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1 Introduction and Main Results

Let G be the d-dimensional lattice Zd or the r-regular tree T r (r ≥ 3); we
denote the vertex set of G by the same symbol G. Note that the r-regular
tree T r is often called the Bethe lattice, which is an infinite connected cycle-
free graph where each vertex has r neighbours and that T 2 actually coincides
with Z1.

Discrete Schrödinger operator H on graph G is defined in the Hilbert
space ℓ2(G) of square summable functions ψ(x) of discrete variable x ∈ G by
means of

Hψ(x) ≡ −∆ψ(x) + V (x)ψ(x),

where discrete Laplace operator ∆ is defined by the following

∆ψ(x) =
∑

|y−x|=1

[ψ(y)− ψ(x)].

Here, |y − x| stands for the graph distance between two vertices y and x of
G. We suppose in this paper that potential V (x) is a real function different
from zero only in finite number n of points {x1, . . . , xn} ≡ suppV , V (xi) ̸= 0.
In this case H is a self-adjoint operator and its spectrum consists of essential
spectrum part of an interval I (I = [0, 4d] for Zd, I = [r − 2

√
r − 1, r +

2
√
r − 1] for T r) and finite number of discrete eigenvalues outside I. The

main purpose of this paper is to obtain complete description of the discrete
eigenvalues of H.

For convenience instead of the Laplace operator ∆ we consider the tran-
sition operator P on ℓ2(G) defined by

Pf(x) =
1

deg x

∑
|y−x|=1

f(y),

where deg x = |{y ∈ G; |y − x| = 1}|. Let us denote

V (x) =
n∑

i=1

αiδi(x),

where αi ∈ R \ {0} is the intensity of V at xi. The function δi(x) = δxi,x

denotes the Kronecker’s delta with xi ∈ G. We always assume that xi ̸= xj
(i ̸= j).

In this paper, we study the spectrum of the perturbed operator L =
−P + V on ℓ2(G). We denote the spectrum and essential spectrum of −P
by σ(−P ) and σe(−P ), respectively. Using the spectrum I of −∆ or by
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direct computations, we can easily see that σ(−P ) = σe(−P ) = [−λ0, λ0]
with λ0 = 1 if G = Zd and λ0 = 2

√
r − 1/r if G = T r. Since σe(−P ) is stable

under finite rank perturbation, we will discuss the discrete eigenvalues of L.
Now, let us denote by N±(L) the numbers of the discrete eigenvalues of L,
taking into account the multiplicity, which are greater than λ0 and smaller
than −λ0, respectively.

Recently, one of the authors discussed the eigenvalues on T r with a cer-
tain class of potentials in [3]. Two of the authors gave explicit expressions
for N±(L) on Z1 in [5]. H. Isozaki and H. Morioka proved that L has no
eigenvalue in (−1, 1) on Zd in [7]. If n = 1, F. Hiroshima, et. al. in [6] also
discussed the eigenvalues of L on Zd.

The main purpose of this paper is to describe N±(L) for any n, d or r,
whose concrete forms are given in Theorems 1.1, 1.2 and 1.3. For further
exposition, we introduce the following notations. For a given potential V ,
put m+ = |{j; αj > 0}|, m− = |{j; αj < 0}|, and an n× n-matrix

M = A−1 + (gi,j)
n
i,j=1,

where A is the diagonal matrix with its diagonal entries, α1, α2, . . . , αn, and
gi,j are stated in the following three theorems. Furthermore, let J be the
n× n all-one matrix, Q = I − 1

n
J for the unit matrix I, Td = [0, 2π]d be the

d-dimensional torus, and x · y be the standard inner product of two vectors
x and y in Rd. Denote by p(S) the number of positive eigenvalues of a real
symmetric matrix S.

Theorem 1.1. Let G be Z1 or Z2. Then, we have that N−(L) = p(QMQ) +
1−m+ with

gi,j =
−1

(2π)d

∫
Td

cos((xi − xj) · θ)− 1
1
d

∑d
k=1 cos θk − 1

dθ.

