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Abstract

We have carried out X-ray powder diffraction and thermal expansion measurements
of the caged magnetic compound DyFe2Zn20. Even though a strong magnetic anisotropy
exists in the magnetization and magnetic susceptibility due to strong exchange interaction
between Fe and Dy, almost all X-ray powder diffraction peaks at 14 K correspond to Bragg
reflections of the cubic structural models not only at room temperature paramagnetic state
but also at low temperature magnetic ordering state. Although the temperature change
of the lattice constant is isotropic, an anomalous behavior was observed in the thermal
expansion coefficient around 15 K, while the anomaly around TC = 53 K is not clear.
The results indicate that the volume change is not caused by the ferromagnetic interaction
between Fe and Dy but by the exchange interaction between two Dy ions.

1 Introduction

The series of cubic RT2Zn20 compounds has been recently closely examined, where R is a rare
earth atom and T is a transition metal [1, 2, 3, 4, 5, 6, 7]. In these compounds, R occupies the
8a site surrounded by 16 Zn atoms, and T occupies the 16d site surrounded by 12 Zn atoms.
The exchange interaction between two R atoms is weak, because the R atoms are diluted in
this compound. In fact, in the case of T = Co or Ru, the Curie temperature TC is less than
10 K for any R. However, in the case of the Fe series, TC is significantly enhanced. It has been
hypothesized that the magnetism of Fe atoms is involved in this high TC.

DyFe2Zn20 is ferromagnetic at temperatures below TC = 45 or 53 K [1, 2]. Below TC,
the 57Fe Mössbauer spectrum of DyFe2Zn20 has a complicated shape compared with that of
nonmagnetic YFe2Zn20 [3]. These results indicate that the small magnetic moments of Fe
atoms interact antiferromagnetically with those of the Dy atoms. Isikawa et al. examined
magnetization, magnetic susceptibility and specific heat of DyFe2Zn20 single crystals, and found
experimentally unusual magnetic anisotropies, i.e. a large magneto-crystalline anisotropy at 2
K and a metamagnetic transition in the field along the [100] direction, which disappears at
temperatures above 30 K below TC [2]. It is indicated that the exchange interaction between
Dy and Fe atoms in DyFe2Zn20 is the cause of the ferromagnetism in this compound, and that
the higher TC of DyFe2Zn20 compared with that of DyRu2Zn20 as well as the large magneto-
crystalline anisotropy is caused by this exchange interaction. The magnetic moments of Dy
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and Fe atoms at 0 K are found to be 10 µB/Dy and 0.2 µB/Fe, respectively, which is in good
agreement with the values estimated by the 57Fe Mössbauer spectroscopy [3].

In general, large magneto-crystalline anisotropy is caused in compounds with low struc-
tural symmetry [8, 9], and some magnetic compounds show a change in lattice parameters and
thermal expansion at magnetic or superconducting transition temperatures [10, 11, 12]. Some
caged magnetic compounds RT2Zn20 are also expected to have a lower structural symmetry. In
LaRu2Zn20, CeRu2Zn20, PrRu2Zn20, and LaIr2Zn20, the anomalies have been observed in the
temperature dependence of magnetic susceptibility, heat capacity and electrical resistivity at
approximately 150, 130, 138, and 200 K, respectively [4, 5]. However, their crystal structure are
not sufficiently clear. As for PrRh2Zn20, although the anisotropic magnetic field-temperature
phase diagram is determined for the antiferroquadrupolar ordering transition at low tempera-
tures [6], the crystallographic phase transition of PrRh2Zn20 near 140 K is speculated to be a
transition of the site symmetry of R atoms from Td to T , with keeping the cubic symmetry [7].

The large magnetic anisotropy of DyFe2Zn20 may also cause a reduction in the structural
symmetry at the low temperature magnetic phase. However, it is not clear even whether the
cubic symmetry is kept or not. In this study, we performed X-ray powder diffraction and
thermal expansion measurements to clarify the crystallographic symmetry of DyFe2Zn20 at
the wide temperature range between the magnetic ordering state at low temperature and the
paramagnetic state at room temperature.

