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On Three Imaginary-time Path Integral Formulas

with Magnetic Fields

in Relativistic Quantum Mechanics ∗

By

Takashi Ichinose ∗∗

Abstract

Three magnetic relativistic Schrödinger operators are considered, corresponding to the clas-

sical relativistic Hamiltonian symbol with both magnetic vector and electric scalar potentials.

Path integral representations for the solutions of their respective imaginary-time relativistic

Schrödinger equations, i.e. heat equations are given in two ways. The one is by means of

the probability path space measure coming from the Lévy process concerned, and the other is

through time-sliced approximation with Chernoff’s theorem.
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4.2.2. Time-sliced approximation for Schrödinger equation in real and imaginary time
— convergence in norm and pointwise

References

§ 1. Introduction

Path integral is a marvelous idea invented by R. P. Feynman ([F-48], [F-05], [FH-

65]. cf. [D-33,35], [D-45]) to give a practically very useful and now figurative sublimed

way to write down the solution of the real-time Schrödinger equation in nonrelativistic

quantum mechanics.

In this paper, we deal with the problem in relativistic quantum mechanics to con-

sider the relativistic Schrödinger equation in imaginary time. In the literature there

are 3 kinds of relativistic Schrödinger operators for a spinless particle of mass m ≥ 0

corresponding to

(1.1)
√

(ξ −A(x))2 +m2 + V (x) , (ξ, x) ∈ Rd ×Rd,

under magnetic vector potential A(x) and electric scalar potential V (x), depending on

how to quantize the kinetic energy term
√
(ξ −A(x))2 +m2. This H is used in the

situation where we may ignore QFT effect like particles creation and annihilation, but

should take relativistic effect into consideration.

We give three path integral representation formulas for the solutions for their respec-

tive imaginary-time relativistic Schrödinger equations, i.e. heat equations, by means of

the probability path space measure coming from Lévy process concerned. We also dis-

cuss the path integral by time-sliced approximation. It is well-known that this method

also can plainly give a meaning for Schrödinger equation by the Trotter–Kato product

formula, if the Schrödinger operator has only electric scalar potential. But if it has also

magnetic vector potential, we should use Chernoff’s theorem instead. This wisdom also

applies to Dirac equation.

This paper is of expository character, having in sections 2 and 3 description and

content which overlap with another a little more elaborate paper on the subject in

RIMS Kyoto Univ. Kôkyûroku 1797(2012) [I-12a]. Their detailed version was in the

meanwhile published in my paper [I-13] and also brief note [I-12b]. So I would not like

to repeat the whole story here but only to write a short survey describing the points

how to obtain the three path integral representation formulas with sketch of proof. In

§4, the path integral by time-sliced approximation is further studied for some other

evolution equations in quantum mechanics in real and imaginary time by means of

Chernoff’s theorem, also discussing its convergence, not only in strong topology, but

also in operator norm and pointwise for the integral kernels. The content is almost

independent of the three relativistic Schrödinger operator up to the previous section.

The observation of this last section might contain something new.
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For the reader’s convenience, the table of contents of [I-13] is as follows:

1. Introduction;
2. Three magnetic relativistic Schrödinger operators: 2.1.Their definition and difference; 2.2.Gauge-
covariant or not;
3. More general definition of magnetic relativistic Schrödinger operators and their selfadjointness:

3.1.The most general definition of H
(1)
A , H

(2)
A and H

(3)
A ; 3.2.Selfadjointness with negative scalar poten-

tials;
4. Imaginary-time path integrals for magnetic relativistic Schrödinger operators: 4.1.Feynman–Kac–Itô
type formulas for magnetic relativistic Schrödinger operators; 4.2.Heuristic derivation of path integral
formulas;
5. Summary

§ 2. Three magnetic relativistic Schrödinger operators

The three relativistic Schrödinger operators concerned are the following. The first

one is the Weyl pseudo-differential operator defined through mid-point prescription

H(1) := H
(1)
A + V considered by Ichinose and Tamura ([IT-86], [I-89, 95], [NaU-90]),

the second H(2) := H
(2)
A + V the modification of the first one by Iftimie, Măntoiu and

R. Purice [IfMP-07, 08, 10], and the third H(3) := H
(3)
A + V defined with the square

root H
(3)
A of the nonnegative selfadjoint operator (−i∇−A(x))2 +m2.

For simplicity, assume that A(x) is smooth and V (x) bounded below.