In particular, N−(L) ≤ m−, and N−(L) = m− if and only if QMQ⌊kerQ⊥ is
positive definite.

Theorem 1.2. Let G be Zd for d ≥ 3. Then, we have that N−(L) = p(M)−
m+ with

gi,j =
−1

(2π)d

∫
Td

cos((xi − xj) · θ)
1
d

∑d
k=1 cos θk − 1

dθ.

In particular, N−(L) ≤ m−, and N−(L) = m− if and only if M is positive
definite.

Theorem 1.3. Let G be T r for r ≥ 3. Then, we have that N−(L) = p(M)−
m+ with

gi,j =
r
√
r − 1

r − 2

(
1√
r − 1

)|xi−xj |

.
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In particular, N−(L) ≤ m−, and N−(L) = m− if and only if M is positive
definite.

Moreover, Theorem 2.5 in Section 2 gives us explicit expressions for the
eigenfunctions of L. Here our interests concentrate only on N−(L) in the
above, but we can immediately translate them into those for N+(L). Indeed,
we can easily see that U∗(−P+V )U = −(−P−V ) using the unitary operator
U on ℓ2(G) defined by Uf(x) = (−1)|x−y|f(x) with a fixed vertex y ∈ G.

Finally in this section, we emphasize that L is a discrete analogue of the
point-interaction Hamiltonian H on Rd, which is discussed in [1, 2, 9, 10]
and in a lot of literature; H is a Schrödinger operator with pseudo-potentials∑n

i=1 αiδ(x− xi) on Rd. Here, δ is the Dirac’s delta function.
The paper is organized as follows: In Section 2, we discuss the Green

function of L, the auxiliary matrix Γ(λ) and its eigenvalues to give proofs
of our main theorems. In Section 3, we actually prove Theorems 1.1, 1.2
and 1.3. In Section 4, we give a discrete analogue of Albeverio and Nizhnik’s
algorithm [2] to obtain N−(L) for d = 1. In Section 5, we illustrate several
examples and some discussions.

2 Matrix Γ(λ) and its eigenvalues

First we begin by recalling some results about Green function; the Green
function G(x, y; z) of an operator T on ℓ2(G) is the kernel of the resolvent
operator (T − z)−1 for z in the resolvent set ρ(T ) defined by

(T − z)−1f(x) =
∑
y∈G

G(x, y; z)f(y)

for all f ∈ ℓ2(G). Direct computations can give us the following two expres-
sions.

Theorem 2.1. Let G = Zd, G0(x, y; z) be the Green function of −P and
z ∈ ρ(−P ) = C \ [−1, 1]. Then, we have that

G0(x, y; z) =
−1

(2π)d

∫
Td

e−
√
−1(x−y)·θ

1
d

∑d
i=1 cos θi + z

dθ

=
−1

(2π)d

∫
Td

cos((x− y) · θ)
1
d

∑d
i=1 cos θi + z

dθ.
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Theorem 2.2. Let G = T r, G0(x, y; z) be the Green function of −P , z ∈
ρ(−P ) = C \ [−2

√
r − 1/r, 2

√
r − 1/r], and p = cos−1(−z r/2

√
r − 1) with

−π ≤ Re p < π and Im p > 0. Then, we have that

G0(x, y; z) =
r

g−1 − g
g|x−y| with g =

eip√
r − 1

.

It is well-known that the integral G0(x, y;−1) in Theorem 2.1 diverges
for d = 1, 2 and converges for d ≥ 3.

Remark 2.3. Let d = 1. Since gi,j = limλ→−1−0[G0(xi, xj;λ) − G0(0, 0;λ)]

(see Session 3) and G0(x, y; z) =
√
−1e

√
−1p|x−y|/ sin p for p = cos−1(−z)

with −π ≤ Re p < π and Im p > 0 (cf. [5, Theorem 3.1]), it follows that
gi,j = −|xi − xj|. Therefore, M = A−1 − (|xi − xj|)ni,j=1. We have no such a
closed form of M for d ≥ 2.

