}, 5 \%$) was obtained as an oil. $[\alpha]^{25}{ }_{\mathrm{D}}-11$ ($c 0.1$, EtOH); The ee was determined to be 45% by HPLC (DAICEL CHIRALPAK IA $\times 2$, hexane $/ E t O H=400 / 1$, $0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$, major 42 min and minor 38 min$) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $=1.51-1.71(\mathrm{~m}, 7 \mathrm{H}), 1.71-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.05(\mathrm{~m}, 1 \mathrm{H})$, $2.82-2.90(\mathrm{~m}, 1 \mathrm{H}), 3.32$ (ddd, $J=11.5,3.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 5.57$ $(\mathrm{s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta=25.5,26.4,26.7,26.9,28.2,29.4$, $37.4,46.0,51.1,52.0,124.8,143.7,167.8,175.5$; IR (neat) 2922, 2851, 1725, 1685, 1627, 1436, 1268, 1192, $1168 \mathrm{~cm}^{-1}$; HRMS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}: 254.15181$ $[M]^{+}$; found: 254.15194.

(2S,3S)-Dimethyl 2,3-bis((benzyloxy)methyl)-4-methylenepentanedioate (12a):

1,2-Bis((benzyloxy)methyl)-3-methylenecyclopropane (11a) (148 mg, 0.50 mmol) was subjected to the carbonylation using $\mathrm{PdCl}_{2}(1.8 \mathrm{mg}, 0.01 \mathrm{mmol}), \operatorname{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}(65$ $\mathrm{mg}, 0.26 \mathrm{mmol})$, and ligand $(R, R)-3 \mathrm{G}(6 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(3 \mathrm{~mL} / 3 \mathrm{~mL})$ at rt for 36 h . Compound $\mathbf{1 2 a}(142 \mathrm{mg}, 69 \%)$ was obtained as an oil. $[\alpha]^{25}{ }_{\mathrm{D}}+6(c 1.3$, EtOH); The ee was determined to be 28% by HPLC (DAICEL CHIRALPAK IA $\times 2$, hexane $/ \mathrm{EtOH}=100 / 1,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, major 82 min and minor 88 min); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=3.14$ (ddd, $\left.J=10.1,8.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.28(\mathrm{dt}, J=10.1,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.49$ (dd, $J=9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.41$ (d, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H})$, $6.29(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.35(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta=41.7,47.1,51.7$, 51.9, 70.0, 71.1, 72.8, 72.9, 127.46, 127.49, 127.52 127.6, 127.8, 128.3, 129.6, 137.9, 138.1, 138.4, 166.8, 174.0; IR (neat) 2951, 2863, 1738, 1719, 1626, 1454, 1436, 1363, 1270, 1197, 1156, 1100, 1028, 739, $699 \mathrm{~cm}^{-1}$; HRMS (EI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{6}$: $412.18859[M]^{+}$; found: 412.18843.

(3S,4S)-Dimethyl 2-methylene-3,4-bis((trityloxy)methyl)pentanedioate (12b):

1,2-Bis((trityloxy)methyl)-3-methylenecyclopropane (11b) ($299 \mathrm{mg}, 0.50 \mathrm{mmol}$) was subjected to the carbonylation using $\mathrm{PdCl}_{2}(1.8 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}(65$ $\mathrm{mg}, 0.25 \mathrm{mmol})$, and ligand $(S, S)-\mathbf{3 C}(7 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(3 \mathrm{~mL} / 3 \mathrm{~mL})$ at rt for 67 h . Compound 12b ($234 \mathrm{mg}, 65 \%$) was obtained as a solid. $[\alpha]^{25}{ }_{\mathrm{D}}+5(c 0.5$, EtOH); The ee was determined to be 42% by HPLC (DAICEL CHIRALPAK IA, hexane $/ \mathrm{EtOH}=50 / 1,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, major 28 min and minor 31 min); m.p. $146{ }^{\circ} \mathrm{C}$ (recrystallized from $\mathrm{CHCl}_{3} / \mathrm{Hex}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.98-3.06(\mathrm{~m}$, $1 \mathrm{H}), 3.06-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.26(\mathrm{~m}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H})$, $6.09(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 18 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 12 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $=41.4,46.8,51.4,51.6,63.3,64.1,86.5,126.8,126.9,127.55,127.59,128.5,128.6$, 143.7, 166.6, 173.9; IR (KBr) 3056, 3022, 2949, 2877, 1741, 1725, 1626, 1597, 1491, 1448, 1325, 1224, 1193, 1153, 1078, 764, 747, $706 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Na}: 739.3036[M+\mathrm{Na}]^{+}$; found: 739.3038 .
(3S,4S)-Dimethyl 2-methylene-3,4-bis((triphenylsilyloxy)methyl)pentanedioate (12c):

