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Abstract 

The major fractions of dissolved iron in seawater exist as a complex with organic ligands. A 

high bioavailability of iron bound to humic acid (HA) compared to the other model ligands, 

such as desferrioxamine B or ferrichrome, has been reported, which implies the importance 

of HA to control the geochemical behavior and the transfer of Fe to marine phytoplankton, 

particularly in estuarine and coastal waters. In the current work, the effect of different HA-

fractions (>100, 100–30, 30–10, 10–5, and 5–3 kDa), which are extracted from lignite, on the 

comparative solubility of iron in seawater and the corresponding influence on the iron-uptake 

and growth rate of the phytoplankton (Prymnesium parvum) has been studied using 

laboratory cultures. The lower molecular weight (MW) HA fractions, such as 30–10, 10–5 

and 5–3 kDa, remained soluble in the simulated seawater medium for a longer time-span 

compared to the higher MW fractions. The lower MW fractions facilitated higher iron 

solubility and assisted in achieving a better phytoplankton growth rate. However, a reciprocal 

impact on phytoplankton growth rates has been observed when the HA concentration 

increased to a higher range (0.18 to 18 mg-C L–1). The highest intracellular Fe uptake in 

phytoplankton occurred with 30–10 kDa HA in seawater, and the extracellular dissolved Fe 

concentrations were higher for smaller-sized HA fractions. In a nutshell, our study showed 

that the controlled addition of lower MW fractions of HA (up to 30–10 kDa) in estuarine 

waters could ensure the accelerated uptake of Fe in phytoplankton as well as a better growth 

rate.  

 

Keywords: Iron; Phytoplankton; Humic acids; Sea water; bioavailability  
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1.0 Introduction 

In the high-nitrate-low-chlorophyll (HNLC) regions of oceanic waters, in spite of the 

abundance of plant nutrients, low phytoplankton stocks have been observed, which have been 

conclusively correlated to the bioavailability of iron (Fe) (Boyd et al. 2012; Martin and 

Fitzwater 1988). The availability of Fe(III) for biological uptake is correlated to the existence 

of Fe(III) in the soluble state (Salmon et al. 2006; Sunda and Huntsman 1995; Schlosser et al. 

2012) and is controlled by complexation with natural organic chelators (Liu and Millero 

2002; Waite 2001; Schlosser and Croot 2009). The iron chelators in seawater have been 

identified based on different criteria, most notably kinetics (Croot and Heller 2012) and 

complexation strength (Gledhill and Buck 2012). The humic substances (HS), which 

constitute 70 to 90% of the dissolved organic carbon in wetland waters, contribute to keeping 

iron in a soluble form at both high pH and high competing ion concentrations in estuarine 

systems (Rose and Waite 2003; Krachler et al. 2015; Yang and van den Berg 2009).   

The source of HS in coastal and oceanic waters (Krachler et al. 2015; Krachler et al. 2010), 

the importance of HS in complexing iron-species (Batchelli et al. 2010; Bundy et al. 

2015; Croot and Heller 2012; Fujii et al. 2010), the potential relationships between HS and 

iron solubility in the surface ocean (Heller et al. 2013), the impact from coexisting ions, 

environmental or other factors during the complexation of Fe with HS (Abualhaija et al. 

2015; Fang et al. 2015; Laglera et al. 2011), the influence of HS in a phytoplankton bloom in 

coastal waters (Glover 1978), and the ability of HS to stimulate the growth of coastal 

phytoplankton in laboratory cultures (Kosakowska et al. 2007; Chen and Wang 2008) have 

been discussed in the literature. 

Piccolo et al. (1997) showed that the complexation between HS and metals increases the 

corresponding bioavailability for plant uptake. The higher bioavailability of HS-bound Fe(III) 

to the coastal phytoplankton species compared to that of EDTA-bound Fe(III) (Kuma et al. 

1999) or Fe(III) bound to other model ligands, such as desferrioxamine B or ferrichrome 

(Chen and Wang 2008), has been observed.  

The HS content is usually highest in naturally oxidized lignite derivatives, such as leonardite 

(Peuravuori et al. 2006). The HS isolated from peats and coals have demonstrated beneficial 

impacts on seed germination, tissue nutrient balance, nutrient uptake and crop yield 
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(Tehranifar and Ameri 2012; Adani et al. 1998), which extends the prospect of its use to 

manufacture organomineral fertilizer at the industrial-scale (Chassapis et al. 2009).  

The HS in solution are commonly described as polymers (Ghosh and Schnitzer 1980), and 

can be segmented into humic (HA) and fulvic (FA) acids based on their solubility in alkalis 

and acids (Peuravuori et al. 2006). The chemical complexity during HS associations with 

metals in solution can be presumed due to the supramolecular structure of HS, and the 

variation in the conformational distribution in humic associations has been observed among 

the size-fractions separated from lignite HA (Conte et al. 2007). 