(1) Weyl pseudo-differential operator H(1) := H
(1)
A + V (e.g. [IT-86; I-89, 95]) with

(H
(1)
A f)(x) := 1

(2π)d

∫ ∫
Rd×Rd

ei(x−y)·ξ
√(

ξ −A
(
x+y
2

))2

+m2 f(y)dydξ(2.1)

= 1
(2π)d

∫ ∫
Rd×Rd

ei(x−y)·(ξ+A(
x+y
2 ))

√
ξ2 +m2f(y)dydξ .

Here, with f ∈ C∞
0 (Rd) or f ∈ S(Rd), the integrals on the right-hand side are oscillatory

integrals.

(2) Modified Weyl pseudo-differential operator H(2) := H
(2)
A +V [IfMP-07, 08, 10] with

(H
(2)
A f)(x) := 1

(2π)d

∫ ∫
Rd×Rd

ei(x−y)·ξ

√(
ξ −

∫ 1

0

A((1− θ)x+ θy)dθ
)2

+m2 f(y)dydξ

= 1
(2π)d

∫ ∫
Rd×Rd

ei(x−y)·(ξ+
∫ 1
0
A((1−θ)x+θy)dθ)

√
ξ2 +m2f(y)dydξ(2.2)

(3) H(3) := H
(3)
A + V defined with square root

(2.3) H
(3)
A :=

√
(−i∇−A(x))2 +m2
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of the nonnegative selfadjoint operator (−i∇−A(x))2 +m2. This H(3) is used, e.g., to

study “stability of matter” in relativistic quantum mechanics in Lieb–Seiringer [LSei-10].

Known facts for H(1), H(2) and H(3)

1o.With suitable reasonable conditions on A(x) and V (x) ≥ 0, they all define selfad-

joint operators in L2(Rd), which are bounded below. For instance, they become selfad-

joint operators defined as quadratic forms, for H(1) and H(2), when A ∈ L1+δ
l oc (R

d;Cd)

for some δ > 0 and V ∈ L1
l oc(R

d) (cf. [I-89, 13], [IfMP-07, 08, 10]), while for H(3),

when A ∈ L2
l oc(R

d;Cd) and V ∈ L1
l oc(R

d) (e.g. [CFKS-87, pp.8–10] or [I-13]).

In fact further, they are bounded below by the same lower bound, in particular,

(2.4) H
(j)
A ≥ m, j = 1, 2, 3.

2o. H
(2)
A and H

(3)
A are covariant under gauge transformation, i.e. it holds for every

φ ∈ S(Rd) that H
(j)
A+∇φ = eiφH

(j)
A e−iφ, j = 2, 3. However, H

(1)
A is not.

3o. All these three operators are different in general, but coincide, if A(x) is linear

in x, i.e. if A(x) = Ȧ · x with Ȧ : d × d real symmetric constant matrix, then H
(1)
A =

H
(2)
A = H

(3)
A . So, this holds for uniform magnetic fields with d = 3.

§ 3. Imaginary-time Path integral for magnetic relativistic Schrödinger

operators

For each H = HA + V of the three magnetic relativistic Schrödinger operators

H(1) = H
(1)
A + V , H(2) = H

(2)
A + V and H(3) = H

(3)
A + V , consider imaginary-time

relativistic Schrödinger equation

(3.1)

{
∂
∂tu(t, x) = −[H −m]u(t, x), t > 0,

u(0, x) = g(x), x ∈ Rd.

The solution of this Cauchy problem is given by the semigroup u(t, x) = (e−t[H−m]g)(x).

We want to find a path integral formula for each e−(H(j)−m)g, j = 1, 2, 3.

§ 3.1. The case for the Weyl pseudo-differential operator H(1) = H
(1)
A + V

H
(1)
A , in (2.1), can be rewritten as an integral operator:

([H
(1)
A −m]f)(x)=−

∫
|y|>0

[e−iy·A(x+
y
2 )f(x+ y)− f(x)

−I{|y|<1}y ·(∇− iA(x)) f(x)]n(dy)

=− lim
r↓0

∫
|y|≥r

[e−iy·A(x+
y
2 )f(x+ y)− f(x)]n(dy)

=− p.v.