1,2-Bis((triphenylsilyloxy)methyl)-3-methylenecyclopropane (11c) ($252 \mathrm{mg}, 0.4 \mathrm{mmol}$) was subjected to the carbonylation using $\mathrm{PdCl}_{2}(1.4 \mathrm{mg}, 0.008 \mathrm{mmol}), \mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}$ ($60 \mathrm{mg}, 0.2 \mathrm{mmol}$), and ligand $(S, S)-\mathbf{3 C}(5.1 \mathrm{mg}, 0.016 \mathrm{mmol})$ in MeOH/THF (2 $\mathrm{mL} / 2 \mathrm{~mL})$ at rt for $72 \mathrm{~h} . \mathbf{1 2 c}(145 \mathrm{mg}, 48 \%)$ was obtained as a solid. $[\alpha]^{25}{ }_{\mathrm{D}}+6(c 1.5$, CHCl_{3}); The ee was determined to be 48% by HPLC (DAICEL CHIRALPAK IC, hexane $/ \mathrm{EtOH}=100 / 1,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, major 13.5 min and minor 15.4 min); m.p. $124{ }^{\circ} \mathrm{C}$ (AcOEt/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=3.07$ (ddd, $J=10.6,8.7,4.6$ Hz, 1H), 3.17-3.22 (m, 1H), 3.43 (s, 3H), 3.53 (s, 3H), 3.75-3.82 (m, 3H), 3.91 (dd, $J=$ $10.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.45(\mathrm{~m}, 18 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 10 \mathrm{H})$, $7.63-7.65(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta=42.7,48.8,51.4,51.7,63.9,64.4$, 127.8, 128.0, 129.96, 130.01, 133.7, 135.3, 135.4, 137.9, 166.8, 173.9; IR (KBr) 3068, 2946, 2867, 1740, 1721, 1703, 1622, 1588, 1485, 1428, 1382, 1333, 1255, 1119, 996, $835,741,714 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si}_{2}$: C, 73.76; H, 5.92; found: C, 73.57; H, 6.03.

(2S,3S)-Dimethyl

2,3-bis((tert-butyldiphenylsilyloxy)methyl)-4-methylenepentanedioate (12d):

1,2-Bis((tert-butyldiphenylsilyloxy)methyl)-3-methylenecyclopropane (11d) (296 mg, 0.50 mmol) was subjected to the carbonylation using $\mathrm{PdCl}_{2}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$, $\mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}(61 \mathrm{mg}, 0.24 \mathrm{mmol})$, and ligand $(S, S)-3 \mathrm{D}(9 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(3 \mathrm{~mL} / 3 \mathrm{~mL})$ at rt for 30 h . Compound 12d ($289 \mathrm{mg}, 82 \%$) was obtained as an oil. $[\alpha]^{25}{ }_{\mathrm{D}}+3(c 1.9, \mathrm{EtOH})$; The ee was determined to be 51% by HPLC (DAICEL CHIRALPAK IA $\times 2$, hexane/EtOH $=100 / 1,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, major 17 min and minor 19 min); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta=0.99(\mathrm{~s}, 18 \mathrm{H}), 3.08$ (ddd, $J=11.0,8.7$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (ddd, $J=11.0,6.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.59$ (dd, $J=10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (dd, $J=10.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=10.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$, $3.82(\mathrm{dd}, J=10.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.44(\mathrm{~m}, 12 \mathrm{H})$, $7.54-7.64(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta=19.0,19.1,26.5,26.6,42.5,48.4$, $51.4,51.7,63.9,64.2,127.5,127.6,129.49,129.55,129.64,133.1,133.2,135.39$, $135.45,135.50,138.0,166.7,174.1$; IR (neat) 3071, 3049, 2931, 2857, 1736, 1720, 1624, 1472, 1428, 1252, 1194, 1154, 1111, 822, 741, $702 \mathrm{~cm}^{-1}$; HRMS (EI): m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}_{2}: 708.33025[M]^{+}$; found: 708.33076.