Next, we discuss the Green function G(x, y; z) of L. Let

Γ(z) = A−1 + (G0(xi, xj; z)
n
i,j=1

for z ∈ ρ(L). We can obtain the following theorem employing the same proof
as in Theorem 3.1 in [5].

Theorem 2.4. Let G(x, y; z) be the Green function of L, z ∈ ρ(L), vx =
(G0(x1, x; z), G0(x2, x; z), . . . , G0(xn, x; z)) and

tvy be the transpose of vy. We
have that

G(x, y; z) = G0(x, y; z)− vxΓ(z)
−1 tvy.

In the rest of this section, we discuss the auxiliary matrix Γ(z), which
plays an important role in Section 3, and its eigenvalues.

Theorem 2.5. Let G be Zd or T r for r ≥ 3. The following hold; (i) A
real number λ in R \ σ(−P ) is an eigenvalue of L if and only if det Γ(λ) =
0; (ii) If Γ(λ)c = 0 for some nonzero vector c = t(c1, c2, . . . , cn), then the
function ψ(x) =

∑n
i=1 ciG0(x, xi;λ) is an eigenfunction of L associated with

the eigenvalue λ. In particular, the multiplicity of λ as an eigenvalue of L is
equal to dimker Γ(λ).

Proof. It is well-known that a singular point of Green function as a function
of z is corresponding to an eigenvalue z of L. Since G0 is holomorphic on
ρ(−P ) = C \ σ(−P ), the singular points of G are corresponding to the zeros
of det Γ(z) on ρ(−P ). Since L is self-adjoint, we obtain (i). The second
assertion can be proved by direct computations.
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Consider Γ(λ) as a matrix-valued function of λ ∈ R\σ(−P ). Let us show
the positive definiteness of the derivative dΓ(λ)/dλ. Consider the case where
G = Zd.

Proposition 2.6. Let G be Zd. Then, the derivative dΓ(λ)/dλ is a positive
definite matrix for all λ ∈ R \ [−1, 1].

Proof. Let θ ∈ Td, u = t(e
√
−1x1·θ, . . . , e

√
−1xn·θ) and define a matrix K(θ) by

K(θ) =
(
e−

√
−1(xi−xj)·θ

)n
i,j=1

= u tu.

Since

Γ(λ) = A−1 +
1

(2π)d

∫
Td

−1
1
d

∑n
i=1 cos θi + λ

K(θ) dθ,

we have
dΓ(λ)

dλ
=

1

(2π)d

∫
Td

1

(1
d

∑n
i=1 cos θi + λ)2

K(θ) dθ.

Let v be a nonzero vector in Cn. Since tu v ̸= 0 a.e. θ, we have that

⟨v,K(θ)v⟩ = tv K(θ) v = tv u tu v = |tu v|2 > 0

a.e. θ. Here, ⟨v, w⟩ is the standard inner product of Cn. Since⟨
v,
dΓ(λ)

dλ
v

⟩
=

1

(2π)d

∫
Td

⟨v,K(θ)v⟩
(1
d

∑n
i=1 cos θi + λ)2

dθ > 0,

the derivative dΓ(λ)/dλ is positive definite.

In the case where G = T r, we can prove the positive definiteness of
dΓ(λ)/dλ with the aid of the following proposition.

Proposition 2.7. Let di,j ≥ 0 satisfying that there exist vi ∈ Rn \ {0} such
that ∥vi∥+ ∥vj∥ ≥ di,j ≥ 0 for any i, j = 1, 2, . . . , n. Assume that f is a real
valued function such that there exist a > 0 and b > 0 with f(di,j) ≥ ae−bdi,j .
Then, the matrix A = (f(di,j))

n
i,j=1 is positive definite.

