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Abstract 

In the glass-indium tin oxide (ITO) / titanium oxide (TiOx) / regioregular 

poly(3-hexylthiophene) (P3HT) : [6,6]-phenyl C61 butyric acid methyl ester (PCBM) / 

poly(3,4-ethylenedioxylenethiophene) : poly(4-styrene sulfonic acid) (PEDOT:PSS) / Au cell 

(TiOx cell), which contains amorphous titanium oxide prepared by chemical bath deposition 

and dried at 150 °C, a light soaking effect has been observed upon irradiation with white light. 

In contrast, in ITO / titanium oxide (TiO2) / P3HT:PCBM / PEDOT:PSS / Au cell (TiO2 cell), 

which contains anatase titanium oxide prepared by heat treatment at 450 °C, the maximum 

power conversion efficiency was obtained just after irradiation with white light. The number 

of P3HT+ cation radicals in the quartz-ITO/TiOx and TiO2/P3HT:PCBM substrates was 

estimated by ESR measurements at room temperature upon irradiation with white light. They 

increased gradually with an increase in irradiation time for the TiOx substrate, but increased 

only slightly just after light irradiation for the TiO2 substrate. Upon irradiation with UV-cut 

light, the performance of the TiOx cell was inferior to that of the TiO2 cell. This could be 

related to the resistances of the P3HT:PCBM layers which were estimated by 

alternating-current impedance spectroscopy. The resistance of the P3HT:PCBM layer in the 

TiOx cell was much larger than that in the TiO2 cell, though the difference between the two 

cells was merely heat treatment temperature of titanium oxide films using as electron 

collection layers. That is, the concentration of photocarriers in the P3HT:PCBM of the TiOx 
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cell was significantly less than that in the P3HT:PCBM of the TiO2 cell. From these 

experimental results, the light soaking effect could be reasonably explained by assuming the 

existence of charge recombination centers in the TiOx near the TiOx/P3HT:PCBM interface. 

KEYWORDS: Inverted solar cell, Titanium oxide, Polymer solar cell, Light soaking 

effect, Impedance spectroscopy, Electron spin resonance 

 

Introduction 

Because organic thin film solar cells are lightweight and flexible and can be 

manufactured cheaply, they have attracted much attention as next generation solar cells. 

Inverted organic solar cells that use chemically stable components in air as electrodes have 

attracted special attention1-5. These organic solar cells contain several very thin films that are 

laminated several times over; that is, two or more interfaces exist in the cell1,6-9. Therefore, 

the interface charge transport may become the main factor that influences cell performance. In 

inverted solar cells that contain sol-gel titanium oxide as an electron collection layer, a light 

soaking effect that cell performance improves gradually with an increase in light irradiation 

time has often been observed10-16. Although this mysterious phenomenon is now well 

known, there is not necessarily satisfactory explanation for the mechanism. 

The light soaking effect has also been observed in inverted organic solar cells that 

contain amorphous titanium oxide, prepared by a chemical bath deposition process 
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(CBD-TiOx), as the electron collection layer17,18. Alternating-current impedance spectroscopic 

(IS) measurements can be used to quantify the electric properties of bulk and interface 

materials that cannot be determined using a direct current method. This is because the electric 

response speed for each component is different on the microscopic time scale. We previously 

investigated inverted solar cells containing metal oxides as electron collection electrodes by 

IS11,18-21. Electron spin resonance (ESR) is also a promising method for the microscopic 

characterization of charge-accumulation sites because it is a highly sensitive and powerful 

approach. The investigation of organic materials at the molecular level is thus possible. The 

ESR method has successfully been used to determine the microscopic properties of 

charge-carrier states in organic devices, including spin states and the spatial extent of wave 

functions in organic materials at device interfaces. We have previously investigated the 

accumulation of photo-generated charge carriers in conventional polymer solar cells under 

typical device operating conditions using the ESR method22-25. 

In the work reported in this paper, we attempted to determine the mechanism of light 

soaking effect by investigating the features of the interface between the CBD-TiOx and the 

organic photoactive layer, using both ESR and IS. 