There have been significant variances in the minimum Fe requirements among marine 

phytoplankton because coastal eukaryotes need much more Fe than the oceanic ones 

(Strzepek and Harrison 2004; Allen et al. 2008; Marchetti et al. 2006), which indicates the 

differences in the Fe-limited conditions in open oceans and estuarine environments (Brand 

1991). Prymnesium parvum (a haptophyte) has been used as the model phytoplankton in the 

current study and is a major component in the geographically widespread marine systems, 

including temperate and tropical open seas and many coastal areas (Edvardsen and Imai 

2006; Carvalho and Granéli 2010). Although there has been an attempt to disassemble the 

complex concept of iron bioavailability for several phytoplankton-species (Shaked and Lis 

2012) or study the release of iron-binding ligands from a marine haptophyte, E. huxleyi (Boye 

and van den Berg 2000), a similar mechanism has yet to be explored for P. parvum with HA.   

The objective of the current work was to ascertain the comparative extent of the affinity of 

lignite-isolated HA fractions toward the iron-species in estuarine environments, which has 

not been studied before. The relative bioavailability of the complexes of Fe-HA fractions to P. 

parvum was also assessed for the first-time. The focus point of our work is to provide 

stronger insights into the possible applicability of HS-enriched organomineral fertilizer to 

facilitate phytoplankton growth in estuaries.  
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2.0 Experimental 

2.1 Materials 

2.1.1 Reagents 

FeCl3·6H2O from Wako Pure Chemical (Osaka, Japan) and 55FeCl3 from Daiichi Pure 

Chemicals (Tokyo, Japan) were used to prepare the standard Fe and radioactive 55Fe (74 

MBq) solutions, respectively. The mixture used for the organic scintillation measurement 

included 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole from Tokyo Chemical 

Industry (Tokyo, Japan) and toluene from Wako Pure Chemical (Osaka, Japan). The solution 

pH was adjusted using an HCl or NaOH solution (1 mol L–1) from Kanto Chemical (Tokyo, 

Japan), and 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES) from Nacalai 

Tesque (Kyoto, Japan) was used as a buffer reagent to maintain the solution pH. The HNO3, 

H2SO4 and disodium dihydrogen ethylenediamine tetraacetate dihydrate (EDTA) from 

Dōjindo Laboratories (Kumamoto, Japan) and the PlasmaCAL multi-element solutions in 5% 

HNO3 from SCP Science (Québec, Canada) were used during the metal analysis procedures.  

2.1.2 Laboratory wares 

The low-density polyethylene (LDPE) containers and polycarbonate bottles from Nalge Nunc 

(Rochester, NY), screw-capped LDPE tubes from AS ONE (Osaka, Japan), conical 

polypropylene centrifuge tubes from Biologix Research (Lenexa, KS), and micropipette tips 

from Nichiryo (Tokyo, Japan) were used as the laboratory ware. All of the laboratory ware 

was pre-cleaned by soaking overnight in an alkaline detergent (Scat 20X-PF) from Nacalai 

Tesque (Kyoto, Japan) and then in an HCl solution (4 mol L–1) from Kanto Chemical (Tokyo, 

Japan), followed by rinsing with purified water after each of those phases. The purified water 

with a resistivity > 18.2 MΩ·cm was prepared using an Arium Pro water purification system 

from Sartorius Stedim Biotech GmbH (Göttingen, Germany). 

2.2 Methods 

2.2.1 Extraction of HA and FA from the lignite and fractionation of HA 

The humic acid cake, which was supplied by Denka Co., Ltd. (Tokyo, Japan), was produced 

by the acid degradation of lignite (as collected from Berezovsky, Russia) using HNO3. The 

HA and FA were extracted from the humic acid cake using a modified version of the IHSS 



Journal of Applied Phycology, In Press, 2017 
 

The original publication is available at: http://dx.doi.org/10.1007/s10811-016-0982-5   
 

6 
 

recommended scheme (Aiken 1985; Thurman and Malcolm 1981). The Supelite DAX-8 

column from Sigma-Aldrich (St. Louis, MO), the Amberlite ion-exchange resin from Organo 

(Tokyo, Japan), and the CE Dialysis Membrane (MWCO 500∼1000 Da) from Spectrum (Los 

Angeles, CA) were used for different steps of the separation process. Centrifugation was 

conducted using a 5430R centrifuge (Eppendorf AG, Hamburg, Germany) at 7197 g (5 °C, 

20∼30 min). The produced HA was subsequently fractionated by applying a tangential-flow 

ultrafiltration technique using a Vivaflow 200 system from Sartorius Stedim (Surrey, UK). 

During the process, the permeation coefficient for the HAs with regard to ultrafiltration 

should be greater than 1 to avoid discrimination in the retention of the solute by the 

ultrafiltration membrane due to the interactions induced by charge, polarization or shape 

(Schlosser and Croot 2008). The scheme for the isolation process of HA and FA from lignite 

and HA fractionation is shown in Fig. 1.   

The average molecular weight (AMW) and total organic carbon (TOC) of the fractionated 

HA and FA are summarized in Table 1. The AMW was determined using an e2695 Alliance 

High-performance liquid chromatography-size exclusion chromatography (HPLC-SEC) 

system connected to a PDA Detector 2998 with Empower3 Software from Waters (Milford, 

MA). The SEC system was equipped with a guard column (Shodex OHpak SB-G, 6.0 i.d. × 

50 mm) and Shodex OHpak SB-803-HQ column (8.0 i.d. × 300 mm) from Showa Denko 

KK (Kawasaki, Japan). The eluent system consisted of a phosphate buffer (10 mM 

NaH2PO4/10 mM Na2HPO4/25% acetonitrile in water) at a flow rate of 0.8 mL min–1. A 

TOC-5000A analyzer from Shimadzu (Kyoto, Japan) was used to determine the TOC.  