Proof. Let v = (v1, v2, . . . , vn) ∈ Rn \ {0}. Since

1

f(di,j)
≤ eb di,j

a
≤ eb(∥xi∥+∥xj∥)

a
≤ e2b∥xi∥ + e2b∥xj∥

2a
,

we have that

0 <

(
n∑

i=1

e−λ e2b∥xi∥
2a vi

)2

=
n∑

i,j=1

e−λ e2b∥xi∥+e
2b∥xj∥

2a vivj ≤
n∑

i,j=1

e
− λ

f(di,j)vivj

6



for λ on [0,∞). Thus,

0 <

∫ ∞

0

n∑
i,j=1

e
− λ

f(di,j)vivj dλ =
∑
i,j

vi

[
−f(di,j)e

− λ
f(di,j)

]∞
0
vj = ⟨v, Av⟩.

Therefore, A is positive definite.

Proposition 2.8. Let G be T r for r ≥ 3. Then, the derivative dΓ(λ)/dλ is
a positive definite matrix for all λ ∈ ρ(−P )∩ (−∞, 0) = (−∞,−2

√
r − 1/r).

Proof. Let p = cos−1(−λr/2
√
r − 1) and g = eip/

√
r − 1 be the same ones

as in Theorem 2.2. The equality i cos−1 t = − cosh−1 t (t > 1) implies that

g(λ) = − 1√
λ− 1

e− cosh−1(−λr/2
√
r−1)

is monotonously increasing for λ < −2
√
r − 1/r. Thus, dg/dλ > 0 for λ <

−2
√
r − 1/r.

Let f(x) = [(1 + g2) + x(1− g2)]gx. Then, we have that

dΓ(λ)

dλ
=

d

dλ
(G0(xi, xj;λ))

n
i,j=1 =

dg

dλ

d

dg

(
r

g−1 − g
g|xi−xj |

)n

i,j=1

=
dg

dλ

r

(1− g2)2
(f(|xi − xj|))ni,j=1 .

Put a = 1 and e−b = g. Since 0 < g < 1, we have (1 + g2) + x(1 −
g2) ≥ 1 + g2 ≥ 1, and thus we have f(x) ≥ ae−bx for x > 0, in particular,
f(|xi − xj|) ≥ ae−b|xi−xj |. Fix a vertex y of T r. Since |xi − y| + |y − xj| ≥
|xi − xj| ≥ 0, Proposition 2.7 implies the positivity of (f(|xi − xj|))ni,j=1.
Therefore, dΓ(λ)/dλ is positive definite.

As a consequence of these positive definiteness of dΓ(λ)/dλ, we obtain
several properties of eigenvalues, µ1(λ), . . . , µn(λ), of Γ(λ). From now on, we
always assume that λ < −1 if d = 1 or d = 2, that λ ≤ −1 if d ≥ 3, and that
λ ≤ −2

√
r − 1/r if G = T r (r ≥ 3).

Proposition 2.9. The following hold.

(i) All of µi(λ) are continuous.

(ii) All of µi(λ) are monotonously increasing.

(iii) Each µi(λ) has at most one zero.
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(iv) p(Γ(λ)) is monotonously decreasing.

(v) p(Γ(λ)) = m+ for |λ| large enough.

(vi) The number of the zeros of det Γ(λ) is equal to the total number of the
zeros of all µi(λ) taking into account the multiplicity.

Proof. (i) Theorem 6.8 in [8] or Proposition 1 in [9] implies this assertion. We
remark that G0(x, y;λ) converges to G0(x, y;−1) as λ→ −1−0 if d ≥ 3. (ii)
Proposition 2.6 implies that Γ(λ1) > Γ(λ2) if λ1 > λ2. Therefore, the mini-
max principle [8, Theorem 6.44] implies µi(λ1) > µi(λ2) for all i. Parts (iii)
and (iv) follow from (ii). Part (v) follows from the fact limλ→−∞ Γ(λ) = A−1.
Part (vi) follows from the fact det Γ(λ) = µ1(λ)µ2(λ) · · ·µn(λ).

3 The number of the discrete eigenvalues

We will prove our main theorems in Section 1 by combining the known meth-
ods with the aid of the positive definiteness of the derivative of the auxiliary
matrix dΓ(λ)/dλ, which is established in the previous section. Note that all
of zeros of det Γ(λ) lie in R ∩ ρ(−P ) = R \ [−1, 1].

We first discuss the simplest cases, G = Zd for d ≥ 3 and G = T r for
r ≥ 3.