∫
|y|>0

[e−iy·A(x+
y
2 )f(x+ y)− f(x)]n(dy)(3.2)
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where n(dy) = n(y)dy is an m-dependent measure on Rd \ {0}, called Lévy measure,

with density

n(y) =

{
2(2π)−(d+1)/2md+1(m|y|)−(d+1)/2K(d+1)/2(m|y|), m > 0,

π−(d+1)/2Γ
(
d+1
2

)
|y|−(d+1), m = 0

It appears in the Lévy–Khinchin formula :

(3.3)√
ξ2 +m2 −m = −

∫
|y|>0

(eiy·ξ − 1− iξ ·yI{|y|<1})n(dy) = − lim
r→0+

∫
|z|≥r

(eiz·ξ − 1)n(dz)

Proof of (3.2). By the Lévy–Khinchin formula (3.3),

(H
(1)
A f)(x)= (2π)−d

∫ ∫
ei(x−y)·(ξ+A(

x+y
2 ))

[
m− lim

r→0+

∫
|z|≥r

(eiz·ξ − 1)n(dz)
]
f(y)dydξ

= (2π)−d
[
m

∫ ∫
ei(x−y)·ξei(x−y)·A(

x+y
2 ) dydξ

− lim
r→0+

∫ ∫ ∫
|z|≥r

(
ei(x−y+z)·ξ − ei(x−y)·ξ)n(dz)ei(x−y)·A(

x+y
2 ) f(y) dydξ

]
=m

∫
δ(x− y)ei(x−y)·A(

x+y
2 )f(y) dy

− lim
r→0+

∫ ∫
|z|≥r

(
δ(x− y + z)− δ(x− y)

)
n(dz)ei(x−y)·A(

x+y
2 ) f(y) dy

=mf(x)− lim
r→0+

∫ ∫
|z|≥r

(
e−iz·A(x+

z
2 )f(x+ z)− f(x)

)
n(dz)

Some Notations from Lévy process to represent e−t[H(1)−m]g by path integral

For more details, we refer to [IkW-81, 89].

·Dx([0,∞) → Rd) : space of right-continuous paths X : [0,∞) → Rd with left-hand

limits (called “càdlag paths”) with X(0) =x

·λx : probability measure on Dx([0,∞) → Rd) such that

(3.4) e−t[
√

ξ2+m2−m] =

∫
Dx([0,∞)→Rd)

ei(X(t)−x)·ξdλx(X), t ≥ 0, ξ ∈ Rd

·NX(dsdy): counting measure on [0,∞) × (Rd \ {0}) to count the number of disconti-

nuities of the path X(·), i.e. NX((t, t′] × U) := #{s ∈ (t, t′]; 0 ̸= X(s) −X(s−) ∈ U}

(0 < t < t′, U ⊂ Rd \ {0} : Borel set). It satisfies

∫
Dx

NX(dsdy) dλx(X) = dsn(dy).

·ÑX(dsdy) := NX(dsdy)− dsn(dy)
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Then any path X ∈ Dx([0,∞) → Rd) can be expressed with Nx(·), ÑX(·) as

X(t) = x+

∫ t+

0

∫
|y|≥1

yNX(dsdy) +

∫ t+

0

∫
0<|y|<1

yÑX(dsdy).

Theorem 3.1. [ITa-86, I-95]

(e−t[H(1)−m]g)(x)=

∫
Dx([0,∞)→Rd)

e−S(1)(t,X)g(X(t)) dλx(X),(3.5)

S(1)(t,X)=i

∫ t+

0

∫
|y|≥1

A(X(s−) + y
2 )·y NX(dsdy)

+i

∫ t+

0

∫
0<|y|<1

A(X(s−) + y
2 )·y ÑX(dsdy)

+i

∫ t

0

ds p.v.

∫
0<|y|<1

A(X(s) + y
2 )·y n(dy) +

∫ t

0

V (X(s))ds.

For some recent related result on the mass-zero limit problem with H(1), see [IM-14].

Proof (Sketch). Let k0(t, x− y) be the integral kernel of e−t(
√
−∆+m2−m), put

(F (t)g)(x) :=

∫
Rd

k0(t, x− y)e−iA
(
x+y
2

)
·(y−x)−V

(
x+y
2

)
tg(y)dy,(3.6)

which can be rewritten as

(F (t)g)(x)=

∫
Dx

e−iA
(x+X(t)

2

)
·(X(t)−x)−V

(x+X(t)
2

)
tg(X(t))dλx(X).(3.7)

For the definition (3.6), note the second expression of the definition (2.1) of H
(1)
A .

Then we do partition of the time interval [0, t] into n small subintervals with the

same width t/n: 0 = t0 < t1 < · · · < tn = t, tj − tj−1 = t/n, and put

Sn(x0, · · · , xn) := i

n∑
j=1

A
(xj−1+xj

2

)
· (xj − xj−1) +

n∑
j=1

V
(xj−1+xj

2

)
t
n ,(3.8)

xj := X(tj)(j = 0, 1, 2, . . . , n); x = x0 := X(t0), xn := X(tn) ≡ X(t),

where note that the assignment tj 7→ X(tj) is in the reversed time order.