2.2.2 Three-dimensional fluorescence spectral analysis 

The TOC concentration of the stock solutions of the HA fractions and FA was created at 18 

mg-C L–1 using purified water. The metal content in the stock solutions was less than 1% for 

each metal compared to the final total metal concentrations, which indicated minimal impact 

on the experiments due to the metal contaminants. The solution pH was adjusted to 8.0 with 1 

mol L−1 HCl. The solutions (3 mL) were then dispensed to the fluorescence cell (1 cm × 1 

cm) of a LS55 Fluorescence Spectrophotometer from PerkinElmer LLC (Shelton, CT) to 

obtain the three-dimensional fluorescence spectra of HS. The Excitation-Emission-Matrix 

(EEM) spectra were collected with subsequent scanning for emission spectra from 200 to 550 
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nm at 5 nm increments by varying the excitation wavelength from 200 to 500 nm at 10 nm 

increments at a scan speed of 240 nm min–1.   

2.2.3 Fourier-transform infrared (FT-IR) spectral analysis 

Infrared (IR) spectra were recorded in the 4000 to 400 cm–1 frequency domain with a 

Frontier-Gold FT-IR spectrophotometer (PerkinElmer, Waltham, MA) using samples 

prepared as KBr pellets. The KBr pellets were obtained by pressing, under a reduced pressure, 

uniformly prepared mixtures of a freeze-dried HS sample (1 mg) and spectrometry grade KBr 

(200 mg) being careful to avoid moisture uptake (Stevenson and Goh 1971; Ricca and 

Severini 1993) . The spectra resolution was 8 cm–1.  

2.2.4 Particle size distribution measurement 

The stock solutions of the HA fractions (0.18, 1.8 and 18 mg-C L–1) were added to a modified 

f/2 culture medium (Morel et al. 1979) using artificial seawater (salinity: ~35%) (Lyman and 

Fleming 1940) and purified water. Tables S1 and S2 in the supplementary information file 

show the corresponding compositions of the artificial seawater and modified f/2 culture 

medium. The solution pH was maintained at 8.0 using NaOH or HCl (1 M). Several sets of 

mixtures (15 mL) were prepared, and the homogeneous dispersion of HA in the mixture 

solutions was ensured via ultrasonic vibration using a 2510J-MT sonicator bath from Yamato 

Scientific (Tokyo, Japan). The mixtures were allowed to stand for a certain period of time (0, 

1.5, 4.5, 6, 12, 48 h, and so on) and subjected to particle size distribution measurements using 

a LA-950 V2 Laser Scattering Particle Size Analyzer from Horiba (Tokyo, Japan) at room 

temperature. 

2.2.5 Determination of iron size-speciation and dissolved iron concentration 

The stock solutions of the HA fractions, FA and EDTA (0.18, 1.8 and 18 mg-C L–1) were 

added to the modified f/2 medium (60 mL), maintained in a dark place for approximately 24 

h, and then spiked with a 1.5 µM Fe(III) solution (containing 55Fe(III) 3700 kBq L–1). The 

mixture was stirred, and the pH was adjusted to 8.0 using either HCl or NaOH (1 M). A 1 mL 

aliquot of the mixture solution (0.18 mg-C L–1) was collected at a specific time interval (0 to 

24 h) and then filtered using 0.025 and 0.20 µm pore-sized Nuclepore membrane filters 

(Corning, NY) for Fe size fractionation, viz. truly dissolved (Fesol), colloidal (Fecol) and 

particulate (Fepar). Each of the filters was washed with 1 mL of artificial seawater at room 
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temperature and soaked in a liquid scintillation solution to facilitate the determination of Fecol 

and Fepar. Aliquots (50 µL) of the unfiltered solutions and 0.025 µm filtered solutions were 

collected to determine the total Fe (Fetot) concentration and Fesol in the mixtures at the same 

time intervals.  

Another set of experiments were simultaneously conducted to evaluate the change in the 

cumulative dissolved iron (Fedis = Fesol + Fecol) concentration with time in the seawater 

medium. The mixture solutions of the modified f/2 medium and HA fractions, FA and EDTA 

(0.18, 1.8 and 18 mg-C L–1; pH 8.0) were maintained motionless for a specific period (0 to 13 

days) in centrifuge tubes, and then the supernatant solution was collected.  

To determine the concentrations of Fedis, the solutions were allowed to pass through 0.20 µm 

pore-sized polycarbonate filters (Corning, NY), and 50 µL of the filtrates were added to the 

liquid scintillation solutions. The LSC-6101 liquid scintillation counter from Aloka (Tokyo, 

Japan) was used to execute measurements of 55Fe by 3H mode scintillation counting, and the 

Fe(III)/55Fe(III) ratios in the sample solutions were used to calculate the Fe(III) concentration. 