 

2. Experimental Section 

2.1. Materials 
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Titanium(IV) oxysulfate (TiOSO4), regioregular P3HT, PEDOT:PSS 1.3 wt% 

dispersion in water, Triton-X 100, and chlorobenzene (CB) were purchased from Sigma–

Aldrich Chemical Co., Inc. Hydrogen peroxide (H2O2) was purchased from Kanto Chemical 

Co., Inc. PCBM was purchased from Frontier Carbon Corporation. All chemicals were used 

as received. Glass-ITO substrates (sheet resistance = 10 Ω sq−1) and Au wires were purchased 

from the Furuuchi Chemical Corporation. Glass-fluorine-doped tin oxide (FTO) substrates 

(A110U80, sheet resistance = 12 Ω sq−1) were purchased from the AGC Fabritech Co., Ltd. 

Quartz substrates were purchased from Iiyama Precision Glass Co., Ltd. Indium-tin-oxide 

(ITO) layers (sheet resistance = ~10 Ω sq−1) on the quartz substrates were fabricated by 

Geomatec Co., Ltd. 

 

2.2. Fabrication of inverted polymer solar cells 

The ITO and FTO electrodes were ultrasonicated in 2-propanol, and then cleaned in 

boiling 2-propanol, and subsequently dried in air. An amorphous titanium oxide film (TiOx) 

was prepared by the chemical bath deposition method described in our previous papers17,18. A 

TiOSO4 solution was added to a H2O2 aqueous solution, and then the mixed solution was 

diluted to 50 ml with ultrapure water. The concentrations of H2O2 and TiOSO4 were adjusted 

to 0.03 M, respectively. This solution was transferred to a screw vial to use as the reaction 

bath for film deposition. The glass side of the ITO and FTO substrates was covered with 
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imide tape to prevent the extra deposition of TiOx precursor, and then the substrates were 

immersed in the bath at 80 °C. The solution became cloudy upon the application of heat, and 

after dipping for 10 min starting from this cloudy point, the immersed substrate was pulled 

out of the bath. The film thickness was about 30 nm. The as-deposited TiOx precursor film on 

the electrodes was ultrasonicated for 10 min in water and heated at 150, 250, 350 and 450 °C 

for 1 h. The transparent conducting substrate used to prepare the solar cells was composed of 

the ITO heated at 150 °C and the FTO heated at 250, 350 and 450 °C. The precursor film was 

converted to TiOx or anatase titanium(IV) oxide (TiO2) by heat treatment. A mixed CB 

solution containing P3HT and PCBM (weight ratio = 5:4) was spin-coated onto the TiOx and 

TiO2 films. A PEDOT:PSS dispersion in water containing 0.5 wt.% Triton-X 100 was 

spin-coated onto the P3HT:PCBM layer. Film thicknesses were about 250 nm for the P3HT: 

PCBM layer and approximately 150 nm for PEDOT:PSS. An Au back electrode with a 

thickness of about 150 nm was vacuum deposited at 2×10−5 Torr onto the PEDOT:PSS layer. 

Finally, the cells were annealed at 150 °C for 5 min on a hot plate. The effective area of the 

solar cells was restricted to 1 cm2 by depositing the Au electrode using a shadow mask. 

 

2.3. Measurements 

The I-V curves of the solar cells were measured by linear sweep voltammetry at a 

scan rate of 5 V min−1 under AM 1.5G-100 mW cm−2 simulated sunlight irradiation or under 
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UV-cut light (light intensity: 91.8 mW cm−2) produced by excluding wavelengths less than 

420 nm with a UV-cutoff filter. The light source was a SAN-EI Electric XES-502S solar 

simulator, which was calibrated using a standard silicon photovoltaic detector. All DC electric 

measurements were made using a Hokuto Denko HZ-5000 electrochemical analyzer. The IS 

measurements were obtained using an Agilent Technologies E4980A precision LCR meter in 

the dark and under simulated sunlight irradiation. The frequency range was from 20 Hz to 1 

MHz, and the alternating signal magnitude was 5 mV. The data obtained were fitted with 

Scribner Associates Z-VIEW software v3.1 using the appropriate equivalent circuits. These 

measurements were carried out under an ambient atmosphere (ca. 25 °C/40–60 % RH). 

X-ray diffraction (XRD) measurements were carried out using an X-ray 

diffractometer (Rigaku SmartLab) with Cu Kα radiation at 45 kV × 200 mA. Here, titanium 

oxide films for XRD measurement were prepared by repeating the chemical bath deposition 

onto FTO ten times. The film thickness was about 300 nm. ESR measurements were 

performed using a JEOL JES-FA200 X-band spectrometer under a nitrogen atmosphere at 

room temperature. ESR measurements under AM 1.5G light with 100 mW cm−2 intensity 

were obtained using a Bunkoukeiki OTENTOSUN-150BXM solar simulator. The number of 

spins and g values of the ESR signal were calibrated using a standard Mn2+ marker sample. 

