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Abstract

We study a two-loop induced radiative neutrino model at TeV scale with global U(1) symmetry, in which

we analyze dark matter and resonant leptogenesis. The model includes two kinds of dark matter candidates.

We discuss what kind of dark matter can satisfy the observed relic density as well as the current direct

detection bound, and be simultaneously compatible with the leptogenesis. We also discuss whether our

resonant leptogenesis can be differentiated from the other scenarios at TeV scale or not.
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I. INTRODUCTION

After the discovery of the Higgs boson at the LHC, the Standard Model (SM) has been estab-

lished well. However the SM still has to be extended in order to explain the existence of dark

matter (DM), the small neutrino masses, the baryon asymmetry in the universe and so on. Radia-

tive seesaw scenarios are renowned as one of the economical models which simultaneously explain

the existence of DM and the neutrino masses. Since the DM candidate is necessary to generate the

neutrino masses in this kind of models, physics between DM and neutrinos is strongly correlated in

this simple framework. For example, couplings and mass scale of DM are related with the neutrino

mass scale. In addition, since this kind of models can naturally include a new particle with TeV scale

mass, radiative seesaw scenarios have good testability in near future experiments. Along this line of

idea, a vast literature has recently arisen in Ref. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72].

On the other hand, explaining the observed baryon asymmetry in the universe via leptogenesis

is one of the challenging issues in the framework of radiative seesaw models with right-handed

neutrinos, since couplings related to the source of the leptogenesis are expected to be O(1) due

to the requirement of the neutrino masses. It causes the strong washout of the generated baryon

asymmetry. In order to avoid this problem, we have to take hierarchical couplings with highly

degenerated masses between the source and the mediated fields.1 For example, generating the

baryon asymmetry via resonant leptogenesis has been discussed based on the Ma model [73].

In this paper, we study a two-loop induced radiative neutrino model at TeV scale with a global

U(1) symmetry, in which we analyze DM and resonant leptogenesis simultaneously. In this model,

we have a scalar or a fermion DM candidate. We discuss which kind of DM candidate can satisfy

the observed relic density as well as the current direct detection bound, and can also be compatible

with leptogenesis. Since our model has two sources of leptogenesis, we also show different points

of our resonant leptogenesis from the other scenarios such as the Ma model at TeV scale [73].

This paper is organized as follows. In Sec. II, we show our model including field contents

and their global U(1) charges, Higgs potential, and neutrino masses. In Sec. III, DM properties

including relic density and current limit by direct detection experiments are discussed. In Sec. IV,

1 Such couplings can be achieved by making use of the experimental fact that one of three neutrino masses can be
negligible. To get the sufficient baryon asymmetry via thermal leptogenesis in the radiative seesaw framework,
resonant leptogenesis would be only the solution that requires the mass degeneracy between the source and the
mediated fields.
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we analyze resonant leptogenesis. Summary and conclusions are given in Sec. V.

II. THE MODEL

A. Model setup

LLi eRi FL/Rj NRj XRj Φ η χ0 χ0′ Σ

(SU(2)L, U(1)Y ) (2,−1/2) (1,−1) (1, 0) (1, 0) (1, 0) (2, 1/2) (2, 1/2) (1, 0) (1, 0) (1, 0)

U(1) −x/2 −x/2 x 3x/2 −3x/2 0 3x/2 −x/2 −5x/2 x

Accidental Z2 + + − + + + − − − +

TABLE I: Field contents and charge assignments of SU(2)L × U(1)Y × U(1), where indices i = 1 − 3 and

j = 1, 2, (3) represent the generation.

As shown in Tab. I, we introduce two (or three) gauge singlet vector-like fermions FL/R, and

gauge singlet Majorana fermions NR, and XR as new fermions. The number of these particles

should be more than two in order to obtain at least two non-zero neutrino mass eigenvalues. We

also introduce an inert SU(2)L doublet scalar η, two neutral inert singlet scalars (χ0, χ0′), and a

neutral singlet scalar Σ as new scalars. We assume that only the Higgs doublet field in the SM Φ

and the new singlet scalar Σ have vacuum expectation values (VEVs), which are symbolized by

〈Φ〉 = v/
√

2 and 〈Σ〉 = v′/
√

2 respectively.2 We impose a global U(1) symmetry, under which Φ

does not have a charge in order not to couple to the Goldstone boson (GB) [37]. The global U(1)

charge x 6= 0 is in principle an arbitrary, and the field assignments play a crucial role in realizing

our neutrino masses at two-loop level. If the U(1) charge x is fixed to be x = 2, we can identify

this U(1) symmetry as a global B −L symmetry. Hereafter we assume this global U(1) symmetry

to be a kind of U(1)B−L symmetry. Note that while the new fermions are added as vector-like

and do not contribute to anomalies, this model is anomalous since the three chiral fermions with

B − L = −1 corresponding to the right-handed neutrinos are not introduced. If one would like

to have an anomaly free model, the anomalies can be cancelled by introducing some pairs of new

heavy vector-like fermions [74, 75]. However this is beyond the scope of this paper. This model has

an accidental Z2 symmetry which can assure the DM stability, and the accidental Z2 assignments

2 The scale of v′ should be larger than v′ ∼ 107 GeV for successful leptogenesis as we will see later. Otherwise
the annihilation channel N1N1, X1X1 → GG whose reaction rate is determined by v′ does not satisfy the out-of-
equilibrium condition at T ∼ O(10) TeV where T is the temperature of the universe. Thus the baryon asymmetry
would be washed out due to this process.
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are shown in Tab. I.