Methyl 7-(2-methoxy-2-oxoethyl)bicyclo[4.1.0]heptane-7-carboxylate (15) ${ }^{11}$:

7-Methylenebicyclo[4.1.0]heptane (1) ($106 \mathrm{mg}, 0.98 \mathrm{mmol}$) was subjected to the carbonylation using $\mathrm{PdCl}_{2}(3.6 \mathrm{mg}, 0.02 \mathrm{mmol})$, and $\mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}(127 \mathrm{mg}, 0.50$ mmol) in $\mathrm{MeOH} / \mathrm{THF}(6 \mathrm{~mL} / 6 \mathrm{~mL})$ at rt for 36 h . Compound $2(87 \mathrm{mg}, 39 \%)$ and compound 15 ($44 \mathrm{mg}, 20 \%$) were obtained. 15: an oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=$ $1.16-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.71-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta=18.6,21.5,22.7,27.5,30.6,51.7,51.9$, 172.5, 175.4; IR (neat) 2969, 2931, 2857, 1758, 1723, 1672, 1435, 1411, 1359, 1309, 1276, 1200, 1172, 1131, 1068, 1043, 1012, 930, 879, 848, 780, $697 \mathrm{~cm}^{-1} ;$ HRMS (EI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}: 226.12051[M]^{+}$; found: 226.12040.
(1S,4R)-2-((1S,2R)-2-((((1S,4R)-4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1carbonyl)oxy)methyl)cyclohexyl)allyl

4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carboxylate (14):

To a suspension of $\mathrm{LiAlH}_{4}(65 \mathrm{mg}, 1.75 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise an
$\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ solution of $\mathbf{2}(113 \mathrm{mg}, 0.50 \mathrm{mmol}, 60 \%$ ee $)$ at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The resulting mixture was gradually warmed to rt and stirred overnight at rt , and then treated with a saturated aq $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution (0.5 mL). The insoluble substance was filtered through a bed of Celite, followed by washing with AcOEt, and the filtrate was concentrated in vacuo. Separation of the residue by column chromatography (hexane $/ \mathrm{AcOEt}=1 / 1, \mathrm{v} / \mathrm{v}$) afforded the corresponding diol $13(51 \mathrm{mg}, 65 \%)$ as an oil. A $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ solution of (S)-camphanic chloride ($171 \mathrm{mg}, 0.79 \mathrm{mmol}$) was added to a mixture of the diol 13 ($51 \mathrm{mg}, 0.33 \mathrm{mmol}$), triethylamine ($0.12 \mathrm{~mL}, 0.86 \mathrm{mmol}$), and 4-(dimethylamino)pyridine ($5 \mathrm{mg}, 0.03 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at rt under a nitrogen atmosphere and the mixture was stirred overnight at rt . The reaction was quenched by the addition of an aqueous solution of 1 M HCl aq $(1.5 \mathrm{~mL})$, and the mixture was subsequently extracted with AcOEt. The combined extracts were washed by $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and condensed under reduced pressure. The residue was purified by TLC on SiO_{2} (hexane/ $\mathrm{AcOEt}=3: 2$) to give the corresponding ester (131 mg , 75%) as a mixture of diastereomer as a solid. Recrystallization ($\mathrm{Et}_{2} \mathrm{O} /$ hexane) gave more diastereomerically pure ester (66 mg). The obtained substrate was further separated by recycle HPLC (hexane/AcOEt $=3: 1$) to give almost diastereomerically pure product (20 mg). Diastereomerically pure 14 was obtained by recrystallization from $\mathrm{Et}_{2} \mathrm{O} .[\alpha]_{\mathrm{D}}{ }^{25}-11(c 0.1, \mathrm{EtOH})$; m.p. $135{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta=0.94(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$, $1.21-1.73(\mathrm{~m}, 8 \mathrm{H}), 1.80-2.09(\mathrm{~m}, 6 \mathrm{H}), 2.26-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.49(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{dd}$, $J=11.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=11.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}$, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=9.7,16.7$, 20.5, 25.2, 25.9, 27.6, 28.9, 30.5, 30.6, 34.3, 41.1, 54.1, 54.2, 54.7, 54.8, 63.66, 63.74, 67.2, 91.08, 91.13, 113.7, 144.9, 167.2, 167.6, 178.17, 178.25; IR (KBr) 2968, 2933, 2857, 1795, 1751, 1718, 1649, 1453, 1399, 1359, 1348, 1332, 1314, 1271, 1227, 1166, 1106, 1064, 995, 928, $913 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{8} \mathrm{Na}$: $553.2777[M+\mathrm{Na}]^{+}$; found: 553.2779. Crystal data: $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{8}, F W$. 530.66, monoclinic, $P 2_{1}, a=11.049(2), b=10.876(2), c=12.586(2) \AA, V=1375.7(5) \AA^{3}, \beta=114.556(4)^{\circ}$, $Z=2 . D_{\text {calc }}=1.281 \mathrm{~g} / \mathrm{cm}^{3} . R=0.057\left(R_{w}=0.069\right)$ for 5515 reflections with $I>3.00 \sigma(I)$ and 344 variable parameters. CCDC-985876 (14) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