Proof of Theorem 1.2. Since gi,j = G0(xi, xj;−1), we have that M = Γ(−1)
and p(M) is the number of positive µi(−1). Since m+ is the number of pos-
itive µi(λ) for |λ| large enough and all of µi(λ) are monotonously increasing
functions, the total number of the zeros of all µi(λ) on (−∞,−1) is equal
to p(M) − m+. Therefore, the number of the zeros of det Γ(λ) is equal to
p(M) − m+. Thus, Theorem 2.5 implies that N−(L) = p(M) − m+. The
second statement is trivial from the first.

Proof of Theorem 1.3. Since dΓ(λ)/dλ is positive definite, limλ→0− Γ(λ) =
M and limλ→−∞ Γ(λ) = A−1, we can obtain the theorem in a similar way in
the proof of Theorem 1.2.

Remark 3.1. In [3], K. Ando and one of the authors have already studied L
of T r with a uniform potential V on {x ∈ T r; |x− y| = c} with a root vertex
y and a constant c. The spectrum of L is completely identified.

We now turn to the case where Z1 and Z2. Then, limλ→−1−0G(x, y;λ)
diverges, but limλ→−1−0[G0(x, x;λ)−G0(0, 0;λ)] converges for any x, y ∈ Zd.
Therefore, we can put

gi,j = lim
λ→−1−0

[G0(xi, xj;λ)−G0(0, 0;λ)],
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where these constants are the same as in Theorem 1.1.

Proposition 3.2. Let d = 1 or d = 2. Then, there exists λ0 < −1 such that
p(Γ(λ)) = p(QMQ) + 1 for all λ ≥ λ0.

Proof. Put p = p(QMQ) for brevity.
We first prove that p(Γ(λ)) ≤ p+ 1. Since dΓ(λ)/dλ is positive definite on

(−∞,−1) by Proposition 2.6, dQΓ(λ)Q/dλ = Q(dΓ(λ)/dλ)Q is non-negative
definite. This implies that p(QΓ(λ)Q) is monotonously non-decreasing on
(−∞,−1). Since Q is the orthogonal projection onto the orthogonal com-
plement space of the all-one vector 1, we have that JQ = 0 and

Γ(λ)Q = [Γ(λ)−G0(0, 0;λ)J ]Q→MQ (λ→ −1− 0).

Therefore, the eigenvalues, µ̃i(λ), of

Γ̃(λ) =

{
QΓ(λ)Q (λ < −1),

QMQ (λ = −1),

are continuous and monotonously non-decreasing on (−∞,−1]. Thus, we
obtain that p(Γ̃(λ1)) ≤ p(Γ̃(λ2)) for λ1 ≤ λ2 ≤ −1. In particular, it holds
that p(QΓ(λ)Q) ≤ p(QMQ) = p. Since QΓ(λ)Q is a compression of Γ(λ) to
an (n−1)-dimensional subspace, we obtain that p(Γ(λ)) ≤ p+ 1 by Cauchy’s
interlacing theorem [4, Corollary III.1.5].

Let us prove the existence of λ0 such that p(Γ(λ)) ≥ p+ 1 for all λ ≥ λ0.
Let I(λ;ψ) = ⟨Γ(λ)ψ, ψ⟩ and ξ = 1/

√
n, and let φ1, φ2, . . . , φp be linearly

independent normalized eigenvectors of QMQ belonging to its positive eigen-
values. It is sufficient to prove the existence of λ0 such that I(λ;ψ) > 0 for
any λ ≥ λ0 and any linear combination ψ of ξ and φi.

Assuming that p = 0, we have that

I(λ; ξ) = ⟨A−1ξ, ξ⟩+ ⟨(G0(xi, xj;λ))ξ, ξ⟩

=
n∑

k=1

1

αk

+
−1

(2π)d

∫
Td

⟨ξ,K(θ)ξ⟩
1
d

∑d
k=1 cos θk + λ

dθ

with the same matrix K(θ) in Proposition 2.6. Since ⟨ξ,K(θ)ξ⟩ > 0 a.e. θ,
this quantity I(λ; ξ) → ∞ as λ→ −1− 0. Thus, we can obtain λ0 such that
I(λ; ξ) > 0 for any λ ≥ λ0.