The renormalizable Lagrangian for Yukawa sector, mass term, and scalar potential under the

charge assignments are given by

LY = −y`L̄LΦeR − yηL̄Lη†FR − yNχF̄LNRχ
0 − yNχ′F̄LXRχ

0′†

−y′Nχ′F̄ cRNRχ
0′ − y′NχF̄ cRXRχ

0† −MNXN̄
c
RXR −MF F̄LFR + H.c., (II.1)

V = m2
Φ|Φ|2 +m2

η|η|2 +m2
χ|χ0|2 +m2

χ′ |χ0′|2 +m2
Σ|Σ|2

+

[
λ(Φ†η)χ0Σ† + λ′(Φ†η)χ0′Σ +

λ′′

2
(χ0†χ0′)Σ†

2
+
µχ
2

(χ0)2Σ + H.c.

]
+
λΦ

4
|Φ|4 +

λη
4
|η|4 +

λχ
4
|χ0|4 +

λχ′

4
|χ0′|4 +

λΣ

4
|Σ|4 + λΦη|Φ|2|η|2 + λ′Φη(Φ

†η)(η†Φ)

+λΦχ|Φ|2|χ0|2 + λΦχ′ |Φ|2|χ0′|2 + λΦΣ|Φ|2|Σ|2 + ληχ|η|2|χ0|2 + ληχ′ |η|2|χ0′|2 + ληΣ|η|2|Σ|2

+λχχ′ |χ0|2|χ0′|2 + λχΣ|χ0|2|Σ|2 + λχ′Σ|χ0′|2|Σ|2, (II.2)

where the first term in LY generates the SM charged lepton masses, and we assume the couplings λ,

λ′, λ′′ and µχ in the scalar potential to be real for simplicity. As we will see below, these couplings

become important for neutrino mass generation.

After the symmetry breaking, the scalar fields can be parametrized by

Φ =

 w+

1√
2
(v + φ+ iz)

 , η =

 η+

1√
2
(ηR + iηI)

 , Σ =
v′ + σ√

2
eiG/v

′
. (II.3)

where v ≈ 246 GeV is the VEV of the SM Higgs doublet, and w± and z are respectively the GBs

which are absorbed by the longitudinal components of the W and Z bosons. Inserting the tadpole

conditions, the resulting mass matrix of the CP even scalar (φ, σ) is given by

m2(φ, σ) =

 λΦv
2 2λΦΣvv

′

2λΦΣvv
′ λΣv

′2

=

 cosα sinα

− sinα cosα

 m2
h 0

0 m2
H

 cosα − sinα

sinα cosα

 , (II.4)

where h is the SM-like Higgs boson and H is an additional CP-even Higgs mass eigenstate. The

gauge eigenstates φ and σ are rewritten in terms of the mass eigenstates h and H as φ

σ

 =

 cosα sinα

− sinα cosα

 h

H

 , with sin 2α =
4λΦΣvv

′

m2
H −m2

h

. (II.5)

The GB G in Eq. (II.3) appears due to the spontaneous symmetry breaking of the global U(1)

symmetry. The couplings between the GB and the particles with non-trivial global U(1) charges are

given by Jµ∂µG/v
′ through the global U(1) current Jµ. As one can see, the coupling is suppressed

by the VEV v′.
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The mass matrices of the CP even and CP odd states of the inert scalar bosons (η, χ0, χ0′)R/I

are respectively given by

M2
R =


m2
η +

(λΦη+λ′Φη)v2+ληΣv
′2

2 λvv′/2 λ′vv′/2

λvv′/2 m2
χ +

√
2µχv′+λΦχv

2+λχΣv
′2

2 λ′′v′2/4

λ′vv′/2 λ′′v′2/4 m2
χ′ +

λΦχ′v
2+λχ′Σv

′2

2

 , (II.6)

M2
I =


m2
η +

(λΦη+λ′Φη)v2+ληΣv
′2

2 −λvv′/2 −λ′vv′/2

−λvv′/2 m2
χ +

−
√

2µχv′+λΦχv
2+λχΣv

′2

2 −λ′′v′2/4

−λ′vv′/2 −λ′′v′2/4 m2
χ′ +

λΦχ′v
2+λχ′Σv

′2

2

 , (II.7)

where we define diagonal mass matrices (M2
d )R/I ≡ (m2

R1/I1
,m2

R2/I2
,m2

R3/I3
), and their mixing

matrices O
R/I
id , so that they satisfy M2

R/I ≡ O
R/I
id (M2

d )R/I(O
R/I
dj )T . Depending on the couplings,

the lightest CP even or CP odd mass eigenstate with the mass mR1 or mI1 can be a DM candidate.3

The non-standard couplings between DM and the GB induced by the non-self-conjugate couplings

