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Abstract

We present magnetocaloric effect measurements of the ferromagnetic semi-
conductor EuS in the vicinity of its ordering temperature. Single phase EuS
powder was synthesized by CS2 gas sulfurization of Eu2O3. A sintered com-
pact with relative density over 95% was prepared by pulsed electric current
sintering of the powder. Temperature and magnetic field dependence of the
magnetization and specific heat were characteristic of a paramagnetic to fer-
romagnetic second order phase transition. The entropy change induced by
an external magnetic field and the specific heat were both close to those of a
single crystal. We obtained an entropy-temperature (S–T ) diagram of the
EuS sintered compact. Carnot cycle liquefaction of hydrogen using EuS was
compared with several other materials, with results indicating that sintered
EuS is an excellent magnetic refrigerant for hydrogen liquefaction.

Keywords: Magnetocaloric Material, Entropy, Magnetic Refrigeration,
Hydrogen, Liquefaction

1. Introduction

Refrigeration using the magnetocaloric effect (MCE) has a long history.
Debye [1] in 1926 and Giauque [2] in 1927 described the theoretical basis of
adiabatic demagnetization cooling. Because of the reversibility of entropy
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changes, magnetic refrigeration can achieve a very high thermodynamic effi-
ciency. Magnetic refrigeration systems can be environmentally friendly, quiet,
and potentially more efficient than conventional gas expansion systems. A
further advantage of magnetic refrigeration is its use of solid magnetic materi-
als, which have typically 1000 times higher entropy density than gases. MCE-
based magnetic refrigerators can operate over a wide temperature range, from
room temperature to microkelvins. In recent years, magnetic refrigeration
research has been expanded to various applications such as space cryogen-
ics [3], hydrogen liquefaction [4] and room temperature refrigerators [5, 6].
Magnetic materials with large MCE have been studied extensively [7, 8].

Hydrogen is one of the cleanest energy resources and is also a useful
cryogenic refrigerant for superconducting technologies operating above 20
K. Denser liquid hydrogen has a great advantage over gaseous hydrogen for
storage and transportation, but its use critically depends on highly efficient
liquefaction methods and adiabatic storage because of 20.3 K boiling point
at 1 atmosphere.

One of the authors, KM developed a hydrogen magnetic refrigeration sys-
tem that consisted of a Carnot cycle liquefaction stage and an active mag-
netic regenerator (AMR) cycle for the precooling stages [4]. In the Carnot
cycle, over 80% liquefaction efficiency was achieved using Dy-substituted
gadolinium aluminum garnet ((DyxGd1−x)3Al5O12, DGAG) [4, 9]. The MCE
in a series of Fe-modified gadolinium gallium garnets (Gd3(Ga1−xFex)5O12,
GGIG) was studied, which demonstrated that GGIGs have a larger entropy
change ∆S than gadolinium gallium garnet (Gd3Ga5O12, GGG) around 20
K [10, 11]. RM2 (R= rare earth, M= Al, Ni, or Co) compounds have large
entropy changes and magnetic transition temperatures can be controlled by
varying R and/or M so that these compounds have good potential as mag-
netic refrigerators for hydrogen liquefaction [12, 13, 14, 15].

In europium monochalcogenides, the divalent europium ion has a 4f 7

electron configuration, an electronic S-state with total spin angular momen-
tum of 7/2 [16]. The crystalline electric field effect and magnetic anisotropy
in this system are expected to be small. This electronic character of eu-
ropium monochalcogenides should produce a large and isotropic MCE. EuS
is a ferromagnetic semiconductor with a NaCl crystal structure having a sec-
ond order phase transition from ferromagnetic to paramagnetic at TC∼ 18
K [16]. As this temperature is near the boiling point of hydrogen, EuS is a
potential magnetic refrigeration material. Investigations of other europium
monochalcogenides such as EuSe [17] and EuO [18] showed a first order mag-
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netic transition from paramagnetic to antiferromagnetic at TN∼ 4.6 K and
a second order magnetic transition from paramagnetic to ferromagnetic at
TC∼ 69 K, respectively.

In EuS, theoretical studies [19, 20, 21] have suggested significant ∆S.
Experimental observation of the MCE was first reported by Bredy and Seyfert
[22], who used a flat sintered polycrystalline EuS sample and measured ∆S
up to 3 T. Their observed ∆S were much smaller than those expected from
theoretical calculations. Recently, the MCE was studied in a single crystal of
EuS grown by the Bridgman method [23]. Magnetization and specific heat
were measured at magnetic fields up to 5 T applied along the [100] and [110]
directions. A large and isotropic MCE without hysteresis loss was observed.
These experiments suggest that the degree of crystalline quality is important
to obtain useful high MCE in EuS.