The detection limit of the Fedis concentration was 10.8 nM. The Fe-species was designated as 

trivalent because the initial spike was carried out using Fe(III), and Fe(II) production due to 

the photo-reduction under the influence of light being less than 1% of the Fedis concentration 

or the detection limit. 

A lower Fe concentration (1.5 µM) was used for the culture experiments compared to the 

concentration used (2.0 µM) in the laboratory studies for the Fe concentration and the growth 

of marine micro algae causing red tides (Naito et al. 2008; Naito et al. 2005). A discrete Fedis  

concentration pattern within the extended range of (0.092–1.68 µM) to (0.0071– 0.0094 µM) 

based on the salinity zone has been reported for a real estuarine environment, such as San 

Francisco Bay (Bundy et al. 2015; Flegal et al. 1991). However, the difference was obvious 

because the elucidation of the natural Fe cycle with HA in estuarine waters was not the 

objective of our study and the addition of Fe-rich and HA-rich organomineral fertilizer into 

the system would facilitate an initial increase in the Fe concentration to the µM region 

followed by a decrease. The HA contents were maintained at a higher ratio than those found 

in the natural seawater to understand the effect of artificial HA fertilization on iron 

bioavailability.   
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It has been confirmed in earlier works that unchelated-Fe(III) is the dominant species that 

binds to the cell-surface ligand and is transported across the cell membrane during Fe uptake 

in marine eukaryotic phytoplankton, while the Fe(II) is only formed as an intermediate 

species (Shaked and Lis 2012; Shaked et al. 2005; Lis et al. 2015). Due to the high 

concentration and binding strength of organic ligands compared to inorganic species of Fe, 

the organic species typically account for >99% of the total dissolved Fe in most marine 

systems. Hence, in the current work, both the Fesol and Fecol were considered to be the HA-

Fe(III) in accordance with Morel et al. (2008), and the quantification or differentiation of 

Fe(III) vs Fe(II), or chelated vs unchelated-Fe, has not been attempted. 

2.2.6 Collection and maintenance of the phytoplankton culture 

The axenic strain of the marine phytoplankton Prymnesium parvum, isolated from Fukuyama 

Bay, Hiroshima, Japan, was used and the 4′,6-diamidino-2-phenylindole test was used to 

assess and monitor the axenicity. The strain was pre-cultured for 2 weeks in 60 mL 

polycarbonate bottles with artificial seawater containing modified f/2 nutrient components in 

an iron-limited condition ([Fe]  ≤ 0.0025 µM). All of the bottles, tips, and micropipettes that 

were used during the test, including the modified f/2 medium, were sterilized by autoclaving 

at 121 °C for 30 min. The materials were placed on a clean bench and subjected to ultraviolet 

irradiation for 20 min for sterilization. The cultures were incubated at 20 ± 1 °C using a light 

intensity of 180 µE m–2 s–1 and a 14:10 h light: dark cycle. The phytoplankton culture was 

later sub-cultured using the cells logarithmic growth phase following the sterilization 

protocols described above and were used in the experiment. The autoclave (MLS-3750), 

clean bench (MCV-711ATS) and incubator chambers (MIR-253) that were used during the 

phytoplankton culture experiments were all from Sanyo Electric (Osaka, Japan).  

2.2.7 Measurement of phytoplankton growth rate 

The HA fractions, FA and EDTA (0.18, 1.8 and 18 mg-C L–1) solutions in the modified f/2 

medium (25 mL) were allowed to stand for 24 h, and then spiked with 1.5 µM Fe (pH 8.0). 

The 18 mg-C L–1 EDTA was equivalent to 150 μmol L–1 EDTA in solution, and the other 

concentrations of EDTA were prepared accordingly. The modified f/2 medium used to 

prepare the mixture was subjected to high pressure sterilization followed by ultraviolet 

irradiation. The phytoplankton P. parvum, which was pre-cultured in an iron-limited 
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condition ([Fe]  ≤ 0.0025 µM), was inoculated in the experimental culture solution under a 

laminar air flow condition and retained in a Koitotron 3HN-35DA growth chamber from 

Koito Industries (Yokohama, Japan) at 20 ± 1 °C with a light intensity of 180 µE m–2 s–1 

under a 14:10 h light: dark cycle. The fluorescence intensity at 680 nm or absorbance at 540 

nm for each of the medium was measured to determine the temporal changes in the 

chlorophyll-a concentration or cell density using a TD-700 fluorometer (Turner Designs, 

Sunnyvale, CA) and a U-2000 spectrophotometer (Hitachi, Tokyo, Japan). The data were 

used to estimate the phytoplankton growth rate.  