λ, λ′, λ′′ and µχ may be relevant to compute the DM relic density. This coupling can be written

down as

VDM-DM-G-G = −
(
λ

4

v

v′
OR11O

R
21 +

λ′

4

v

v′
OR11O

R
31 +

λ′′

2
OR21O

R
31 +

µχ

4
√

2v′
(OR21)2

)
DM2G2, (II.8)

with the mixing matrix OR. In addition, the couplings between the CP even Higgs bosons and

the GB are also relevant to compute the DM relic density. These couplings come from the kinetic

term of Σ and can be written as

L ⊃
[
− sinαh+ cosαH

v′
+

(− sinαh+ cosαH)2

2v′2

]
(∂µG) (∂µG) . (II.9)

Finally the mass eigenvalue of the charged inert scalar η+ is given by

m2
η± = m2

η +
λΦηv

2 + ληΣv
′2

2
. (II.10)

In this model, the typical mass scale of these new exotic particles is assumed to be TeV scale. On

the other hand, we should take v′ ∼ 107 GeV for successful leptogenesis. Therefore a certain degree

of tuning among the relevant couplings cannot be avoided. More specifically, demanding that the

diagonal elements of the mass matrix Eq. (II.4), (II.6) and (II.7) are TeV scale and off-diagonal

elements are 10 GeV scale to obtain small mixings of the order of O
R/I
ij ∼ 10−2 (i 6= j), the order

of magnitude of the couplings should roughly be λ′′ ∼ 10−12 λ, λ′, λΦΣ ∼ 10−7 and ληΣ, λχΣ,

3 As we will discuss later, the CP even state is identified as DM.
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λχ′Σ, λΣ ∼ 10−8. Although this point may be a disadvantage of this model, it would be worth

discussing such a new concrete model with a global U(1) symmetry as an example model since all

the phenomenology of the neutrino masses, the existence of DM and the baryon asymmetry of the

universe are closely correlated.

B. Neutrino mass matrix

Due to renormalizability and the strong restriction of interactions via the global U(1) symmetry

in this model, neutrino masses are not generated neither tree level nor one-loop level. If the vector

like fermion F has a Majorana mass term, neutrino masses would be generated at one-loop level

(for example see Ref. [1]), however this is not our case. As a result, neutrino masses are induced at

two-loop level, and we have three types of diagrams as shown in Fig. 1. The formula of the total

neutrino mass matrix can be given by

(mν)αβ = −
∑
i,j,k

∑
m,n

MFiMFk

4MNXj

(yη)αi

[
(yNχ)ij

(
yNχ′

)
kj

+
(
yNχ′

)
ij

(yNχ)kj

]
(yη)βk

×
[
I

(ijk)
1(mn) + I

(ijk)
2R(mn) + I

(ijk)
3R(mn)

]
−
∑
i,j,k

∑
m,n

MFiMFk

4MNXj

(yη)αi

[(
y′
∗
Nχ

)
ij

(
y′
∗
Nχ′
)
kj

+
(
y′
∗
Nχ′
)
ij

(
y′
∗
Nχ

)
kj

]
(yη)βk

×
[
I

(ijk)
2L(mn) + I

(ijk)
3L(mn)

]
, (II.11)

where I
(ijk)
1(mn), a pair of I

(ijk)
2R(mn) and I

(ijk)
2L(mn), a pair of I

(ijk)
3R(mn) and I

(ijk)
3L(mn) are the dimensionless

loop functions which come from the left, center and right diagrams in Fig. 1 respectively. These

loop functions are defined by

I
(ijk)
1(mn) = ORmRn1213 I

(ijk)
1(RmRn) −O

RmIn
1213 I

(ijk)
1(RmIn) +OImRn1213 I

(ijk)
1(ImRn) −O

ImIn
1213 I

(ijk)
1(ImIn), (II.12)

I
(ijk)
2R(mn) = ORmRn1312 I

(ijk)
2R(RmRn) +ORmIn1312 I

(ijk)
2R(RmIn) −O

ImRn
1312 I

(ijk)
2R(ImRn) −O

ImIn
1312 I

(ijk)
2R(ImIn), (II.13)

I
(ijk)
2L(mn) = ORmRn1213 I

(ijk)
2L(RmRn) −O

RmIn
1213 I

(ijk)
2L(RmIn) +OImRn1213 I

(ijk)
2L(ImRn) −O

ImIn
1213 I

(ijk)
2L(ImIn), (II.14)

I
(ijk)
3R(mn) = ORmRn1123 I

(ijk)
3R(RmRn) +ORmIn1123 I

(ijk)
3R(RmIn) −O

ImRn
1123 I

(ijk)
3R(ImRn) −O

ImIn
1123 I

(ijk)
3R(ImIn), (II.15)

I
(ijk)
3L(mn) = ORmRn1123 I

(ijk)
3L(RmRn) +ORmIn1123 I

(ijk)
3L(RmIn) −O

ImRn
1123 I

(ijk)
3L(ImRn) −O

ImIn
1123 I

(ijk)
3L(ImIn), (II.16)
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FIG. 1: Radiative generation of neutrino masses.