Polycrystalline materials that can be manufactured into shapes such as
plates or spheres are necessary for practical use of magnetic materials in
a magnetic refrigerator. Moreover, the MCE of the polycrystal must be
large, comparable to a single crystal. We have succeeded in manufacturing
a sintered EuS polycrystal compact that has a relative density over 95%.
In this paper, we report that the MCE of this sintered polycrystal is close
to that of a single crystal and is a good candidate material for magnetic
refrigeration.

2. Experimental Procedures

A sintered compact was prepared by pulsed electric current sintering of
single phase EuS powder, which was synthesized by CS2 gas sulfurization of
Eu2O3. In the CS2 gas sulfurization, a quartz board containing Eu2O3 powder
was inserted into a reaction tube which was heated in an Ar atmosphere. CS2

gas was introduced into the tube using Ar as the carrier. The product, single
phase EuS, was confirmed by X-ray diffraction. Subsequently, the synthesized
powder was filled into a graphite die and sintered at 1873 K in vacuum under
high pressure using a pulsed electric current sintering apparatus. Details of
the synthesizing process will be reported elsewhere [24].

Density of the sintered compact was determined as 5.46 g/cm3 (95% of
that for a single crystal) by Archimedes method. Magnetization M was
measured using a commercial SQUID magnetometer (MPMS, Quantum De-
sign) at discrete intervals of magnetic field between 0.01 and 5 T. A thermal

3



relaxation method was used to measure specific heat C as a function of tem-
perature at various magnetic fields from 0 to 5 T using a physical properties
measurement system (PPMS, Quantum Design).

3. Results

3.1. Magnetization

In the upper panel of Fig. 1, M for sintered EuS is shown as functions
of temperature in magnetic fields up to 5 T. In any constant field, M de-
creased with increasing temperature above 2 K. M tended to saturate at
about 3.9×104 emu/mol at low temperatures. This corresponds to 7 µB per
Eu atom, which is expected for g=2 and J =S=7/2 in the 4f 7 electron
configuration.

The lower panel of Fig. 1 shows M and inverse susceptibility at 100 Oe
between 2 and 300 K. M shows a paramagnetic to ferromagnetic transition
at the Curie temperature TC=16.5 K. Above TC , M(T ) is described by
the Curie-Weiss law. The paramagnetic Curie temperature θ=17 K and the
effective magnetic moment µeff =7.2 µB are obtained from this plot. The µeff

of sintered EuS is slightly less than the 7.9 µB for single crystal EuS [23].
The magnetic entropy change ∆S was calculated from the magnetization

using Maxwell’s relation,

∆S(T,H) =

∫ H

0

(
∂M

∂T

)
H

dH, (1)

where H is the applied magnetic field. Figure 2 shows the obtained −∆S
of our sintered EuS. The −∆S curve has a caret-like shape. For a given
magnetic field, it increases with temperature below TC, has a peak −∆Smax

at 17.5 K and decreases with temperature above this. The form of these
results is identical to single crystal data, and the peak temperatures are very
close to each other, but the magnitude of the molar entropy change −∆S for
our sintered sample was about 5% smaller than that for a single crystal [23].
The maximum entropy change −∆Smax for 5 T corresponds to 36% of the
maximum magnetic entropy R ln(2S + 1) with S=7/2. We discuss details
of ∆S in section 4.

3.2. Specific heat

The specific heat C for sintered EuS is shown in Fig. 3. C in zero field
has a λ-shaped temperature dependence and a sharp peak at 16.5 K. On
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Figure 1: (Upper panel) Magnetization of sintered EuS as functions of temperature in
magnetic fields of 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, and 5 T. (Lower panel) Magnetization
and inverse susceptibility of sintered EuS at 100 Oe versus temperature.
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Figure 2: Entropy change −∆S of sintered EuS as functions of temperature in magnetic
fields of 1, 2, 3, 4, and 5 T.

application of a magnetic field, the specific heat peak becomes broader and
shifts to a higher temperature with increasing magnetic field. In 5 T field,
specific heat peak is almost smeared. This temperature and magnetic field
dependence is typical for magnetic materials with second order phase tran-
sitions from ferromagnetic to paramagnetic states. The C(T,H) curves are
almost identical to those for single crystal EuS [23].