2.2.8 Measurement of the iron uptake rate in the phytoplankton 

The pre-culture of P. parvum was cultured in an iron-limited condition ([Fe]  ≤ 0.0025 µM) 

in 60 mL of the modified f/2 medium for 14 days. The 0.18 mg-C L–1 HA fractions, FA and 

EDTA solutions, which were prepared 24 h before, were then added to the phytoplankton 

culture solution and spiked with a 1.5 µM Fe solution (containing 55Fe 7400 kBq L–1). The 

solution pH was maintained at 8.0, and the sterilization or incubation procedures were 

followed during the above-mentioned experiments and were similar to what was described in 

the previous section. The culture mediums (1 mL) were collected later and suction-filtered 

through a 3.0 µm membrane filter. The cells collected on the filters were washed either with a 

mixed solution of Ti(III)/EDTA/citrate plus seawater (0.05 M) or artificial seawater only to 

separate the intracellular Fe content or the intracellular and extracellular Fe content together 

(Hudson and Morel 1989). The 55Fe concentration on the washed filters was measured using 

the scintillation counting method. 

3.0 Results and discussion 

3.1 Spectroscopic characterization of the HA fractions 

The characterization of HS in terms of definitive structural or functional properties is 

challenging due to its heterogeneous and imprecise nature, and a mutual approach combining 

various spectroscopic and wet-chemical techniques has been suggested (Chen et al. 2002).  

Fluorescence spectroscopy has been adopted as a classification technique and to distinguish 

the HS available from different origins (Senesi et al. 1991). The EEM spectra of the HA 

fractions and FA aqueous solutions can be observed in Fig. 2a. The characteristic ranges for 
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the fluorescence intensity for HA has been observed at approximately 260 nm/500 nm, 380 

nm/500 nm and 430 nm/500 nm (Ex/Em). The peaks observed at the excitation wavelengths 

are similar to that of the Inogashira-HA standard (Suzuki et al. 2002) from the Japanese 

Humic Substances Society (JHSS). The emission band observed at ~500 nm is reasonably 

consistent with data published by IHSS and other researchers (Senesi et al. 1989; Chen et al. 

2002; Chen et al. 2003). For FA, the peak appeared at an excitation wavelength of 225–260 

nm and 280–320 nm at a fluorescence intensity of approximately 400–450 nm. The first of 

the peaks was similar to that observed for the Inogashira-FA standard (Suzuki et al. 2002) 

from JHSS, while the latter was comparable to that observed in the spectrum of the Suwannee 

River FA standard (Goldberg and Weiner 1994) from IHSS. Analyzing the EEM data in 

combination with parallel factor analysis (PARAFAC) has been increasingly adopted for 

more detailed characterization of organic matter in aquatic ecosystems in recent years (Jaffé 

et al. 2014). The different humic peaks in the EEMs from the current study were compared to 

those reported by Heller et al. (2013) who revealed that the iron solubility in the iron replete 

Atlantic waters was weakly correlated with humic-like components of the dissolved organic 

matter identified by EEM/PARAFAC analysis.  

The short wavelength and high intensities in the fluorescence peaks can be attributed to low 

aromatic contents, low molecular weight (MW) components, and the presence of a variety of 

different proton-reactive functional group types, e.g., carboxyl groups and phenolic OH 

groups, which were the common characteristics of HA and FA (Senesi et al. 1989; Stevenson 

1994). The emission fluorescence of HS in the 440–480 nm regions might be due to poly-

condensation between carbonyls and amines, or phenolic structures (Senesi et al. 

1989; Senesi et al. 1991; Miano and Senesi 1992; Pullin and Cabaniss 1995). The 

dissimilarity in the chemical structures between the HA fractions and FA, as confirmed by 

the peak positions in the EEM spectra, was due to the presence of a higher amount of proton-

reactive functional groups in FA compared to HA (Christl et al. 2005; Milne et al. 2001). The 

peak positions in the EEM spectra of the HA fractions suggested that no significant changes 

occurred in the chemical sites during the process of fractionation based on the average MW 

distribution. The similarities in the chemical structures among the HA fractions can further be 

confirmed from the FT-IR spectra, as illustrated in Fig. 2b.  
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3.2 Solubility of the HA fractions in seawater 

The solubility characteristics of the HA size fractions are an important indicator to explain 

the behavior of and relationship between HS and natural waters (Kipton et al. 1992). The HS 

molecules, especially HAs, which are regarded either as large polymeric molecules or 

supramolecular associations of small individual moieties (Piccolo 2001; Sutton and Sposito 

2005) are able to form aggregates under certain conditions (Avena and Wilkinson 

2002; Engebretson and Von Wandruszka 1997).  

The change in the distribution of HA particle sizes in terms of frequency (%) is shown in 

the Fig. 3a. The aggregation of HA starts within a very short period (10–20 min) in the 

medium supplemented with a >100 kDa HA fraction, followed by a larger rate of 

precipitation within a 4.5 h period. In the case of the 100–30 kDa HA fraction, the 

aggregation process initiated slowly and a visible precipitate occurred at approximately 12 h. 

A longer time-leg was required for the formation of aggregates when the 30–10, 10–5 or 5–3 

kDa HA fractions were added to the seawater. Hence, the effect of the MW distribution of 

HA on their corresponding solubility behavior in seawater was clearly noticeable. The range 

of molecular weights for the HA fractions, as reported in the current study, were not 

completely similar to those reported for HS in the literature (Thurman et al. 1982; Perminova 

et al. 2003), which is attributable to the variation in the source material or experimental 

designs. It should be noted that the size-fractionation information of HA was used to describe 

the experimental conditions in the current study, while the average molecular weight (AMW) 

provides the specific molecular weight of individual fractions (See Table 1). The composition 

of HA changed to a specific molecular weight range or a smaller one during the fractionation 

process (Yeats et al. 1990). Therefore, there will be a perceptible decrease in the rate of 

aggregation with the reduction in the HA size-fractions in the mixtures.  