The present work was financially supported in part by a Grant-in-Aid for Scientific Research on Priority Areas "Advanced Molecular Transformations of Carbon Resources" from The Ministry of Education, Culture, Sports, Science and Technology (MEXT) and a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS).

References

1. a) Poss, C. S.; Schreiber, S. L. Acc. Chem. Res. 1994, 27, 9-17; b) Shibasaki, M.; Boden, C. D. J.; Kojima, A. Tetrahedron 1997, 53, 7371-7395; c) Willis, M. C. J. Chem. Soc., Perkin Trans. 1 1999, 1765-1784; d) Atodiresei, I.; Schiffers, I.; Bolm, C. Chem. Rev. 2007, 107, 5683-5712; e) Sajisha, V. S.; Anas, S.; John, J.; Radhakrishnan, K. V. Synlett 2009, 20, 2885-2895; f) Müller, C. E.; Schreiner, P. R. Angew. Chem. Int. Ed. 2011, 50, 6012-6042; g) García-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. 2011, 111, PR110-PR180; h) Díaz de Villegas, M. D.; Gálvez, J. A.; Etayo, P.; Badorrey, R.; López-Ram-de-Víu, P. Chem. Soc. Rev. 2011, 40, 5564-5587; i) Enríquez-García, Á.; Kündig, E. P. Chem. Soc. Rev. 2012, 41, 7803-7831; j) Rodriguez-Docampo, Z.; Connon, S. J. ChemCatChem 2012, 4, 151-168; k) Díaz-de-Villegas, M. D.; Gálvez, J. A.; Badorrey, R.; López-Ram-de-Víu, M. P. Chem. Eur. J. 2012, 18, 13920-13935.
2. For recent examples of catalytic asymmetric desymmetrization and related reactions, see: a) Matsuda, T.; Shigeno, M.; Makino, M.; Murakami, M. Org. Lett. 2006, 8, 3379-3381; b) Ohmura, T.; Taniguchi, H.; Kondo, Y.; Suginome, M. J. Am. Chem. Soc. 2007, 129, 3518-3519; c) Ohmura, T.; Taniguchi, H.; Suginome, M. Org. Lett. 2009, 11, 2880-2883; d) Shintani, R.; Moriya, K.; Hayashi, T. J. Am. Chem. Soc. 2011, 133, 16440-16443; e) Shintani, R.; Moriya, K.; Hayashi, T. Org. Lett. 2012, 14, 2902-2905; f) Akai, Y.; Yamamoto, T.; Nagata, Y.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2012, 134, 11092-11095; g) Obame, G., Brémond, P.; Pannecouque, C.; Audran, G. Synthesis, 2013, 45, 2612-2618.
3. a) Colquhoun, H. M.; Thompson, D. J.; Twigg, M. V. Carbonylation, Plenum Press, New York, 1991; b) Catalytic Carbonylation Reactions, ed. by Beller, M. Springer, Berlin, 2006. c) Brennführer, A.; Neumann, H.; Beller, M. ChemCatChem 2009, 1, 28-41. 1