where ORmInabcd = ORamO
R
bmO

I
cnO

I
dn and

I
(ijk)
1(RmIn) =

1

(4π)4

[
I

(
m2
Rm

M2
Fi

)
I

(
m2
In

M2
Fk

)
+ I

(
m2
Rm

M2
Fk

)
I

(
m2
In

M2
Fi

)]
, (II.17)

I
(ijk)
2R(RmIn) = M2

NXj

∫
d4`

(2π)4

∫
d4q

(2π)4

1

`2 −M2
Fi

1

(`− q)2 −M2
NXj

1

q2 −M2
Fk

1

`2 −m2
Rm

1

q2 −m2
In

,

(II.18)

I
(ijk)
2L(RmIn) = −

M2
NXj

4MFiMFk

∫
d4`

(2π)4

∫
d4q

(2π)4

` · q
`2 −M2

Fi

1

(`− q)2 −M2
NXj

1

q2 −M2
Fk

1

`2 −m2
Rm

1

q2 −m2
In

,

(II.19)

I
(ijk)
3R(RmIn) = M2

NXj

∫
d4`

(2π)4

∫
d4q

(2π)4

1

`2 −M2
Fi

1

q2 −M2
NXj

1

`2 −M2
Fk

1

`2 −m2
Rm

1

(`− q)2 −m2
In

,

(II.20)

I
(ijk)
3L(RmIn) = −

M2
NXj

MFiMFk

∫
d4`

(2π)4

∫
d4q

(2π)4

`2

`2 −M2
Fi

1

q2 −M2
NXj

1

`2 −M2
Fk

1

`2 −m2
Rm

1

(`− q)2 −m2
In

,

(II.21)

with I(x) = x log x/(1−x). Note that in the derivation of the above formula, the CP phases except

the Yukawa couplings are neglected. The contribution of the left diagram can be understood as

linear seesaw like formula by splitting the diagram into two Dirac masses induced at one-loop level.

For the center and right diagrams, there are two kinds of contributions coming from right and left

chiralities of the internal fermions. In other words, these two contributions to the neutrino masses

come from the masses or momenta of the F propagators in the loop respectively. The neutrino

mass generation can be understood as follows. Due to the global U(1) symmetry breaking by the

VEV of Σ, the mixing between η, χ0 and χ0′ occurs. Then since the global U(1) symmetry is

correlated with the lepton number conservation, the U(1) symmetry breaking implies breaking of

the lepton number. Thus the neutrino Majorana mass term is generated after the U(1) symmetry

breaking.

The neutrino mass matrix computed above can be diagonalized by the Pontecorvo-Maki-
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FIG. 2: Numerical calculation of the loop functions where the other masses are fixed as MFi
= MFk

= 1.5

TeV and mRm
= mIn = 1.2 TeV which are typical sample points to discuss DM and leptogenesis as we will

see below.

Nakagawa-Sakata matrix UPMNS [76]; UTPMNS(mν)UPMNS = diag(mν1 ,mν2 ,mν3). The neutrino

masses and their mixing angles are measured by experiments [77], and these values depend on

normal or inverted mass hierarchy. In our model, the order of magnitude of the neutrino masses

can roughly be estimated as mν ∼ y2
ηY

2O4
mixIloopv

′ where Y is the dominant Yukawa coupling in

yNχ, yNχ′ , y
′
Nχ, y′Nχ′ , Omix represents the mixing matrix of OR, OI , and Iloop is the loop function.

Thus one can find that the order of y2
ηY

2 ∼ 10−8 is required to obtain the experimental value

mν ∼ 0.1 eV with the typical assumed mixing angle Omix ∼ 10−2, Iloop ∼ 0.1 and v′ ∼ 107 GeV.

Note that the neutrino mass matrix should be proportional to the VEV v′ since v′ is the origin of

the lepton number violation.

We numerically compute the loop functions with the public code SecDec [78] in order to evaluate

the neutrino masses more precisely in this model. Here one should note that the loop functions

I
(ijk)
3R(RmIn) and I

(ijk)
3L(RAIB) include a divergence. This is obvious from the definition of the loop

functions in Eq. (II.20) and (II.21). However the divergent terms eventually cancel out with

each other as follows. The loop functions can be regularized with dimensional regularization and

expanded around dimension d = 4 which can be done within SecDec. With a brief evaluation, one

can see that the terms including divergences are independent on at least either of m or n which is the

index of the scalar mass eigenvalues. Thus the loop function including a divergence I
(ijk)UV
3R/L(RmIn) can

be written as I
(ijk)UV
3R/L(RmIn) = I

(ijk)UV 1
3R/L +I

(ijk)UV 2
3R/L(Rm) +I

(ijk)UV 3
3R/L(In) . Taking into account this fact and the

orthogonality of the mixing matrices OR and OI which means
∑

mO
R
imO

R
jm =

∑
mO

I
imO

I
jm = δij ,
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one can see that the first two terms I
(ijk)UV 1
3R/L and I