 

3. Results and Discussion 
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3-1. Characteristics of the inverted polymer solar cells upon irradiation with 

white light. 

Figure 1 shows the time-dependence of the photo I-V curves under white light 

irradiation for inverted polymer solar cells containing the titanium oxide as an electron 

collection layer. In the TiOx cells that contain titanium oxide prepared by heat treatment at 

150 °C, the photovoltaic effect was hardly observed just after irradiation with white light. 

However, when light irradiation continued for the TiOx cells, the photovoltaic effect gradually 

increased as shown in Figure 1a, which mainly improved the short-circuit photocurrent (Jsc) 

and the fill factor (FF). The magnified I-V curves in the dark and just after irradiation for the 

TiOx cell was shown in Figure 1c. Though the open-circuit voltage (Voc) obtained after 

irradiation for 15 sec was about 0.22 V, it reached the constant value of 0.57 V after 

irradiation for more than 1 min. When the TiOx cell was remeasured under white light 

irradiation after stored in air and in the dark, such a light soaking effect was observed 

although the speed of improving the performance depended on the stored time of the cell. In 

contrast, in the case of the TiO2 cells with titanium oxide prepared by heat treatment at 

450 °C, the maximum power conversion efficiency (PCE) was obtained just after white light 

irradiation, as shown in Figure 1b. 

We confirmed crystal characteristics of titanium oxide, because the time-dependence 

of the photo I-V curves greatly depended on heating temperature of titanium oxide films as 
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mentioned above. The XRD patterns of the titanium oxide films on the FTO electrode after 

heating at more than 350 °C gave weak peak at 2θ = 25.2° with an orientation along the (101) 

plane, as shown in Fig. 2. The TiO2 films were thus assigned to an anatase-type crystal 

structure. In contrast, the XRD patterns of the titanium oxide films after heating at less than 

250 °C showed no peaks, indicating an amorphous phase. 

ESR method was used to characterize the titanium oxide/P3HT:PCBM interface at 

room temperature for both quartz-ITO/TiOx/P3HT:PCBM and quartz-ITO/TiO2/P3HT:PCBM 

substrates. We can detect an ESR signal of P3HT+･ cation radicals, though it is known that 

signals of radicals which are derived from titanium oxide and PCBM are not detected under 

room temperature22,25. Figure 3a shows ESR spectra obtained under dark conditions, under 

UV-cut light irradiation, and under white light irradiation for the 

quartz-ITO/TiOx/P3HT:PCBM substrate. Under dark conditions, a clear but small ESR signal 

was observed for the substrate. The ESR parameters obtained were the g value and the 

peak-to-peak linewidth (ΔHpp) and they were g = 2.002 and ΔHpp = 0.253 mT, respectively. 

The P3HT+･ cation radicals were thus produced upon the oxidation of P3HT22. Such a similar 

result was also obtained for the quartz-ITO/TiO2/P3HT:PCBM substrate under dark 

conditions. This likely comes from the partial formation of a P3HT+:PCBM− charge-transfer 

complex in the ground state and the physical adsorption of oxygen onto P3HT:PCBM, which 

then functions as an electron acceptor. Figure 3b shows the time-dependence of the number of 
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radical spins (Nspin) that originates from P3HT+･ under light irradiation. When irradiated with 

UV-cut light which excluded ultraviolet rays of less than 420 nm, the ESR signal intensity of 

both the quartz-ITO/TiOx/P3HT:PCBM and quartz-ITO/TiO2/P3HT:PCBM substrates 

increased slightly by a photo-charge separation, as shown in zones I and II of Figure 3b. 

When irradiated with UV-containing white light subsequently in zone III, the number of 

radicals increased with an increase in irradiation time for the quartz-ITO/TiOx/P3HT:PCBM 

substrate. In contrast, it did not increase anymore in zone III for the 

quartz-ITO/TiO2/P3HT:PCBM substrate. This difference between the two substrates suggests 

the presence of electron trap sites in the TiOx. Upon the band gap excitation of the TiOx by 

UV light being contained in white light, electrons are excited from the valence band to the 

conduction band because the TiOx film has light absorption at wavelength of less than 380 nm. 