Assume that p ≥ 1. We denote by ν the smallest positive eigenvalue of
QMQ. Let φ be a normalized linear combination of φi. Note that Qφ = φ.
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Since there exists λ1 such that ∥QMQ−QΓ(λ)Q∥ < ν/2 for any λ > λ1, we
have

I(λ;φ) = ⟨QMQφ,φ⟩+ ⟨(QΓ(λ)Q−QMQ)φ, φ⟩
≥ ν − ∥QΓ(λ)Q−QMQ∥
≥ ν/2

for any λ > λ1.
Noting that Qφ = φ, we have that

|⟨Γ(λ)φ, ξ⟩| = |⟨Γ(λ)Qφ, ξ⟩| ≤ ∥Γ(λ)Q∥ → ∥MQ∥

as λ → −1 − 0. Since Q is a projection, we have ∥MQ∥ ≤ ∥M∥, and thus,
there exists λ2 such that |⟨Γ(λ)φ, ξ⟩| ≤ 2∥M∥ for any λ > λ2.

Let (a, b) ∈ C2 \ {(0, 0)} and λ > max{λ1, λ2}. We have

I(λ; aφ+ bξ) = |a|2I(λ;φ) + ⟨Γ(λ)aφ, bξ⟩+ ⟨Γ(λ)bξ, aφ⟩+ |b|2I(λ; ξ)
≥ (ν/2)|a|2 − 4|ab|∥M∥+ |b|2I(λ; ξ)
= (ν/2)(|a| − 4|b|∥M∥/ν)2 + |b|2(I(λ; ξ)− 8∥M∥2/ν).

The first term is non-negative. Since I(λ; ξ) → ∞ as λ → −1 − 0, there
exists λ0 such that the second term is positive for all λ ≥ λ0. Since both
I(λ; ξ) and 8∥M∥2/ν are independent of a, b, and φ, so is λ0. Therefore,
I(λ;ψ) > 0 for all λ ≥ λ0 and any nonzero linear combination ψ of ξ and
φi. Thus, we obtain that p(Γ(λ)) ≥ p+ 1 for all λ ≥ λ0. This completes the
proof.

Proposition 3.3. For d = 1 or d = 2, there exists λ0 such that N−(L) =
p(Γ(λ))−m+ for all λ ≥ λ0. In particular, N−(L) ≤ m−, and N−(L) = m−
if and only if Γ(λ0) is positive definite for some λ0.

Proof. We can prove this proposition in a similar way to that in the proof
of Theorem 1.2; take λ0 greater than any zeros of µi(λ) if they exist, or
λ0 = −2 otherwise. Then, p(Γ(λ0)) and m+ are the numbers of positive
µi(λ0) and positive µi(λ) for |λ| large enough, respectively. Since all µi(λ)
are monotonously increasing functions, the total number of the zeros of all
µi(λ) on (−∞, λ0) is equal to p(M)−m+. Since there is no zero on [λ0,−1),
the number of the zeros of det Γ(λ) is equal to p(M)−m+ taking into account
the multiplicity. Thus, Theorem 2.5 implies that N−(L) = p(Γ(λ0)) −m+.
The second statement is trivial from the first.

Proof of Theorem 1.1. Propositions 3.2 and 3.3 imply N−(L) = p(QMQ) +
1 − m+. Since p(QMQ) ≤ n− 1, we have that N−(L) ≤ n − m+ = m−.
In addition, since dimkerQ⊥ = n − 1, we have that QMQ⌊kerQ⊥ is positive
definite if and only if p(QMQ) = n− 1. This implies the last assertion.
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4 Application: Discrete analogue of Albeve-

rio and Nizhnik’s result

In this section, we give another method to obtain N−(L) when d = 1 as
an application of Theorem 1.1. This method is inspired by Albeverio and
Nizhnik’s algorithm stated below.