(ijk)UV 2
3R/L(Rm) vanish after taking the summation

over n. Moreover the remaining third divergent term also cancels after all the relevant terms are

summed in Eq. (II.15) and (II.16) as∑
m,n

I
(ijk)UV
3R/L(mn) =

∑
n

[
OR2nO

R
3nI

(ijk)UV 3
3R/L(Rn) +OI2nO

I
3nI

(ijk)UV 3
3R/L(In) −O

R
2nO

R
3nI

(ijk)UV 3
3R/L(Rn) −O

I
2nO

I
3nI

(ijk)UV 3
3R/L(In)

]
= 0. (II.22)

Thus the divergent terms do not contribute to the neutrino masses. The numerical value of the

loop functions are almost fixed by the maximum mass in MFi , MNXj , MFk , mRm and mIn , and

the result obtained by using SecDec is shown in Fig. 2.4 The numerical calculation shows that the

loop function I
(ijk)
3L(RmIn) coming from the right diagram in Fig. 1 gives a dominant contribution to

the neutrino masses.

C. LFV processes

We should take into account lepton flavor violations (LFVs) such as µ → eγ, which typically

provide strong constraints on radiative neutrino mass models. In our case, such processes arise

through only the yη term, and analyses are very similar with the case of the Ma model [79], and

the Yukawa couplings yNχ, yNχ′ , y
′
Nχ, y′Nχ′ are not constrained by the LFV processes at least at

one-loop level. Among the LFV processes, we focus on the one-loop induced µ→ eγ that gives the

most stringent constraint on yη and the mediating particles F and η+. The resulting formula for

µ→ eγ and its experimental bound [80] are given by

Br(µ→ eγ) =
3αem

64πG2
Fm

4
η±

∣∣∣∣∣
3∑
i=1

(y∗η)i1(yη)i2F2(ξi)

∣∣∣∣∣
2

≤ 5.7× 10−13, (II.23)

with F2(ξi) =
1− 6ξi + 2ξ3

i + 3ξ2
i − 6ξ2

i ln ξi
6(1− ξi)4

, (II.24)

where GF = 1.17× 10−5 GeV−2 is the Fermi constant, ξi = M2
Fi
/m2

η± and αem = e2/(4π) ≈ 1/137

is the electromagnetic fine structure constant. The simplest way to avoid this constraint is to

assume yη to be diagonal, since its formula is proportional to the off-diagonal elements of yη as

one can see in Eq. (II.23). In this case we expect the neutrino mixings can be derived through

the other Yukawa couplings yNχ, yNχ′ , y
′
Nχ, y′Nχ′ . Otherwise the parameters are constrained as

yη . 0.01 and mη± & 200 GeV. For instance, with the values yη = 0.01, mη± = 200 GeV and

F2(ξi) = 1/6, the maximum branching ratio is found to be Br(µ→ eγ) ≈ 1.4× 10−13.

4 At most 1% error is included in the numerical calculation.
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Since we take yη . O(0.01) for the LFV constraint and O(1) TeV of the new particle masses

in the loop, the other Yukawa couplings yNχ, yNχ′ , y
′
Nχ, y′Nχ′ should be roughly larger than 10−2

in order to obtain the scale of the observed neutrino mass mν ∼ 0.1 eV assuming Omix ∼ 10−2 as

discussed in the previous section.

D. Goldstone Boson

Here we mention some issues on the GB. Due to the direct consequence of our global U(1)

symmetry, the GB remains as a physical state, which could be constrained by some experiments. In

our case, the constraint comes from the invisible decay of the SM Higgs boson, and its decay width

can be computed with the coupling given in Eq. (II.9) to be Γ(h → GG) = m3
h sin2 α/(32πv′2).

This decay width should be smaller than 1.2 MeV at 95% confidential level [81], and thus we get

the constraint (
sinα

0.1

)(
1 TeV

v′

)
. 2.5. (II.25)

Moreover, sinα itself is constrained by the latest LHC searches by ATLAS and CMS to be (con-

servatively) sinα . 0.2 [82]. Therefore the above constraint is translated to the constraint on the

VEV as v′ & 800 GeV. However since we take v′ ∼ 107 GeV for successful leptogenesis, this bound

is easily satisfied in our case.

Another bound comes from the Supernova 1987A observations and simulations, which tell us

the following relation [83]:

|λΦΣ| . 0.011
( mH

500 MeV

)2
. (II.26)

This bound also does not affect to our model seriously, since both mH and λΦΣ are taken to be

free values of physical parameters.

III. DARK MATTER

We have two DM candidates which are the lightest fermion F1 and the lightest mass eigenstate

of the scalars (η, χ0, χ
′
0)R. These DM candidates can be stabilized by the accidental Z2 symmetry

but not a remnant symmetry of the global U(1) symmetry. This accidental Z2 symmetry could be

understood as a kind of the accidental symmetry which has been discussed for gauged U(1)B−L in

Ref. [84].
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FIG. 3: Diagrams of the DM annihilations where DM is identified as the lightest scalar mass eigenstate.