Subsequently the electrons are partially captured in above mentioned trap sites and 

consequently long-life holes accumulate in the valence band. The holes in the TiOx near the 

TiOx/P3HT:PCBM interface can oxidize the P3HT slowly across the 

interface. As another possibility, adsorbed oxygen molecules on the TiOx by an interaction 

with the trap sites are desorbed by UV light exposure, and the released oxygen molecules can 

dope the P3HT. In either case, the number of radicals that originates from P3HT+･ increase 

gradually with an increase in irradiation time. However, because there is little number of the 

electron trap sites in the TiO2, the excited electrons in the conduction band rapidly recombine 
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with the holes that formed in the valence band, that is, long-life holes hardly produce in the 

valence band. In addition, oxygen molecules are hardly adsorbed on the TiO2. Thus, in the 

quartz-ITO/TiO2/P3HT:PCBM substrate, the number of P3HT+･ radicals does not increase by 

irradiation with white light in zone III. In last Zone I under dark conditions, the number of 

radicals in the quartz-ITO/TiOx/P3HT:PCBM substrate decreased rapidly first 

and decreased slowly afterwards. This is perhaps because the recombination rate 

between P3HT+･ radicals and trapped electrons in TiOx is slow when the trapped position is 

away from the TiOx/P3HT:PCBM interface. 

The light soaking effect on the TiOx cell under white light irradiation was observed 

as an increase in photocurrent and FF, as shown in Figure 1a. To further characterize this 

effect, IS measurements were carried out by applying a DC bias of 0.5 V to the cell. Figure 4 

shows typical Nyquist plots of the TiOx cell under white light irradiation. The plots consist of 

an arc at a high frequency of more than 30 kHz and a second arc at a low frequency of less 

than 30 kHz. The former and the latter are denoted arc 1 and arc 2, respectively. The plots 

were analyzed using the equivalent circuit shown in the inset of Figure 4, and a reasonable fit 

to the simulated curve was obtained. Rs represents the series resistance that consists of ohmic 

components. R1 and R2 are resistance components that form a parallel circuit with the 

constant phase elements (CPE1 and CPE2). According to our previous papers11,18,19, arcs 1 

and 2 can be assigned to components related to titanium oxide and P3HT:PCBM, respectively. 
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The arc size decreases with an increase in irradiation time. To further clarify the relationship 

between the resistance components and the photocurrent, Figures 1a and 4 were rearranged as 

shown in Figure 5. The photocurrent continuously increases with an increase in the irradiation 

time and this corresponds to a decrease in both R1 and R2. Kim et al.26 reported that the 

emergence of photoconduction of titanium oxide films mirrored the increase and gradual 

saturation of the photocurrent of TiOx cells. This may be supported by the decrease in R1. On 

the contrary, Trost et al.15 insisted that the origin of the light-soaking effect was the 

TiOx/organic interface which had an energy barrier for the electron extraction. Further it was 

reported in recent work16,27-29 that the light-soaking effect was observed because the energy 

barrier at such an interface reduced with an increase in light irradiation time. In addition, we 

think that the existence of electron trap sites in TiOx near the TiOx/P3HT:PCBM interface, 

which was suggested by ESR measurements, can become one of the reasons for the 

light-soaking effect. 

 

3-2. Characteristics of the inverted polymer solar cells upon irradiation with 

UV-cut light. 

To exclude the influence of photoconduction of titanium oxide films on the 

photovoltaic effect, we examined the characteristics of TiOx and TiO2 cells upon irradiation 

with UV-cut light, which excluded ultraviolet rays of less than 420 nm. Figure 6 shows I-V 
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curves after light irradiation of 30 min for the inverted polymer solar cells that contain 

titanium oxide prepared at various heat treatment temperatures upon irradiation with white 

light (a) and UV-cut light (b). When irradiated with white light, the I-V curves showed a good 

J shape and the PCE was about 3.4% irrespective of treatment temperature. This shows that 

the titanium oxides effectively act as electron collection layers. However, when irradiated by 