Albeverio and Nizhnik have investigated the number of the negative dis-
crete eigenvalues of a one-dimensional continuous Schrödinger operator with
finite point-interactions,

Hψ(x) = − d2

dx2
ψ(x) +

n∑
j=1

α̃jδ(x− x̃j)ψ(x)

Here, δ(x) is the Dirac’s delta function, α̃j ∈ R\{0} and x̃1 < x̃2 < · · · < x̃n.
The domain D(H) of H is as follows:

D(H) = {ψ ∈ W 2,1(R);ψ′(x̃j + 0)− ψ′(x̃j − 0) = α̃jψ(x̃j)}.

They established an excellent algorithm to obtain the number N(H) of the
negative eigenvalues of H.

Theorem 4.1 (Lemma 4 in [2]). Let ϕ̃ be the solution of the differential
equation, Hϕ̃(x) = 0 and ϕ̃(x) = 1 (x < x̃1). Put

w̃ = (ϕ̃(x̃1), ϕ̃(x̃2), . . . , ϕ̃(x̃n), (1 + α̃n(x̃n − x̃n−1))ϕ̃(x̃n)− ϕ̃(x̃n−1)). (1)

Then, we have that N(H) = sig w̃. Here, sig(a1, a2, . . . , an) stands for the
number of sign changes.

Note that ϕ̃(x) is a piecewise linear continuous function. Consequently,
ϕ̃(xk) satisfies the following recurrence formula (cf. Eqs. (8) and (9) in [2]);

ϕ̃(x̃k+1)− ϕ̃(x̃k)

x̃k+1 − x̃k
− ϕ̃(x̃k)− ϕ̃(x̃k−1)

x̃k − x̃k−1

= ϕ̃′(x̃k+0)− ϕ̃′(x̃k−0) = α̃kϕ̃(x̃k) (2)

and the following initial value: ϕ̃(x̃0) = 0, and ϕ̃(x̃1) = 1, where x̃0 = x̃1 − 1.

Remark 4.2. We have that

ϕ̃′(x̃n + 0) = ϕ̃′(x̃n − 0) + α̃nϕ̃(x̃n)

=
ϕ̃(x̃n)− ϕ̃(x̃n−1)

x̃n − x̃n−1

+ α̃nϕ̃(x̃n)

=
(1 + α̃n(x̃n − x̃n−1))ϕ̃(x̃n)− ϕ̃(x̃n−1)

x̃n − x̃n−1

.

Thus, sig w̃ = sig(ϕ̃(x̃1), ϕ̃(x̃2), . . . , ϕ̃(x̃n), ϕ̃
′(x̃n + 0)).
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A finitely supported potential on Z1 in the above is naturally considered
as a discrete analogue of finite point-interactions on R. Thus our interest is
whether a similar result to Theorem 4.1 holds; the answer is positive.

Theorem 4.3. Let d = 1 and ϕ be the solution of the difference equation,
(L+ 1)ϕ(x) = 0 and ϕ(x) = 1 (x < x1). Put

w = (ϕ(x1), ϕ(x2), . . . , ϕ(xn), (1 + 2αn(xn − xn−1))ϕ(xn)− ϕ(xn−1)). (3)

Then, we have that N−(L) = sigw.

Note that ϕ(x) satisfies that ϕ(x+1)−ϕ(x) = ϕ(x)−ϕ(x− 1) for x ̸= xk
and ϕ(xk + 1) + ϕ(xk − 1) − 2ϕ(xk) = 2αkϕ(xk). These imply the following
recurrence formula;

ϕ(xk+1)− ϕ(xk)

xk+1 − xk
− ϕ(xk)− ϕ(xk−1)

xk − xk−1

= 2αkϕ(xk) (4)

and the following initial value: ϕ(x0) = 0, and ϕ(x1) = 1, where x0 = x1 − 1.