3.3. Evaluation of Entropy

The total entropy S was obtained by integrating C/T over temperatures
from 0 to T at constant magnetic field, as

S(T,H) =

∫ T

0

(
C(T,H)

T

)
H

dT, (2)

where C(T,H) is the specific heat at a constant field H. S(T,H) of sintered
EuS were calculated from the data using the above equation. Figure 4 gives
the entropy-temperature diagram (S–T ) of sintered EuS. The entropy at 0
T and just above TC is close to R ln(8). This indicates that most of the spin
entropy of the S=7/2 state is released at TC. As shown in Fig. 4, entropy
S of sintered EuS is notably reduced by magnetic field between 10 and 30
K, which corresponds to −∆S in Fig. 2. This holds promise for its use as a
magnetic refrigerant near the hydrogen liquefaction point.
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Figure 3: Specific heat C of sintered EuS as functions of temperature in magnetic fields
of 0, 1, 3, and 5 T.
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Figure 4: Entropy S(T,H) of sintered EuS as functions of temperature in magnetic fields
of 0, 1, 3, and 5 T.
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4. Discussion

Maximum entropy change −∆Smax at each field strength and relative
cooling power (RCP ) are often used in order to compare the MCE among
various materials [25, 26]. The parameter RCP is defined as |∆S| δFWHM,
where δFWHM is the full width at half maximum of −∆Smax in temperature
[25, 26]. The MCE of single crystal EuS has been compared against various
materials that have transition temperatures around 20 K using −∆Smax and
RCP in Ref. [23]. It has been noted that EuS shows good potential as a
magnetic refrigerant.

Comparing the maximum entropy change −∆Smax of our sintered EuS
to those of the polycrystal studied by Bredy and Seyfert [22] and the single
crystal EuS [23], Fig. 5 shows the values of −∆Smax per cubic centimeter.
It is important to compare using volumetric entropy change because relative
density and the MCE depend on the synthesizing process. −∆Smax does not
become saturated in a 5 T field. The −∆Smax per cubic centimeter of our
sample is about 10% smaller than that of the single crystal [23], assumed
to have a relative density of 100% for single crystal. Our sintered EuS has
about 20% larger −∆Smax than that of Bredy and Seyfert [22], whereas the
relative density of our sample is 95% compared with 89% for the Bredy and
Seyfert sample [22]. Yet the difference in −∆Smax between the two sintered
samples is much larger than the difference in relative density. We ascribe the
larger −∆Smax of our sintered sample to higher quality. MCE is known to
be affected by inhomogeneity, impurity phases, lattice defects, and so on. In
our sintered compact, only tiny amounts of oxygen and carbon were detected
by composition analysis. No information was given about impurity in the
single crystal in Ref. [23] and the polycrystal by Bredy and Seyfert [22]. It is
impractical to use a single crystal in magnetic refrigerators unless large single
crystals can be manufactured inexpensively. Sintered polycrystals represent
a feasible technology because of processability and cost. We are improving
our synthesizing process so that higher than 95% relative density sintered
compacts can be made [24].

S–T diagrams are indispensable to analyze thermal cycles. We reviewed
the S–T diagram of our sintered EuS in section 3. Here we will evaluate
and compare the Carnot cycle operating with EuS and several garnet mate-
rials and RM2 compounds with TC near 20 K. Due to the limited available
volume in high magnetic field applications, it is useful to compare cycles
in volumetric entropy. In this comparison, we use densities calculated from
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Figure 5: Maximum differential entropy −∆Smax of sintered compacts and single crystal
EuS induced by several magnetic fields. Density ρ =5.75 g/cm3 is used to convert the
single crystal data.

crystallographic data because densities of other materials are not always re-
ported in MCE measurements. The absorbed heat at 20 K per unit volume
Q20K are compared in a Carnot cycle cooling hydrogen from 25 K to its boil-
ing point of 20 K in a 5 T field. Q20K for EuS is 1.9 J/cm3. As for RM2

compounds, Q20K for ErAl2 and HoAl2 are 1.4 and 0.46 J/cm3, respectively
and that for DyNi2 is almost the same as EuS [12, 13, 14]. As for garnet ma-
terials, Q20K for GGG, (Dy0.8Gd0.2)3Al5O12 [4, 9], and Gd3(Ga0.6Fe0.4)5O12

(GGIG(40%)) [11] are 0.29, 0.51, and 0.25 J/cm3, respectively. Comparing
with these magnetic materials, EuS has higher cooling power per unit volume
than RAl2 compounds and especially several times higher than the garnet
materials. In our previous tests of Carnot cycle magnetic refrigeration, plates
of garnet materials were used for hydrogen liquefaction [4]. Because we can
manufacture EuS into plates, the current results indicate that sintered EuS
may improve the cooling power of Carnot magnetic liquefaction stage.

The AMR cycle is considered useful above 20 K, but numerical simulation
is necessary to evaluate the cooling power in an AMR cycle [27, 28, 29].
Evaluation of sintered EuS using the AMR cycle is beyond the scope of this
paper and will be discussed elsewhere.
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5. Conclusions

A sintered compact of the ferromagnetic semiconductor EuS having a
relative density larger than 95% was synthesized. The MCE is studied in
the vicinity of its ordering temperature and is shown to be close to that
of a single crystal. The S–T diagram of sintered EuS was obtained. The
high magnetic entropy change and absorbed heat per unit volume near 20
K indicate that sintered EuS is potentially an excellent magnetic refrigerant
for hydrogen liquefaction.
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