For the fermionic DM candidate F1, the relevant coupling for DM annihilations is only the

Yukawa coupling yη, and the required strength of the Yukawa coupling is O(1) for the DM mass

above the electroweak scale in order to accommodate the observed DM relic density. On the other

hand, small coupling yη . O(0.01) is needed to evade the LFV constraint as has been discussed in

the previous section. Thus the fermionic DM candidate F1 conflicts with the LFV constraint.5

Therefore we identify the lightest mass eigenstate of the scalars as a DM candidate. The mixing

angles among (η, χ0, χ
′
0)R are induced by the scalar couplings λ, λ′, λ′′, and the magnitude of the

mixing angles should roughly be Omix ∼ 10−2 in order to reproduce the measured neutrino masses

without conflict with the µ → eγ process as discussed in the previous section. This order of the

magnitude of the mixing angles can be achieved with the parameter setting given in Sec. II A.

Since the full scalar potential given by Eq. (II.2) is rather complicated, we take into account only

λ, λ′, λ′′, λΦ, λΦΣ, λΣ and λΦη for simplicity. Since the required order of the magnitude of the

couplings λ, λ′, λ′′, λΦΣ, λΣ is very small, they would not affect to the computation of the DM relic

density and detection probability. However the coupling λΦΣ is important to induce the mixing

angle sinα, and λΦη is responsible for direct detection of DM since this coupling generates the

dominant contribution to the elastic scattering with nuclei mediated by the SM-like Higgs boson

5 Although the LFV constraint may be satisfied by considering a diagonal Yukawa matrix or specific flavor structure,
we do not discuss this case.
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FIG. 4: Numerical results in the (λΦη, mDM) plane for (η0, χ0, χ0′)R non-degenerate case (left plot) and

degenerate case (right plot), where the parameters are fixed to be mH = 2 TeV and sinα = 0.1.

h.

The diagrams of the DM annihilations are shown in Fig. 3. The DM couplings in the scalar

potential are basically weak in our parameter setting. However since the scalar DM candidate

includes the SU(2)L doublet inert scalar ηR, DM can annihilate into the gauge bosons via the

gauge interactions in order to satisfy the observed DM relic density if the inert doublet scalar

component of the DM candidate is sufficiently large. This can be achieved with a smaller (M2
R)11

compared to (M2
R)22 and (M2

R)33 in Eq. (II.6), and we consider such a case. In this case, the

annihilation channels in the first line in Fig. 3 become dominant processes to determine the DM

relic density.

The DM relic density can be evaluated by using micrOMEGAs [85] and the results are shown

in the (λΦη, mDM) plane in Fig. 4 where the heavier CP-even Higgs boson mass is taken to be

mH = 2 TeV and the mixing angle is sinα = 0.1 as an example. Here we take the negative

values of the scalar couplings λ, λ′, λ′′. If the scalar couplings are positive, the lightest scalar in

the imaginary components becomes DM candidate instead of the real components. The left plot

shows the case that the masses of the other two heavier mass eigenstates are twice of the DM mass

(lightest state), and the right plot shows the case that the heavier states are degenerate with the

DM state. The red colored band represents the region satisfying the observed DM relic density

by PLANCK within 3σ confidence level [86]. The blue region is excluded by the direct detection

experiment LUX [87], and the green region is expected to be tested by the future direct detection

experiment XENON1T [88]. From these plots, one can see that when the lightest DM state is non-

degenerate with the other heavier states, DM is close to the inert doublet DM (left plot), because

12



there is the mass threshold mDM ≈ 530 GeV for the left plot in Fig. 4, which is the same property

of the inert doublet DM [89]. As well-known, the inert doublet scalar DM candidate can satisfy the

observed relic density in the mass ranges of mDM ∼ 60 GeV and mDM & 530 GeV. On the other

hand, the mass threshold can be lower as mDM ∼ 250 GeV if χ0 and χ0′ are degenerate with DM as

one can see from the right plot in Fig. 4. This is because the interactions of the singlets χ0 and χ0′

are described by the scalar potential, and extremely limited in the case of the simplified potential.

There is a small resonance feature at mDM ∼ 1 TeV due to the channel DMDM→ H∗ → SMSM,

however the resonance is not strong because of the small mixing angle sinα = 0.1.

IV. RESONANT LEPTOGENESIS

We consider the thermal leptogenesis in this model [90]. The lepton number asymmetry is

expected to be generated through the out-of-equilibrium decay of the lightest Majorana fermions

N1 and X1, if we impose the lepton number of F as −1. Although the Yukawa coupling yη is

required to be smaller than O(0.01) from the LFV constraint, this is large enough that F and

the SM leptons are in the thermal equilibrium. Thus, the generated lepton number asymmetry in

the F sector can instantaneously be converted into the SM leptons, and then the baryon number

asymmetry can be generated through sphaleron process.