Remark 4.4. We have that

ϕ(xn + 1)− ϕ(xn) = 2(1 + αn)ϕ(xn)− ϕ(xn)− ϕ(xn − 1)

= 2αnϕ(xn) + (ϕ(xn)− ϕ(xn − 1))

= 2αnϕ(xn) +
ϕ(xn)− ϕ(xn−1)

xn − xn−1

=
(1 + 2αn(xn − xn−1))ϕ(xn)− ϕ(xn−1)

xn − xn−1

.

Thus, sigw = sig(ϕ(x1), ϕ(x2), . . . , ϕ(xn), ϕ(xn + 1) − ϕ(xn)). We see that
ϕ(xn + 1)− ϕ(xn) is corresponding to ϕ̃′(x̃n + 0).

We can prove Theorem 4.3 by virtue of Theorem 4.1, Theorem 1.1 and
the following theorem about H;

Theorem 4.5 (Theorem 1 in [10]). We have that

N(H) = n(QM̃Q) + 1− m̃+ with M̃ =

(
−δi,j
α̃j

+
|x̃i − x̃j|

2

)
i,j

.

Here, m̃+ = |{α̃j; α̃j > 0}| and n(T ) is the number of negative eigenvalues
of a real symmetric matrix T .
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Proof of Theorem 4.3. Theorem 1.1 with Remark 2.3 for d = 1 implies that

N−(L) = p(QMQ) + 1−m+ with M =

(
δi,j
αj

− |xi − xj|
)

i,j

.

Theorems 4.1 and 4.5 implies that sig w̃ = n(QM̃Q) + 1− m̃+. Now, let us
take x̃j = xj and α̃j = 2αj. Then, we have that m̃+ = m+, M̃ = (−1/2)M
and thus n(QM̃Q) = p(QMQ). In addition, the recurrence formulas (2)
and (4) imply that ϕ̃(x̃j) = ϕ(xj) for any j. Therefore, w̃ = w. Consequently,
we obtain that

N−(L) = p(QMQ) + 1−m+ = n(QM̃Q) + 1− m̃+ = sig w̃ = sigw.

This is the desired result.

5 Examples and Discussions

In this section, we give some concrete examples and some discussions.
We note the r-regular tree T r for r ≥ 3 always belongs to the case d ≥ 3

in examples stated below.

Example 5.1. Let n = 1. We have

N−(L) =


m−, if d = 1, 2,

1, if d ≥ 3 and α1 < − 1
g1,1

,

0, if d ≥ 3 and α1 > − 1
g1,1

.

Let us consider the two points case.

Example 5.2. Let n = 2 and α1 = α2 = α.
(1) If d = 1 or 2, we have that

N−(L) =


2, if α < − 1

g1,2
,

1, if − 1
g1,2

≤ α < 0,

0, otherwise.

(2) If d ≥ 3, we have that

N−(L) =


2, if α < − 1

g1,1−g1,2
,

1, if − 1
g1,1−g1,2

≤ α < − 1
g1,1+g1,2

,

0, otherwise.
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Example 5.3. Let n = 2 and α1 = −α2 = α.
(1) If d = 1 or 2, it always holds that N±(L) = 1.
(2) If d ≥ 3, we have that

N±(L) =

{
1, if |α| > (g21,1 − g21,2)

−1/2,

0, otherwise.

In this paper we obtained some explicit expressions for the number of the
discrete eigenvalues of −P + V , where V is a finitely supported potential
on Zd or T r. Thus, we have completely identified the numbers of them, but
we do not know the location yet. Our current knowledge is only that the
discrete eigenvalues lay in

[min{−1 + αi; i = 1, 2, . . . , n},−1) ∪ (1,max{1 + αi; i = 1, 2, . . . , n}],

which we can obtain by min-max principle. Though we know that the discrete
eigenvalues are the roots of the equation, det Γ(z) = 0, it seems to be difficult
to solve it completely. In another point of view, more detailed information
of gi,j would help us but any closed form of the so-called Watson integral,

I(x; z) =

∫
Td

cos (x · θ)
1
d

∑d
i=1 cos θi + z

dθ

is unknown in general.
Another interesting problem is the existence of embedded eigenvalue of

L [6] for arbitrary n. We will discuss it in our next paper under preparation.
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