4. a) Inomata, K.; Toda, S.; Kinoshita, H. Chem. Lett. 1990, 1567-1570; b) Toda, S.; Miyamoto, M.; Kinoshita, H.; Inomata, K. Bull. Chem. Soc. Jpn. 1991, 64, 3600-3606; c) Mizutani, T.; Ukaji, Y.; Inomata, K. Bull. Chem. Soc. Jpn. 2003, 76, 1251-1256.
5. Aratani, T.; Ukaji, Y.; Inomata, K. Chem. Lett. 2009, 38, 46-47.
6. Examples of catalytic asymmetric desymmetrization of meso-methylenecyclopropanes; see references $2 \mathrm{~b}, 2 \mathrm{f}, 2 \mathrm{~g}$ and 7 b .
7. Palladium-catalyzed ring-opening copolymerization of methylenecyclopropanes with CO was recently reported: a) Kim, S.; Takeuchi, D.; Osakada, K. J. Am. Chem. Soc. 2002, 124, 762-763; b) Takeuchi, D.; Yasuda, A.; Okada, T.; Kuwabara, J.; Osakada, K.; Tomooka, K. Helv. Chim. Acta 2006, 89, 1574-1588; c) Takeuchi, D.; Okada, T.; Kuwabara, J.; Osakada, K. Macromol. Chem. Phys. 2006, 207, 1546-1555.
8. Reviews on asymmetric carbonylations; a) Nozaki, K. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 215-221; b) Godard, C.; Muñoz, B. K.; Ruiz, A.; Claver, C. Dalton Trans. 2008, 853-860; c) Gual, A.; Godard, C.; Castillón, S.; Claver, C. Tetrahedron: Asymmetry 2010, 21, 1135-1146; d) Godard, C.; Ruiz, A.; Diéguez, M.; Pàmies, O.; Claver, C. Asymmetric Carbonylations, in Catalytic Asymmetric Synthesis, 3rd Ed. ed. by Ojima, I. John Wiley \& Sons Inc. New Jersey, 2010, 799-838; e) Nozaki, K.; Optically Active Polyketones, In Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis; S. Itsuno, Ed., John Wiley \& Sons Inc. Hoboken, 2011, 407-422; f) Perandones, B. F.; Godard, C.; Claver C. Top. Curr. Chem. 2013, 342, 79-116. Recent examples of asymmetric carbonylations; g) Tsujihara, T.; Shinohara, T.; Takenaka, K.; Takizawa, S.; Onitsuka, K.; Hatanaka, M.; Sasai, H. J. Org. Chem. 2009, 74, 9274-9279; h) Bajracharya, G. B.; Koranne, P. S.; Tsujihara, T.; Takizawa, S.; Onitsuka, K.; Sasai, H. Synlett 2009, 20, 310-314; i) Konrad, T. M.; Fuentes, J. A.; Slawin, A. M. Z.; Clarke, M. L. Angew. Chem. Int. Ed. 2010, 49, 9197-9200; j) Nakamura, A.; Kageyama, T.; Goto, H.; Carrow, B. P.; Ito, S.; Nozaki K. J. Am. Chem. Soc. 2012, 134, 12366-12369; k) Wang, X.; Buchwald, S. L. J. Org. Chem. 2013, 78, 3429-3433; 1) Konrad, T. M.; Durrani, J. T.; Cobley, C. J.; Clarke, M. L. Chem. Commun. 2013, 49, 3306-3308; m) Wong, G. W.; Landis, C. R. Angew. Chem. Int. Ed. 2013, 52, 1564-1567; n) Wang Y.; Zhang W.; Ma, S. J. Am. Chem. Soc. 2013, 135, 11517-11520; o)