After the global U(1) symmetry breaking, the Yukawa interactions for Majorana fermions are

written as

L ⊃ F̄ c(YNiPL + Y ′NiPR)N ′iχ
∗ + F̄ c(YXiPL + Y ′XiPR)X ′iχ

∗

+ F̄ c(YNiPL + Y ′NiPR)N ′iχ
′ + F̄ c(YXiPL + Y ′XiPR)X ′iχ

′

+ F̄ (Y ′NiPL + YNiPR)N ′iχ
′∗ + F̄ (Y ′XiPL + YXiPR)X ′iχ

′∗

+ F̄ (Y ′NiPL + YNiPR)N ′iχ+ F̄ (Y ′XiPL + YXiPR)X ′iχ,

(IV.1)

where N ′i and X ′i are expressed as the mass eigenstates of each Majorana fermion. Hereafter, we

abbreviate them to Ni and Xi for convenience. The Yukawa couplings are redefined as

YNiχ = y∗Niχ cos θi, Y
′
Niχ = y′Niχ sin θi,

YXiχ = −y∗Niχ sin θi, Y
′
Xiχ = y′Xiχ cos θi,

YNiχ′ = y∗Niχ′ sin θi, Y
′
Niχ′ = y′Niχ′ cos θi,

YXiχ′ = y∗Xiχ′ cos θi, Y
′
Xiχ′ = −y′Xiχ′ sin θi,

(IV.2)

where θi is the mixing angle of the i-th generation.
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FIG. 5: Lepton number violating decay and scattering processes for leptogenesis where ∆ and ∆′ represent

the new scalar singlets, χ0 or χ0′ and Ii (i = 1− 2) is Ni or Xi

.

In this model, we consider that the TeV scale masses of Majorana fermions and v′ ∼ 107 GeV

so that the annihilation channels N1N1, X1X1 → GG are decoupled from the thermal bath before

the temperature of the universe T ∼ 10 TeV. Otherwise the generated lepton asymmetry would

be washed out by these lepton number violating processes.

Although the TeV scale of the masses seems to be too small to realize the sufficient CP asymme-

try associated with the decay processes for the generation of the required baryon number asymme-

try, the generated baryon asymmetry can be enhanced by the resonance effect as known in resonant

leptogenesis [91, 92, 93, 94, 95, 96, 97, 98, 99]. We define the parameter ε as the amplitude of the

CP asymmetry. The dominant contribution for the CP asymmetry comes from the interference

between the tree diagram and the one-loop self-energy diagram as depicted in the upper line in

Fig. 5 and its formula is given by

ε ∝
(M2

I1
−M2

I2
)MI2ΓI2

(M2
I1
−M2

I2
)2 +M2

I2
Γ2
I2

, (IV.3)

where MIi and ΓIi are the mass and the decay rate of Ii (I = N or X) respectively. From this

equation, the maximum enhancement is caused when M2
I1
−M2

I2
= MI2ΓI2 . In this model, we can

take a larger ΓI2 compared to that of the second lightest right-handed neutrino in the canonical

resonant leptogenesis at TeV scale, since the Yukawa couplings can be large without conflicting

with the observed neutrino masses due to the loop suppression. Thus, the required magnitude of

the degeneracy of the Majorana fermion mass can be quite milder to generate the sufficient baryon

number asymmetry than those in the usual resonant leptogenesis at TeV scale [73, 100]. One may

think that the baryon asymmetry should be correlated with the VEV of the singlet scalar Σ since
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the B − L breaking occurs with only v′. Indeed this B − L breaking effect is included in the

total mass matrix of Ni, Xi and the active neutrinos νi. For example, the B − L violating Dirac

mass term between νi and Xj is induced at one-loop level as can be seen from the left diagram

in Fig. 1. Thus the effect of the B − L breaking is included in the masses of Ni and Xi, and one

can understand that the baryon asymmetry is generated through the breaking effect in the mass

matrix.

We need to take into account washout effects to evaluate the baryon number asymmetry. The

generated lepton number asymmetry could be washed out through the lepton number violating

2-2 scattering processes and the inverse decay of Ii. However, if the relevant Yukawa couplings are

small enough, these processes can be nearly decoupled before the temperature of the thermal plasma

decreases to T <∼ MI1 . Thus, the washout of the generated lepton number asymmetry is expected

to be suppressed sufficiently in this period. In order to examine this quantitatively, we numerically

solve the coupled Boltzmann equations for the number density of N1, X1 and the lepton number

asymmetry. We introduce the number density of N1, X1 and the lepton number asymmetry in

the comoving volume as YN1 = nN1/s, YX1 = nX1/s and YF = (nF − nF̄ )/s respectively, by using

the entropy density s and the number densities which are expressed by nN1 , nX1 , nF and nF̄ .

Their equilibrium values are given by Y eq
I1

= 45
2π4g∗

z2K2(z), where z is defined by z = MI1/T , g∗

is the number of relativistic degrees of freedom and K2(z) is the modified Bessel function of the

second kind with the order 2. Since we assume YF is immediately translated into the SM leptons

as we mentioned above, we use the relation B = 8
23(B − L) which is derived from the chemical

equilibrium condition in this model, and the baryon number asymmetry YB in the present Universe

is estimated as YB = − 8
23YF (zEW), where zEW = MI1/TEW is related to the sphaleron decoupling

temperature TEW.