The distribution of particle sizes further confirms that the HA aggregates are mostly 0.1 to 10 

µm, except for the larger MW fractions of HA (>100 kDa). The HA aggregation process in 

the solution was usually favored at a lower solution pH that was attributable to the 

protonation of functional groups (e.g., carboxylate and phenolate) in HA, which decreased 

the electrostatic repulsion between molecules and promoted intermolecular H-bond formation 

(Brigante et al. 2009). However, in the current work, the solution pH was pre-adjusted to a 

pH of 8.0 to minimize the above-discussed propensity. Therefore, the other factors that might 
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have stimulated the aggregation of cations in the seawater medium were charge neutralization 

and cation bridge formation (Engebretson and von Wandruszka 1998; vonWandruszka et al. 

1997). The assumption was further confirmed when a solution of purified water was 

supplemented with a >100 kDa HA fraction, and no larger aggregated structure was visible 

even after 144 h (Fig. 3b). It was also presumed that the HS and metal ions created an onion-

like layered structure in a saline water environment through hydrogen or coordination bonds 

(Mackey and Zirino 1994) and sank to the sediments when the colloidal structure grew to a 

certain size (Fig. 3c). Hence, if the larger MW fraction proportion of HA is higher, the rate of 

HA-aggregation, formation rate of encrusted HS-metal assemblage and corresponding 

withdrawal of HA from the aquatic environment will be enhanced. It can be noted that the 

aggregation or precipitation of organic matter and trace elements was also commonly 

observed in directly estuarine environments (Sholkovitz et al. 1978). 

3.3 Interaction between the HA fractions and iron in seawater 

The iron chemistry within a given body of water depends on its dissolved and particulate 

forms or size fractions (Bruland and Rue 2001). The majority of the dissolved irons in 

seawater appeared to be chelated with organic chelators (Rue and Bruland 1997; Boye et al. 

2001) and the corresponding complexation equilibria subsequently controlled the dissolved 

iron concentrations in the oceanic system (Kuma et al. 2003; Johnson et al. 1997). The 

binding extent between the humic polymers and metal might show a discrepancy depending 

on the size and configuration of the humic matter, pH and ionic strength of the solution, the 

chemical state of the metal itself and the relative abundance of both the metal and HS 

(Kalinichev and Kirkpatrick 2007). The change in Fe size-speciation, Fesol, Fecol and Fepar, 

with respect to the HA fractions, FA and EDTA contents (0.18 mg-C L–1) in the seawater 

medium within a time span of 24 h is shown in Fig. 4a. It was observed that the Fetot  

decreased from the initial concentration of 1.5 µM to 1.33–1.44 µM over time, which might 

be due to the adsorption of Fe on the bottle wall (Schlosser et al. 2011) and/or the removal 

tendency of the Fe-species from the water column as ferric oxyhydroxide (Sholkovitz et al. 

1978).  

In the absence of any complexing agent in the seawater (the control), the initial Fedis 

concentration of 1.04 µM was reduced significantly to 0.43 µM after 2 h followed by a 
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continual decrease to below the detection limit after 24 h. Furthermore, Fesol did not exist in 

the solution after 2 h with a notable increase in Fepar with time. When the HA fractions or FA 

was added to the solution, the Fedis decreased to between 0.41 to 0.57 µM within 2 h, which 

was similar to the tendency that was perceived for the control. However, the Fedis remained 

constant in the range of 0.38 to 0.52 µM after 24 h, while a higher Fecol ratio than the Fesol 

was observed, and the Fesol was not exhausted, as was observed in the control conditions. 

The molar ratios of EDTA to Fe in the spiked solutions were 1:100, 1:10 and 1:1 for 18, 1.8 

and 0.18 mg-C L–1, respectively. The Fesol concentration was significantly higher for the 

EDTA-spiked solution compared to all of the other chelators. Although the Fedis 

concentration decreasing trend was observed in the other cases within the first 2 h, it was less 

prominent (0.75 µM) and was sustained to a significantly higher value of 0.68 µM even after 

24 h. The sustenance of the higher Fesol in the presence of EDTA in the solution can be 

attributed to the higher formation constant of the EDTA-Fe complexes in solution than many 

of the known aminopolycarboxylate chelators (Begum et al. 2013; Begum et al. 2012), which 

also facilitates better bioavailability (Brand 1991; Brand et al. 1983). The HAs with 

hydroxyl-, phenoxyl-, and carboxyl-reactive groups have a complexing ability with metals 

(Robertson and Leckie 1999; Pandey et al. 2000), and their facilitatory effect on the solubility 

of Fe has been presumed. However, the humic matter might create a supramolecular 

aggregate in the solution consisting of hydrophilic and hydrophobic domains being 

contiguous to or contained in each other (Piccolo 2002) and might account for the increased 

ratio of Fecol to Fepar in the Fe-HS mixtures.  