Substitute these n+ 1 points of path X(·) into Sn(x0, · · · , xn) to get

Sn(X) : = Sn(X(t0), · · · , X(tn))(3.9)

= i

n∑
j=1

A
(

X(tj−1)+X(tj)
2

)
· (X(tj)−X(tj−1)) +

n∑
j=1

V
(

X(tj−1)+X(tj)
2

)
t
n .
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Then the n times product of F (t/n) turns out

(
F (t/n)ng

)
(x) =

n times︷ ︸︸ ︷∫
Rd

· · ·
∫
Rd

n∏
j=1

k0(t/n, xj−1 − xj)e
−Sn(x0,··· ,xn)g(xn)dx1 · · · dxn

=

∫
Dx

e−Sn(X)g(X(t)) dλx(X)(3.10)

=

∫
Dx

e
−i

∑n
j=1 A

(
X(tj−1)+X(tj)

2

)
·(X(tj)−X(tj−1))−

∑n
j=1 V

(
X(tj−1)+X(tj)

2

)
t
n

×g(X(t)) dλx(X).

We have to show convergence of each side of (3.10).

We shall use Chernoff’s theorem for the left-hand side (LHS), while Itô formula for

the right-hand side (RHS).

Proof of convergence of LHS of (3.10). We need

Lemma A. F (t/n)ng → e−t[H(1)−m]g in L2(Rd), n→ ∞.

The proof of Lemma A is essentially an application of the Chernoff’s theorem, al-

though it was proved directly in [ITa-86] or [I-13]. Note here that if the vector potential

A(x) is present, one cannot use the Trotter–Kato product formula instead of the Cher-

noff’s theorem.

Chernoff’s Theorem. [Ch-74] Let F be a strongly continuous function on [0,∞)

with values in the Banach space L(X) of bounded linear operators on a Banach space

X. Assume that F further satisfies the following conditions: (i) F (0) = I (I: identity

operator on X), and there exists a real a such that ∥F (t)∥ ≤ eat for all t ≥ 0;

(ii) The linear operator F ′(0) �D[F ′(0)] is closable, and the closure F ′(0) := L generates

a strongly continuous semigroup e−tL.

Then F (t/n)n converges to e−tL strongly, as n → ∞, uniformly on each finite in-

terval in t ≥ 0.

Note that condition (ii) means nothing but that u(t) := e−tLu0 is the solution of

equation d
dtu(t) = −Lu(t) with initial data u(0) = u0. In §4, we shall give some

observation on Chernoff’s theorem as to how useful it makes sense to path integral by

time-sliced approximation.

Now, for the proof of Lemma A, we content ourselves with only confirming applica-

bility of the Chernoff’s theorem on X = L2(Rd) with L = H(1)−m, and (3.6), i.e.

(3.11) (F (t)g)(x) :=

∫
Rd

(e−t[
√
−∆+m2−m])(x− y)eiA(

x+y
2 )(y−x)−V (

x+y
2 )tg(y)dy,
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where we are writing the integral kernel k0(t, x − y) of the semigroup e−t[
√
−∆+m2−m]

as (e−t[
√
−∆+m2−m])(x− y).

Indeed, we can show that I−F (t)
t → H(1) in strong resolvent sense as t ↓ 0, which

yields Lemma A, namely, that LHS of (3.10) converges to e−t[H(1)−m]g as n→ ∞.

Proof of convergence of RHS of (3.10). We are going to show

RHS of (3.10) =

∫
Dx

e−Sn(X)g(X(t)) dλx(X)

=

∫
Dx

e
−i

∑n
j=1 A

(
X(tj−1)+X(tj)

2

)
·(X(tj)−X(tj−1))−

∑n
j=1 V

(
X(tj−1)+X(tj)

2

)
t
n

×g(X(t)) dλx(X)

→
∫
Dx

e−S(X)g(X(t)) dλx(X), as n→ ∞.