2 Experimental Procedure

Single crystals of DyFe2Zn20 were grown by the Zn self-flux method. The DyFe2Zn20 crystals
were obtained as follows: the elements were placed in an alumina crucible at a ratio Dy: Fe:
Zn = 1: 2: 40. The system was then sealed in a quartz tube under 0.33 atm argon gas. The
sample was placed in an electric furnace and heated to 1050 ◦C, where it remained at constant
temperature for 0.5 h. The temperature was then lowered to 800 ◦C. After maintaining this
temperature for 10 h, the sample temperature was then lowered to 500 ◦C at a rate of 3 ◦C/h.
Excess Zn was separated and removed by centrifugation.

X-ray diffraction patterns were obtained using a Rigaku X-ray diffractometer, RINT 2500,
with a graphite counter monochromator and an X-ray generator with a rotating Cu anode.
The generator was operated at 50 kV and 300 mA. For the X-ray diffraction measurements, the
crystal was crushed and powdered using a mortar and pestle. A platelike powder sample was
mounted on a copper sample holder. The sample was fixed in a closed-cycle He gas refrigerator
mounted on the diffractometer. The sample was cooled from room temperature to 14 K.
Diffraction patterns between 15◦ and 120◦ were measured at a scanning speed of 2θ = 0.02◦/min.
Data were collected at every 2θ = 0.008◦. The diffraction patterns were analyzed by the
Rietveld method to obtain accurate lattice parameters using computer program RIETAN-2000
[13]; calculations were carried out by a conjugate direction method.

Thermal expansion was measured by means of strain gauge method [12], in which two
gages were used as an active (sample) and a dummy (reference) gauge. A commercial physical
property measurement system (PPMS, Quantum Design Co. Ltd.) is combined with a compact
bridge-circuit box to measure the extremely small resistance changes of the strain gauge [14].
Here, the strain gauges are glued along the [100] and [111] directions of DyFe2Zn20 single crystal.
Cu (6N) was used as a reference material.
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Figure 1: Experimental (red symbols) and refined (red solid curve) X-ray powder diffraction
pattern of DyFe2Zn20 at 300 K. The vertical marks correspond to 2θ Bragg positions. The
lower blue curve is the difference diagram.

3 Results and discussion

3.1 X-ray diffraction

The X-ray powder diffraction pattern of DyFe2Zn20 at 300 K is shown in Figure 1. The
upper symbols illustrate the observed data (red symbols). Although small impurity peaks
are observed at 2θ = 43.10◦ and 50.10◦, almost all peaks correspond to Bragg reflections of
the cubic structural model as shown in the vertical marks. Here, we assumed that DyFe2Zn20

crystalizes in a cubic CeCr2Al20 type structure (space group Fd3m, No. 227), and analyzed the
diffraction pattern by the Riedveld method. The calculated pattern and the difference diagram
are illustrated in Figure 1 as green and blue solid curve, respectively. The lattice parameter is
obtained to be a = 14.09183 ± 0.00007 Å, which is closed to the one reported previously [1].
Since the reliability factors are relatively large (RWP = 13.03%, Rp = 9.67%, RR = 17.39 %,
Re = 13.03%, and s = 2.1658%), more precise experiments are planed to determine the space
group and all other structural parameters accurately.