The variations in Fe-speciation were not remarkably conclusive at the 0.18 mg-C L–1 HA 

fractions, FA and EDTA concentrations during the 24 h time-span. Hence, the temporal 

changes in the Fedis contents for a longer time-span (13 days) and varying the concentrations 

of the complexing agents (0.18, 1.8 and 18 mg-C L–1) was studied. Any possibility of shaking 

the culture medium during the whole period was avoided and only the supernatant was 

collected for analysis. The results are illustrated in Fig. 4b and we can see that the content 

of Fedis in the seawater medium resembled that of the control after 3 and 6 days for the 0.18 

and 1.8 mg-C L–1 concentrations of the HA fractions and FA, respectively, while EDTA was 

an exception in both cases. The distinct effect of different HA fractions and FA on the 

capability to maintain Fedis in solution was eminent for the chelator concentration dosing of 
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18 mg-C L–1, which indicated the superiority of the HA fractions with a smaller MW than 

those with a higher MW. It was revealed that the largest nominal molecular weight fractions 

of HA from lignite have been richer in alkyl and aromatic components, while the smaller-

sized fractions have been composed of carbohydrate-like structures among other compounds 

and were more polar (Piccolo 2002; Conte et al. 2006), and the observed difference might be 

caused by that fact.   

3.4 Effect of the HA fractions on the phytoplankton growth 

The logarithmic growth rate curve of the phytoplankton (P. parvum) with the changing 

concentrations of HS in the seawater medium increased with time up to ~16 days and 

stabilized thereafter during the 30 day experimental tenure (Fig. 5a). A comparative scenario 

of the P. parvum growth rate in the normal scale after a 16 day and 30 day time-span is 

shown in Fig. 5b. A negative impact on the maximum growth rate of phytoplankton with low 

MW fractions of HA in solution has been observed with an increase in the chelator 

concentration from 0.18 to 18 mg-C L–1 (Fig. 5b). The absorbance values, as measured at 465 

nm for the 0.18, 1.8 and 18 mg-C L–1 HA solutions were 0.000, 0.002 and 0.022, respectively. 

The values indicated that a decrease in the light intensity occurred with an increase in the HA 

concentrations in the solution, which might have resulted in the reduced photosynthesis rate. 

Furthermore, the behavior might be attributed to the reduced Fe uptake of marine 

phytoplankton communities when an excess concentration of the organic chelator was present 

compared to the total Fe in the seawater (Hutchins et al. 1999; Wells 1999). The other 

possibilities might be the complexation of other trace metals resulting in the limitation of 

growth (e.g., Cu, Co, and Zn) and/or the competition for nutrients with marine bacteria that 

are stimulated by the addition of HA (Carlsson and Granéli 1993; Carlsson et al. 

1995; Granéli et al. 1989). 

3.5 Effect of the HA fractions on the iron uptake rate of the phytoplankton 

In general, the Fe uptake rate by phytoplankton has been related to the computed equilibrium 

concentration of Fe3+ or, to be more specific, to the concentration of the dissolved inorganic 

Fe(III) species in the seawater (Anderson and Morel 1982; Hudson and Morel 1990). 

However, exceptions to the assumption do exist, such as the indirect and/or direct utilization 

of Fe complexes with organic chelators (e.g., siderophores) that explicitly transport to the 



Journal of Applied Phycology, In Press, 2017 
 

The original publication is available at: http://dx.doi.org/10.1007/s10811-016-0982-5   
 

16 
 

cells (Hassler et al. 2011; Maldonado and Price 2001), or iron acquisition in phytoplankton 

cells after an obligatory step of extracellular enzymatic reduction for all of the Fe species 

(Shaked et al. 2005; Kustka et al. 2007).  

Due to their widespread distribution in low-nutrient-open-oceans, P. parvum has been used in 

several oceanographic studies during the last decade (Fistarol et al. 2003; Carvalho and 

Granéli 2010; James et al. 2011), while the Fe-uptake mechanism still needs to be explored. 

The terms intra- and extracellular Fe, as used to explain the Fe uptake behavior in P. parvum, 

have been defined in the earlier work of Hudson and Morel (1989). 

In the current study, in the presence of HA fractions and FA in the seawater medium, the 

extracellular Fe content in P. parvum has been increased 1.3 to 1.8 times (4.09–5.91 fmol 

cell–1 h–1) compared to the control (3.26 fmol cell–1 h–1), and a two-fold increase (6.44 fmol 

cell–1 h–1) was observed for EDTA (Table 2). Although bioavailability does not necessarily 

scale with the solubility of the Fe complexes, the trend, by far, suggested the previous 

experimental outcome, which confirmed the facilitation of Fedis by the smaller-sized HA 

fractions (Fig. 4). However, the intracellular Fe uptake rate in P. parvum vs the control 