The coupled Boltzmann equations for the leptogenesis in our model are written as [101]

dYN1

dz
= − z

sH

(
YN1

Y eq
N1

− 1

)
γDN1

, (IV.4)

dYX1

dz
= − z

sH

(
YX1

Y eq
X1

− 1

)
γDX1

, (IV.5)

dYF
dz

=
z

sH

{
εN

(
YN1

Y eq
N1

− 1

)
γDN1

+ εX

(
YX1

Y eq
X1

− 1

)
γDX1

−2YF
Y eq
F

[∑
i

γNi + γXi
4

+
∑
∆,∆′

(γF∆F∆′ + γFF∆∆′)

]}
, (IV.6)
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where γDIi is defined by

γDIi =
M2
Ii
T

π2
K1

(
MIi

T

)
ΓDIi , (IV.7)

with the modified Bessel function of the second kind K1(z) with the order 1, γabij is the reaction

density for the scattering process ab↔ ij which is given by

γabij =
T

64π4

∫ ∞
smin

ds σ̂abij(s)
√
sK1

(√
s

T

)
, (IV.8)

with smin = max
[
(ma +mb)

2, (mi +mj)
2
]

and the reduced cross section σ̂abij(s). There are two

kinds of the processes F∆ ↔ F̄∆′ and FF ↔ ∆∆′ for the scattering processes as depicted in

the bottom line of Fig. 5. The reduced cross section in our model is rather complicated since

a lot of particles exist, but can be straightforwardly computed from the Lagrangian as same as

Ref. [102, 103]. We solve the coupled Boltzmann equations numerically.

The decay of the lightest Majorana fermions should be out of thermal equilibrium so that

the lepton number asymmetry can be generated through their decays. If we express the Hubble

parameter as H, this condition is given by H > ΓI1 at T ∼ MI1 . Since we assume that each of

the Majorana fermion mass is MI1 = 5 TeV, MI2 = MI1(1 + δM) and MI3 = 6 TeV, the Yukawa

couplings of N1 and X1 should be O(10−8). On the other hand, the rest of the Yukawa couplings

should be O(10−2) in order to generate the appropriate neutrino masses. Here we set Yukawa

couplings in Eq. (IV.2) to be yI1χ = 1.5× 10−8 and yI2,3χ = 10−2 and θi = π
4 . We show the result

for δM = 10−3 in Fig. 6 as an example, and also the generated baryon number asymmetry for each

value of δM and MI1 in Fig. 7. Through this analysis, the masses of F , χ and χ′ are fixed to be

MF = 1.5 TeV and Mχ = Mχ′ = 1.2 TeV respectively. These parameter set satisfies the condition

for the DM phenomenology we discussed in the previous section.

From the left panel in Fig. 6, we can see that the required baryon number asymmetry YB can

be obtained in this model. In the right panel, we plot the behavior of the relevant reaction rate

for each process. This panel shows that the reaction rates of the inverse decay process and the

lepton number-violating process induced by the s-channel Ii exchange are quite large for a long

time. Thus the baryon number asymmetry cannot be generated quickly until rather a late period.

After T ∼MI1 , the generated baryon number asymmetry gradually increases and then the required

value can be realized. This is because these processes are suppressed by the Boltzmann factor.

We show the relation between the generated baryon number asymmetry and the mass degen-

eracy of Majorana fermions in Fig. 7. Notice here that the generated baryon number asymmetry

is always smaller than the required value in the case MI1 ∼ 3 TeV. In this model, we can realize
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the large Yukawa couplings to explain the small neutrino mass due to the two-loop effects and

then ΓI2 becomes larger compared to tree and one-loop neutrino mass models. Thus, the required

mass degeneracy can be milder. However, the large Yukawa couplings cause the large washout

effects. Since the Boltzmann suppression does not work well in the case of small MI1 , the large

washout effects remain until quite a late period compared to the heavier cases. Thus the most of

the generated baryon number asymmetry is washed out. We find that the observed baryon number

asymmetry can be generated when the mass degeneracy is δM = (10−3 − 10−2) for MI1 = 4 − 5

TeV, as can be seen in Fig. 7. As we mentioned above, the magnitude of this mass degeneracy is
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quite milder than the canonical seesaw case for each value of MI1 due to the loop effects.6

V. CONCLUSIONS

We have studied a two-loop induced radiative neutrino model at TeV scale with a U(1) global

symmetry, in which two types of DM candidates (the lightest one of fermion or scalar) can be

involved. The loop-induced neutrino masses have been evaluated appropriately and phenomenology

of DM has also been discussed. The fermionic DM candidate is disfavored if we reproduce the

measured neutrino masses and take into account the constraint from LFV with the same order of

all the elements of yη. Then we have found that the scalar can be a good DM candidate which

satisfies the observed relic density and the DM direct detection bound. We also found that the

direct detection rate of DM is controlled by the coupling λΦη and some parameter region can be

testable by the next future direct detection experiment XENON1T.

We have discussed baryon number asymmetry through the resonant leptogenesis with multi-

sources scenario, in which the large Yukawa couplings (that is required to compensate the tiny

neutrino masses at two-loop level) make the large CP asymmetry, but also cause the large washout

effects. We have shown that the required baryon number asymmetry can be obtained for the

parameter region i.e., δM = (10−3 − 10−2) for MI1 = 4− 5 TeV, where I ≡ N or X. In this case,

the lightest Majorana fermions should satisfy MI1 & 3 TeV to suppress the washout effects by the

Boltzmann factor. For larger MI1 , the required magnitude of the mass degeneracy is rather milder

than the canonical seesaw case even at TeV scale models.
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