In fact, in equation (3.8), we can use Itô’s formula [IkW-81,89] for the j-th summand
of the first term on the right to rewrite it as a sum of three integrals on the t-interval
tj−1 ≤ s < tj :

A
(X(tj−1)+X(tj)

2

)
·
(
X(tj)−X(tj−1)

)
=

∫ tj+

tj−1

∫
|y|>0

[
A
(X(s−)+X(tj−1)+yI|y|≥1(y)

2

)
·
(
X(s−)−X(tj−1) + yI|y|≥1(y)

)
−A

(X(s−)+X(tj−1)

2

)
·
(
X(s−)−X(tj−1)

)]
NX(dsdy)

+

∫ tj+

tj−1

∫
|y|>0

[
A
(X(s−)+X(tj−1)+yI|y|<1(y)

2

)
·
(
X(s−)−X(tj−1) + yI|y|<1(y)

)
−A

(X(s−)+X(tj−1)

2

)
·
(
X(s−)−X(tj−1)

)]
Ñ(dsdy)

+

∫ tj

tj−1

∫
|y|>0

[
A
(X(s)+X(tj−1)+yI|y|<1(y)

2

)
·
(
X(s)−X(tj−1) + yI|y|<1(y)

)
−A

(X(s)+X(tj−1)

2

)
·
(
X(s)−X(tj−1)

)
−I|y|<1(y)

((
1
2
(y · ∇)A

)(X(s)+X(tj−1

2

)
·
(
X(s)−X(tj−1)

)
+ y ·A

(X(s)+X(tj−1)

2

))]
dsn(dy)

It follows that

Sn(X) = i

n∑
j=1

A
(X(tj−1)+X(tj)

2

)
· (X(tj)−X(tj−1)) +

n∑
j=1

V
(X(tj−1)+X(tj)

2

)
t
n

=
n∑

j=1

[
i

∫ tj+

tj−1

∫
|y|>0

· · ·NX(dsdy) + i

∫ tj+

tj−1

∫
|y|>0

· · · Ñ(dsdy)

+i

∫ tj

tj−1

∫
|y|>0

· · · dsn(dy) + V (
X(tj−1+X(tj)

2
) t
n

]
,
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which, as n→ ∞, converges to

i
[ ∫ t+

0

∫
|y|≥1

A(X(s−) + y
2
)·y NX(dsdy) +

∫ t+

0

∫
0<|y|<1

A(X(s−) + y
2
)·y ÑX(dsdy)

+

∫ t

0

dsp.v.

∫
0<|y|<1

A(X(s) + y
2
)·y n(dy)

]
+

∫ t

0

V (X(s))ds

≡ S(1)(t,X),

whence

RHS of (3.10) =

∫
Dx

e−Sn(X)g(X(t)) dλx(X) →
∫
Dx

e−S(1)(t,X)g(X(t)) dλx(X).

§ 3.2. The case for the Weyl pseudo-differential operator modified by

Iftimie–Măntoiu–Purice H(2) := H
(2)
A + V

First note that we can rewrite H
(2)
A , in (2.2), similarly for H

(1)
A , as integral operator

([H
(2)
A −m]f)(x) =−

∫
|y|>0

[e−iy·
∫ 1
0
A(x+θy)dθf(x+ y)− f(x)(3.12)

−I{|y|<1}y ·(∇− iA(x)) f(x)]n(dy)

= − lim
r↓0

∫
|y|≥r

[e−iy·
∫ 1
0
A(x+θy)dθf(x+ y)− f(x)]n(dy)

= − p.v.

∫
|y|>0

[e−iy·
∫ 1
0
A(x+θy)dθf(x+ y)− f(x)]n(dy).

Theorem 3.2. [IfMP-07, 08, 10]

(e−t[H(2)−m]g)(x) =

∫
Dx([0,∞)→Rd)

e−S(2)

(t,X)g(X(t)) dλx(X),(3.13)

S(2)(t,X) = i

∫ t+

0

∫
|y|≥1

(∫ 1

0

A(X(s−)+θy)·y dθ
)
NX(dsdy)

+ i

∫ t+

0

∫
0<|y|<1

(∫ 1

0

A(X(s−)+θy)·y dθ
)
ÑX(dsdy)

+ i

∫ t

0

dsp.v.

∫
0<|y|<1

(∫ 1

0

A(X(s) +θy)·y dθ
)
n(dy)

+

∫ t

0

V (X(s))ds.
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The proof of Theorem 3.2 is the same as that of Theorem 3.1. We have only to

replace A(X(s−) + y
2 )·y by

∫ 1

0

A(X(s−) + θy)·y dθ and consider

(3.14)

(F (t)g)(y) :=

∫
Rd

(e−t[
√
−∆+m2−m])(x− y)e[−i(y−x)

∫ 1
0
A((1−θ)y+θx)dθ−V (y)t]g(y)dy,

for which note the second expression of the definition (2.2) of H
(2)
A . Etc.