UV-cut light, the performance remarkably depends on the treatment temperature. For the TiOx 

prepared by heating at 150 and 250 °C, an I–V curve with a S shape, that is, high series 

resistance was observed, resulting in a low PCE. In particular, a remarkably small Voc of 

about 0.25 V was obtained only for the cell containing the TiOx prepared by heating at 150 °C 

as shown in Figure 6b, though the Voc of the cells containing the titanium oxides prepared by 

heating at 250, 350 and 450 °C was almost the same value of about 0.57 V. This suggests that 

the electron trap sites in the TiOx near the TiOx/P3HT:PCBM interface function as 

recombination centers for the photo-produced charge carriers in P3HT:PCBM. Conversely, 

for the TiO2 prepared by heating at 350 and 450 °C, an I–V curve with a J shape was 

observed and it gave relatively large PCEs. Perhaps because many hydroxyl groups in TiOx, 

which act as the recombination centers, reduce by a dehydration reaction upon heat treatment 

at more than 350 °C, the charge recombination centers becomes very few in the TiO2. This is 

supported by the ESR measurements, which suggest that the number of electron trap sites in 

the TiO2 is significantly less than those in the TiOx. 
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The arc size of Nyquist plots for the TiOx cell under short-circuit conditions 

gradually decreased with an increase in irradiation time, then it became almost constant after 

light soaking for more than 30 min. Figure 7 shows the saturated plots that were obtained 

under short-circuit conditions for the inverted polymer solar cells containing the titanium 

oxides prepared at various treatment temperatures. These plots were analyzed using the 

equivalent circuit shown in the inset of Figure 4, and a reasonable fit to the simulated curve 

was obtained. The plots consist of arc 1 at a high frequency of more than 60 kHz and arc 2 at 

a low frequency of less than 60 kHz. Upon irradiation with white light, the arc sizes were 

similar irrespective of treatment temperature, as shown in Figure 7a. This result is consistent 

with the I-V behavior shown in Figure 6a. Conversely, upon irradiation with UV-cut light, the 

size of arc 2 decreased with an increase in treatment temperature, as shown in Figure 7b. This 

corresponds to the I-V behavior shown in Figure 6b. 

To explain the changes in the Nyquist plots under UV-cut light, the relationship 

between the resistance components (R1, R2) and the short-circuit photocurrent (Jsc) is 

summarized in Figure 8 using the data from Figures 6b and 7b. Here R1 and R2 originate 

from the resistances of titanium oxide film which absorbs no visible light and the 

P3HT:PCBM layer which absorbs it, respectively11,18,19. Nyquist plot that was obtained in the 

dark for the cell containing the TiOx prepared at treatment temperature of 150 °C was shown 

in the inset of Figure 7a, reasonably fitting to the simulated curve using the equivalent circuit 
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shown in the inset of Figure 4. The R2 remarkably decreased from 81 kΩ cm2 in the dark to 

30 Ω cm2 under white light irradiation and to 450 Ω cm2 under UV-cut light. This supports 

that the R2 originates from P3HT:PCBM layer which has large photoconductivity because of 

a photo-induced intermolecular charge transfer. Because R1 was much smaller than R2, the 

change in Jsc was discussed by considering R2 which had slow frequency response. The R2 

decreased with the increase in the titanium oxide treatment temperature, that is, the 

concentration of photo-carriers in P3HT:PCBM increased with the increase in the treatment 

temperature. This could be reasonably explained by assuming the existence of charge 

recombination centers in the TiOx near the TiOx/P3HT:PCBM interface. On the other hand, 

because the electrons produced by the bandgap excitation of TiOx upon irradiation with UV 

light are closer to the recombination centers than those produced by the photo-excitation of 

P3HT:PCBM, these centers were filled preferentially and gradually by the electrons produced 

by the bandgap excitation of TiOx. Therefore, in addition to the photoconductivity of TiOx, 

the light soaking effect is observed because of the slow disappearance of the recombination 

centers, mainly accompanying the increase in the photocurrent and the fill factor. Lin et al.13 

observed that when TiOx cells after light soaking were stored in air for 3 h under the dark, the 

photo I-V curve returned from J shape to S shape. However such a change was hardly 

observed when stored in high vacuum of 8×10−7 Torr for 18 h. They inferred that there were 

surface Ti3+ states returning to Ti4+ states on O2 adsorption, which caused the conductivity of 
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the TiOx film to decrease and the S shape to return back. Such surface Ti4+ states may be 

equivalent to the recombination centers which we mentioned above, 

although the ESR signal which came from such defects was not observed at room 

temperature25. 