(Table 2) indicated a 1.3 to 2.0-fold increase in the Fe content than that of the control (0.06 

fmol cell–1 h–1), and a maximized Fe uptake with a 30–10 kDa HA fraction in the seawater 

medium. The trend was similar to that of the P. parvum growth rate as shown in Fig. 5b for 

the 0.18 mg-C L–1 HA in the solution. For FA and EDTA in the seawater medium, the 

intracellular Fe uptake rate in the P. parvum was low despite a higher extracellular Fe. It 

might be due to the eukaryotic mechanisms of Fe uptake from organic chelators (e.g., 

siderophore) binding to Fe, which was mostly involved in cell-surface metalloreductases 

(Allen et al. 2008; Terzulli and Kosman 2010; Yun et al. 2000). Furthermore, the reduction 

and subsequent Fe uptake by oceanic and coastal eukaryotic phytoplankton from Fe 

complexes with an organic chelator was generally orders of magnitude lower than that with 

dissolved inorganic Fe(III) species, especially under Fe-sufficient conditions (Maldonado and 

Price 2001; Morel et al. 2008). It has also been observed that the organic chelator regulates 

Fe availability by preventing Fe uptake from an ambient extracellular medium (Iwade et al. 

2006; Yoshida et al. 2006).  
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4.0 Conclusion 

The effect of lignite-extracted HA fractions, as segmented based on the MW distribution, in 

regulating the dissolved iron concentration in seawater as well as to phytoplankton growth 

was studied in the current work. It was assumed to provide information about the impact of 

different HA fractions during artificial fertilization to facilitate phytoplankton growth in 

coastal waters. It has been confirmed that even if the chemical sites among the HA fractions 

remained unchanged during the fractionation process, the low MW fractions (e.g., 30–10, 10–

5, 5–3 kDa) required more time to become aggregated than the high MW fractions (e.g., >100, 

100–30 kDa). The Fe-size speciation study further confirmed that the HA fractions with a 

smaller MW were capable of maintaining a greater ratio of Fe in the dissolved form than 

those with a higher MW. The ambient concentration of extracellular Fe was higher in the 

phytoplankton cultivated in the smaller-sized HA fraction-spiked seawater medium, whereas 

the intracellular Fe uptake was maximized at the 30–10 kDa HA fraction in the solution. 

However, the phytoplankton growth rate was hindered even with low MW fractions of HA in 

the solution if the corresponding concentration of HA increased in the solution. 
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Table 1: Average molecular weight (AMW) and total organic carbon (TOC) of humic 

substances extracted from lignite (HA, Humic acid; FA, Fulvic acid). 

Size fraction AMW*  TOC 
[Da] [mg L–1] 

HA (>100 kDa) 4300  2600 
HA (100–30 kDa) 2700 1900 
HA (30–10 kDa) 2000 880 
HA (10–5 kDa) 1200 2000 
HA (5–3 kDa) 900  1700 
FA 540 250 
* With reference to the sodium polystyrenesulfonate markers.  
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Table 2: The effect of HA fractions on the iron uptake behavior in the phytoplankton cells (P. 

parvum) in reference to the control, FA and EDTA (HA, Humic acid; FA, Fulvic acid; EDTA, 

Ethylenediaminetetraacetic acid) (n = 3). 

Medium Extracellular Fe uptake rate 
(fmol cell–1 h–1) 

Intracellular Fe uptake rate 
(fmol cell–1 h–1) 

Mean SD Mean SD 

Control 3.26  1.09  0.06  0.03  
HA (>100 kDa) 4.09  2.10  0.10  0.02  
HA (100–30 kDa) 5.46  0.67  0.12  0.02  
HA (30–10 kDa) 5.73  1.07  0.16  0.02  
HA (10–5 kDa) 5.75  1.40  0.12  0.05  
HA (5–3 kDa) 5.15  0.80  0.11  0.03  
FA 5.91  1.11  0.09  0.03  
EDTA 6.44  0.69  0.09  0.02  
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Figure 1: Flow diagram of the isolation process of HA and FA from lignite, and HA 

fractionation (BV, Bed Volume; RT, Room Temperature (25 ± 2°C); Centrifugation 

condition, 7197 g, 5°C, 20 min).
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Figure 2: (a) The contour plots of the EEM fluorescence spectra of the HA fractions and the 

FA; (b) The FT-IR spectra of the HA fractions.   
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Figure 3: The change in particle size distribution with time of (a) the HA fractions in 

seawater medium, and (b) the >100 kDa HA fraction in the purified water medium; (c) a 

schematic illustration of the onion-like layered structure formation between the HS and metal 

ions in the aquatic environment.    
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Figure 4: The temporal variations (24 h or 13-day) in the (a) Fe size-speciation and (b) 

dissolved iron concentrations with respect to the HA fractions, FA and EDTA contents (a. 

0.18 mg-C L–1; b. 0.18, 1.8 and 18 mg-C L–1) in seawater medium. The error bars show 

standard deviation between replicates with n = 3.   
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Figure 5: The (a) logarithmic growth rate curve of the phytoplankton (P. parvum), and (b) 

comparative scenario of the P. parvum growth rate (16-day vs 30-day) in terms of the 

chlorophyll-a (Chl a) concentration with the varying contents (0.18, 1.8 and 18 mg-C L–1) of 

the HA fractions, FA and EDTA in the seawater medium. The error bars show standard 

deviation between replicates with n = 3. 
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