§ 3.3. The case for H(3) := H
(3)
A + V

The kinetic partH
(3)
A is defined by operator-theoretical square root of the Schrödinger

operator S := 2HNR
A +m2, HNR

A := 1
2 (−i∇ − A(x))2. We can say all information of

H
(3)
A is contained in S := 2HNR

A +m2 or the nonrelativistic magnetic Schrödinger oper-

ator HNR
A . So the problem is how to extract the information from it. For instance, the

corresponding semigroup e−t(H
(3)
A −m) is completely determined by HNR

A through theory

of fractional powers [Y, Chap.IX, 11, pp.259–261] as

e−t[H
(3)
A −m]g =

{
emt

∫∞
0
ft(λ)e

−λ[2HNR
A +m2]g dλ, t > 0,

0, t = 0

ft(λ) =

{
(2πi)−1

∫ σ+i∞
σ−i∞ ezλ−tz1/2

dz, λ ≥ 0,

0, λ < 0 (σ > 0).

Here e−λ[2HNR
A +m2] is represented by the Feynman–Kac–Itô formula, but we don’t do

it.

Instead, we note there is probabilistic counterpart of the above procedure of going

from Wiener process (≡nonrelativistic Schrödinger) to Lévy process(≡ (square root)

relativistic Schrödinger). It is subordination (by Bochner).

In this context, the problem of path integral for e−t[H(3)−m]g was studied first by

DeAngelis, Serva and Rinaldi [AnSe-90], [AnRSe-91], then by [N-96, 97, 00] with use

of subordination of Brownian motion, and recently more extensively by Hiroshima–

Ichinose–Lőrinczi [HILo-12, 13] (cf. [LoHB-11]) not only for magnetic relativistic Schrödinger

operator but also for Bernstein functions of magnetic nonrelativistic Schrödinger oper-

ator even with spin.

Now, what is subordination ?

Start with the 1-dimensional standard Brownian motion B1(t) ∈ C0([0,∞) → R)

with B1(0) = 0 and µ0 the Wiener measure on C0([0,∞) → R) such that e−t
1
2 ξ

2

=∫
C0([0,∞)→R)

eiB
1(t)ξdµ0(B

1), then put

(3.15) T (t) := inf{ s > 0 ; B1(s) +ms = t}, t ≥ 0.
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Then T (t) becomes a monotone, non-decreasing function on [0,∞) with T (0) = 0,

belonging to D0([0,∞)→R), so that it is a 1-dimensional Lévy process. This T (t) is

what is called subordinator ([Sa-99, Chap.6, p.197], cf. [Sa-90]; [Ap-09, 1.3.2, p.52]),

which gives time change. Let ν0 be the probability measure of the associated process

on space D0([0,∞)→R).

Lemma B. (e.g. [Ap-09, p.54, Example 1.3.21, p.54, and Exercise 2.1.10, p.96; cf.

Theorem 2.2.9, p.95])

(3.16) e−t[
√
2σ+m2−m] =

∫
D0([0,∞)→R)

e−T (t)σdν0(T ), σ ≥ 0

We are in a position to give a path integral representation for e−t[H(3)−m]g.

Theorem 3.3. ([AnSe-90], [AnRSe-91], [N-96, 97, 00]; [HILo-12]).

(e−t[H(3)−m]g)(x)=

∫ ∫
Cx([0,∞)→Rd)
×D0([0,∞)→R)

e−S(3)(t,B,T )g(B(T (t)))dµx(B)dν0(T ),(3.17)

S(3)(t, B, T )= i

∫ T (t)

0

A(B(s)) dB(s) + i
2

∫ T (t)

0

divA(B(s))ds

+

∫ t

0

V (B(T (s)))ds,

≡ i

∫ T (t)

0

A(B(s)) ◦ dB(s) +

∫ t

0

V (B(T (s)))ds

Here Cx([0,∞) → Rd) is the set of continuous paths (Brownian motions) B : [0,∞) →
Rd with B(0) = x, and µx is the Wiener measure on Cx([0,∞) → Rd):

exp
[
− t ξ

2

2

]
=

∫
Cx([0,∞)→Rd)

ei(B(t)−x)·ξdµx(B) (m > 0)

Before going to proof of Theorem 3.3, recall the Feynman–Kac–Itô formula [e.g. S-