 

4. Conclusion 

We found that the number of P3HT+ ･  cation radicals in a 

quartz-ITO/TiOx/P3HT:PCBM substrate, which was estimated by ESR at room temperature, 

increased gradually with an increase in irradiation time upon irradiation with UV-containing 

white light. This result can be reasonably explained by assuming the existence of electron trap 

sites in the TiOx. The PCE of the TiOx and TiO2 cells upon irradiation with UV-cut light 

correlated well with the resistance of the P3HT:PCBM layers, which was estimated by IS 

measurements in a low frequency range. The resistance of the organic active layer in the TiOx 

cell was much larger than that in the TiO2 cell, that is, the concentration of photo-carriers in 

the mentioned P3HT:PCBM was significantly smaller than that in the latter. We infer from 

these discussion that the electron trap sites existing in the TiOx near the TiOx/PCBM:P3HT 

interface act as recombination centers for photo-produced electrons and holes from the 

P3HT:PCBM layer. However, because the electrons that are produced by the bandgap 

excitation of the TiOx upon irradiation with UV light can fill the recombination centers, the 

light soaking effect improving the photovoltaic properties is observed. 
16 
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Figure 1 Time-dependence of the photo I-V curves under white light irradiation for the 

inverted polymer solar cells containing titanium oxide prepared by heat treatment at 150 °C 

(a) and 450 °C (b), and the magnified I-V curves in the dark and just after irradiation for TiOx 

cell (c). The explanatory notes showed the time when we started the 

I-V measurements after beginning white light irradiation. The start point of I-V curves was 

the applied voltage of -1 V. 
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Figure 2 XRD spectra of the titanium oxide films on FTO substrates prepared at various heat 

treatment temperatures. Asterisk is diffraction peak of FTO. 
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Figure 3 (a) ESR spectra obtained under dark conditions, under UV-cut light irradiation, and 

under white light irradiation for the quartz-ITO/TiOx/P3HT:PCBM substrate at room 

temperature. (b) Dependence of the radical spin number (Nspin) of P3HT+ ･  in the 

quartz-ITO/TiOx (○) substrate and the TiO2 (○)/P3HT:PCBM substrates on light irradiation 

time. Zones I, II, and III are in the dark, under UV-cut light irradiation, and under white light 

irradiation, respectively.  
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Figure 4 Typical Nyquist plots of the TiOx cell at an applied voltage of 0.5 V after 1, 2, 5, 10 

and 30 min of white light irradiation. Solid lines indicate the curves calculated using the 

equivalent circuit shown by the inset.  
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Figure 5 Time-dependence of R1 (●), R2 (○), and photocurrent (○) at an applied voltage of 

0.5 V under white light irradiation for the TiOx cell.   
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Figure 6 Photo I-V curves after light irradiation of 30 min for the inverted polymer solar cells 

containing titanium oxide prepared using various heat treatment temperatures under white 

light irradiation (a) and under UV-cut light irradiation (b).  

  

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8
-12
-10
-8
-6
-4
-2
0
2
4
6

150 oC dark

 

 

Cu
rre

nt
 d

en
sit

y 
/ m

A 
cm

-2

Voltage / V

 150 oC
 250 oC
 350 oC
 450 oC

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8
-8

-6

-4

-2

0

2

4

6

 

 

Cu
rre

nt
 d

en
sit

y 
/ m

A 
cm

-2

Voltage / V

 150 oC
 250 oC
 350 oC
 450 oC

(a) (b) 

25 
 



 

 

 

 

 

 

 

 

 

 

 

Figure 7 Nyquist plots obtained under the short-circuit conditions for the inverted polymer 

solar cells containing titanium oxide prepared at various heat treatment temperatures under 

white light irradiation (a) and under UV-cut light irradiation (b). These plots were almost 

constant during light irradiation from 30 min to 2 h. The inset of Figure 7a is Nyquist plot in 

the dark for the TiOx cell containing titanium oxide prepared at heat treatment temperature of 

150 °C. The solid lines indicate calculated curves obtained from the equivalent circuit shown 

in the inset of Figure 4. 
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Figure 8 Plots of R1 (●), R2 (○) and photocurrent density (Jsc:○) under short-circuit 

conditions for the inverted polymer solar cells containing titanium oxide prepared at various 

heat treatment temperatures. Cell irradiation was done using UV-cut light. 
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