Kusakabe, T.; Takahashi, T.; Shen, R.; Ikeda, A.; Dhage, Y. D.; Kanno, Y.; Inouye, Y.; Sasai, H.; Mochida, T.; Kato, K. Angew. Chem. Int. Ed. 2013, 52, 7845-7849 and references cited therein.
9. We have already reported an asymmetric bis(alkoxycarbonylation) reaction of terminal and internal alkenes using chiral bioxazoline ligands, see: a) Ukaji, Y.; Miyamoto, M.; Mikuni, M.; Takeuchi, S.; Inomata, K. Bull. Chem. Soc. Jpn. 1996, 69, 735-742; b) Takeuchi, S.; Ukaji, Y.; Inomata, K. Bull. Chem. Soc. Jpn. 2001, 74, 955-958; c) Aratani, T.; Tahara, K.; Takeuchi, S.; Ukaji, Y.; Inomata, K. Chem. Lett. 2007, 36, 1328-1329; d) Aratani, T.; Tahara, K.; Takeuchi, S.; Kitamura, S.; Murai, M.; Fujinami, S.; Inomata, K.; Ukaji, Y. Bull. Chem. Soc. Jpn. 2012, 85, 1225-1232.
10. Recent reports of palladium catalyzed asymmetric reactions using bioxazoline ligands, a) Denmark, S. E.; Stavenger, R. A.; Faucher, A.-M.; Edwards, J. P. J. Org. Chem. 1997, 62, 3375-3389; b) Gsponer, A.; Milani, B.: Consiglio, G. Helv. Chim. Acta 2002, 85, 4074-4078; c) Perch, N. S.; Kisanga, P.; Widenhoefer R. A. Organometallics 2000, 19, 2541-2545; d) Carfagna, C.; Gatti, G.; Mosca, L.; Paoli, P.; Guerri, A. Chem. Eur. J. 2005, 11, 3268-3278; e) Kawamura, Y.; Kawano, Y.; Matsuda, T.; Ishitobi, Y.; Hosokawa, T. J. Org. Chem. 2009, 74, 3048-3053.
11. It was found that bis(alkoxycarbonylation) reaction of $\mathbf{1}$ without chiral ligand $\mathbf{3 C}$ afforded not only 2 (39\%) but also a considerable amount of a succinate 15 (20\%) (see Experimental Section).

12. In this reaction, $\mathbf{1 5}^{11}$ was not isolated after the purification procedure.
13. Examples of biologically active oxygen-functionalized α-alkylidene- β, γ-oxygen-functionalized glutarates: a) Velten, R.; Klostermeyer, D.; Steffan, B.; Steglich, W.; Kuschel, A.; Anke, T. J. Antibiotics 1994, 47, 1017-1024; b) McPhail, K.; Davies-Coleman, M. T. Tetrahedron 1997, 53, 4655-4660; c) Chai, X.-Y.; Sun, J.-F.; Tang, L.-Y.; Yang, X.-W.; Li, Y.-Q.; Huang, H.; Zhou, X.-F.; Yang, B.; Liu, Y. Chem. Pharm. Bull. 2010, 58, 1391-1394; d) Tan, J.-J.; Tan,
J.-M.; Tan, C.-H.; Qu, S.-J.; Zhu, D.-Y. Nat. Prod. Res. 2012, 26, 1213-1217; e) Valente, S.; Xu, Z.; Bana, E.; Zwergel, C.; Mai, A.; Jacob, C.; Meiser, P.; Bagrel, D.; Silva, A. M. S.; Kirsch, G. Eur. J. Org. Chem. 2013, 2869-2877.
14. In the bis(alkoxycarbonylation) reaction in the absence of bioxazoline ligand 3C, carbopalladation by chiral ligand-free palladium catalyst might proceed in non-regioselective manner to give both the terminal intermediate \mathbf{F} and the internal palladium intermediate \mathbf{G} which produced the succinate $\mathbf{1 5}^{11}$ by the second alkoxycarbonylation. To the contrary, the palladium coordinated by bioxazoline ligand $\mathbf{3 C}$ might be bulky enough to afford the terminal palladium intermediate \mathbf{E}, regioselectively.

F

2

G
\downarrow
\downarrow
15
15. At present, an alternative pathway via cleavage of proximal cyclopropane $\mathrm{C}-\mathrm{C}$ bond through oxidative addition to methylenecyclopropane ${ }^{21}$ could not be ruled out.
16. Arora, S.; Binger, P. Synthesis 1974, 6, 801-803.
17. Ogata, K.; Shimada, D.; Fukuzawa, S.-I. Chem. Eur. J. 2012, 18, 6142-6146.
18. Taniguchi, H.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 11298-11299.
19. a) Müller, D.; Umbricht, G.; Weber, B.; Pfaltz, A. Helv. Chim. Acta 1991, 74, 232-240; b) Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. J. Am. Chem. Soc. 2004, 126, 15195-15201.
20. Blay, G.; Incerti, C.; Muñoz, M. C.; Pedro, J. R. Eur. J. Org. Chem. 2013, 1696-1705.
21. a) Suginome, M.; Matsuda, T.; Ito, Y, J. Am. Chem. Soc. 2000, 122, 11015-11016;
b) Nakamura, I.; Yamamoto, Y. Adv. Synth. Catal. 2002, 344, 111-129.