05] for the magnetic nonrelativistic Schrödinger operator HNR := HNR
A +V := 1

2 (−i∇−
A(x))2 + V (x) :

(e−tHNR

g)(x)(3.18)

=

∫
Cx([0,∞)→Rd)

e−[i
∫ t
0
A(B(s))dB(s)+

i
2

∫ t
0
divA(B(s))ds+

∫ t
0
V (B(s))ds]g(B(t))dµx(B)

≡
∫
Cx([0,∞)→Rd)

e−[i
∫ t
0
A(B(s))◦dB(s)+

∫ t
0
V (B(s))ds]g(B(t)) dµx(B) (Stratonovich)

Proof of Theorem 3.3 (Sketch). We use Lemma B, the spectral theorem for selfadjoint

operator and Feynman–Kac–Itô formula above. Note that H
(3)
A =

√
2HNR

A +m2. ⟨·, ·⟩
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stands the inner product of Hilbert space L2(R2). By spectral theorem for the selfadjoint

operator HNR
A (magnetic nonrelativistic Schrödinger operator with V = 0), we have

HNR
A =

∫
Spec(HNR

A )

σ dE(σ). Then for f, g ∈ L2(Rd)

⟨f, e−t[H
(3)
A −m]g⟩ =

∫
Spec(HNR

A )

e−t[
√
2σ+m2−m] ⟨f, dE(σ)g⟩

By Lemma B and again by spectral theorem,

⟨f, e−t[H
(3)
A −m]g⟩=

∫
Spec(HNR

A )

∫
D0([0,∞)→R)

e−T (t)σdν0(T ) ⟨f, dE(σ)g⟩

=

∫
D0([0,∞)→R)

⟨f, e−T (t)HNR
A g⟩ dν0(T ).

Applying Feynman–Kac–Itô (with V = 0) to e−T (t)HNR
A g on the right-hand side,

⟨f, e−t[H
(3)
A −m]g⟩

=

∫
D0([0,∞)→R)

dν0(T )

∫
Rd

dxf(B(0))

∫
Cx([0,∞)→Rd)

e−i
∫ T (t)
0 A(B(s))◦dB(s)g(B(T (t)))dµx(B)

=

∫
Rd

dxf(x)

∫
D0([0,∞)→R)

∫
Cx([0,∞)→Rd)

e−i
∫ T (t)
0 A(B(s))◦dB(s)g(B(T (t))) dν0(T )dµx(B)

Here note B(0) = x. This proves the assertion when V = 0.

When V ̸= 0, with partition of [0, t]: 0 = t0 < t1 < · · · < tn = t, tj − tj−1 = t/n, we

can express e−t[H(3)−m]g = e−t[(H
(3)
A −m)+V ] by Trotter–Kato formula or by Chernoff’s

theorem with F (t) := e−t[H(3)−m]e−tV ,

e−t[H(3)−m]g = lim
n→∞

(
e−(t/n)[H

(3)
A −m]e−(t/n)V

)n
g,

where convergence on the right-hand side is in strong sense. Rewrite these n operators

product by path integral on probability product measure ν0(T ) · µx(B), then we have

(recall T (0)=T (t0)=0, B(0)=B(T (t0))=x),

⟨f,
(
e−(t/n)[H

(3)
A −m]e−(t/n)V

)n
g⟩

=

∫
Rd

dx

∫
D0([0,∞)→R)

dν0(T )

∫
Cx([0,∞)→Rd)

f(B(0))

×e−i
∑n

j=1

∫ T (tj)

T (tj−1)
A(B(s)◦dB(s)

e−
∑n

j=1 V (B(T (tj))
t
n g(B(tn)) dµx(B)

We see, as n → ∞, that LHS converges to ⟨f, e−t[H
(3)
A −m]g⟩, and the right-hand side

also converges to the goal formula as integral by the product measure dx ·ν0(T ) ·µx(B),
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through Lebesgue theorem. This shows the weak convergence. The strong convergence

will also be shown.

§ 3.4. Summary of three path intergal formulas

Finally, as summary, we will collect the three path integral representation formulas

in Theorems 3.1, 3.2, 3.3, below, so as to be able to easily see x-dependence. To do so,

make change of space, probability measure and paths by translation:

Dx→D0, λx→λ0, X(s)→X(s)+x, B(s)→B(s)+x, B(T (s))→B(T (s))+x, then

(3.5) : (e−t[H(1)−m]g)(x) =

∫
D0([0,∞)→Rd)

e−S(1)(t,X)g(X(t) + x) dλ0(X),

S(1)(t,X) = i

∫ t+

0

∫
|y|≥1

A(X(s−) + x+ y
2
)·y NX(dsdy)

+i

∫ t+

0

∫
0<|y|<1

A(X(s−) + x+ y
2
)·y ÑX(dsdy)

+i

∫ t

0
ds p.v.