Figures 2 and 3 show the X-ray powder diffraction pattern of DyFe2Zn20 at 30 and 14 K,
respectively. It is found that both patterns are almost similar to that at 300K, that is, new
peaks do not appear within the experimental error even when decreasing temperature. It means
that structure phase transformation does not exist at any magnetic transition temperature. The
data is analyzed by the Rietveld profile method and the lattice parameter is obtained to be a
= 14.03483 ± 0.00006 Å and 14.03444 ± 0.00006 Å at 30 and 14 K, respectively.
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Figure 2: Experimental and refined X-ray powder diffraction pattern of DyFe2Zn20 at 30 K.
The vertical marks correspond to 2θ Bragg positions.
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Figure 3: Experimental and refined X-ray powder diffraction pattern of DyFe2Zn20 at 14 K.
The vertical marks correspond to 2θ Bragg positions.
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Figure 4: The linear thermal expansion dL/L (left flame) of DyFe2Zn20 as a function of tem-
perature along [100] and [111] directions. The change of the lattice constant da/a, which is
estimated from the result of the X-ray diffraction pattern, is also plotted.

3.2 Thermal expansion

Figure 4 shows the temperature dependence of the linear thermal expansion dL/L along [100]
and [111] directions of DyFe2Zn20 single crystal. It is seen that both dL/L decrease linearly
with decreasing temperature, and tend to saturates below 50 K. For comparison, we plotted
the change of the lattice constant da/a, which is obtained from the X-ray diffraction pattern in
Figures 1, 2 and 3. It is in good agreement with that obtained by the result of the measurement
of the thermal expansion.

Figure 5 shows the temperature dependence of the linear thermal expansion coefficient α(T )
along [100] and [111] directions of DyFe2Zn20. Here, α(T ) is defined as the derivative of dL/L
with respect to temperature. A sharp peak is found in both α(T ) curves along both [100]
and [111] directions at approximately 15 K while the anomaly around TC is not clear. Similar
behavior is reported in the result of the specific heat, where a broad peak is observed at 15 K.
Moreover, the strong anisotropy of the magnetization is also observed below 20 K due to the
exchange interaction between two Dy ions.

Such behavior has been analyzed based on the crystal electric field, Zeeman energy, an usual
exchange interaction nRR between two Dy atoms, and the strong exchange interaction nFeR[2].
nFeR is 80 times larger in magnitude than nRR in DyFe2Zn20. Thus, TC is enhanced by this
nFeR while the strong anisotropy of the magnetization below 20 K is related to the small nRR.
On the other hand nRR is caused by the distance between Dy ions in DyFe2Zn20, while nFeR

is presumably due to large overlapping of the wave function between the itinerant 3d and the
localized 4f electrons. Thus, it is reasonable to assume that nRR is sensitive to volume change
of DyFe2Zn20 compared with nFeR. This hypothesis is consistent with the fact that a sharp
peak is found around 15 K.

On the other hand, both α(T ) are almost same within the experimental error, indicating that
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Figure 5: The thermal expansion coefficient α of DyFe2Zn20 as a function of temperature along
[100] and [111] directions. TC = 53 K is determined by the magnetization measurement [2].

the volume change is isotropic and that nRR is not related to any structural phase transformation
in DyFe2Zn20. This is in contrast to the case of DyAl2, where the ferromagnetic transition
causes low structural symmetry from cubic to tetragonal structure due to a large magnetic
anisotropy below TC = 62 K [14, 15]. This difference may be attributed to a difference in the
magnitude of the exchange interaction in each compounds, that is, in the case of DyFe2Zn20,
the distance between Dy atoms is relatively large and nRR is extremely small in magnitude
than nFeR in DyFe2Zn20, while a ferromagnetic ordering of DyAl2 is mainly caused by local
magnetic moments of Dy ions.

4 Conclusions

The accurate study of DyFe2Zn20 by X-ray powder diffraction measurements suggests that
DyFe2Zn20 crystalizes in a cubic CeCr2Al20 type structure not only at room temperature para-
magnetic state but also at low temperature magnetic ordering state. No structural phase
transformation is caused by the magnetic phase transition, and the temperature change of the
lattice constant is isotropic. However, an anomalous behavior was observed in the thermal
expansion coefficient around 15 K, while the anomaly around TC is not clear. Compared with
the results of the magnetization and the specific heat in the previous reports, it is reasonable
to assume that the volume change is mainly caused by the exchange interaction between two
Dy ions.
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