∫
0<|y|<1

A(X(s) + x+ y
2
)·y n(dy) +

∫ t

0
V (X(s) + x)ds ;

(3.12) : (e−t[H(2)−m]g)(x) =

∫
D0([0,∞)→Rd)

e−S(2)(t,X)g(X(t) + x) dλ0(X),

S(2)(t,X) = i

∫ t+

0

∫
|y|≥1

(∫ 1

0
A(X(s−)+x+θy)·y dθ

)
NX(dsdy)

+i

∫ t+

0

∫
0<|y|<1

(∫ 1

0
A(X(s−)+x+θy)·y dθ

)
ÑX(dsdy)

+i

∫ t

0
ds p.v.

∫
0<|y|<1

(∫ 1

0
A(X(s)+x+θy)·y dθ

)
n(dy)+

∫ t

0
V (X(s)+x)ds ;

(3.17) : (e−t[H(3)−m]g)(x) =

∫ ∫
C0([0,∞)→Rd)
×D0([0,∞)→R)

e−S(3)(t,B,T )g(B(T (t))+x) dµ0(B)dν0(T ),

S(3)(t, B, T ) = i

∫ T (t)

0
A(B(s)+x)·dB(s)+ i

2

∫ T (t)

0
divA(B(s)+x)ds+

∫ t

0
V (B(T (s))+x)ds,

≡ i

∫ T (t)

0
A(B(s) + x) ◦ dB(s) +

∫ t

0
V (B(T (s)) + x)ds

§ 3.5. Path integral formulas (3.5), (3.12) and (3.15) as time-sliced

approximation

In the proof of path integral formula (3.5) in Theorem 3.1, we have used Chernoff’s

theorem to show Lemma A, i.e. that F (t/n)ng, the left-hand side of equality (3.10)

converges to e−tH(1)

g, the left-hand side of (3.5). We are now going to see how F (t) in

(3.6)/(3.11) comes out heuristically for L being the relativistic Schrödinger operators

H(1) = H
(1)
A +V , H(1) = H

(1)
A +V , but there is a different situation for H(3) = H

(3)
A +V .

For the details, we refer to [I-13, §4.2].
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We use in what follows the time-sliced approximation, with partition of the interval

[0, t] into n small subintervals: 0 = t0 < t1 < · · · < tn = t, only with equal width

t/n, tj − tj−1 = t/n, 1 ≤ j ≤ n.

(1) For L = H(1) = H
(1)
A + V . The second member of (3.10) can be heuristically

rewritten by the imaginary-time phase space path integral ([G-66], [M-78]) through time-

sliced approximation, i.e. as the n→∞ limit of the integral

n times︷ ︸︸ ︷∫
R2d

· · ·
∫
R2d

ei
∑n

l=1

(
X(tl)−X(tl−1))

)
·Ξ(X(tl−1))

×e−
t
n

∑n
l=1

[√(
Ξ(tl−1)−A

(X(tl−1)+X(tl)
2

))2
+m2−m+V (X(tl−1))

]
×g(X(0))

n∏
j=1

dΞ(tj−1)dX(tj−1)
(2π)d

=

n times︷ ︸︸ ︷∫
R2d

· · ·
∫
R2d

ei
∑n

l=1(X(tl)−X(tl−1))·
(
Ξ(tl−1)+A

(X(tl−1)+X(tl)
2

))
×e−

t
n

∑n
l=1

[√
Ξ(tl−1)2+m2−m+V (X(tl−1))

]
g(X(0))

n∏
j=1

dΞ(tj−1)dX(tj−1)
(2π)d

=

n times︷ ︸︸ ︷∫
R2d

· · ·
∫
R2d

e
∑n

l=1

{
i(xl−xl−1)·

(
ξl−1+A

(X(tl−1)+X(tl)
2

))
− t

n [
√

ξ2l−1+m2−m+V (xl−1)]
}

×g(x0)
n∏

j=1

dξj−1dxj−1

(2π)d
,(3.19)

where, in the first equality, we made change of variables: Ξ′(·) := Ξ(·)+A(X(·), X ′(·) :=
X(·) on the space of phase space paths, and then written Ξ(·), X(·) again for Ξ′(·), X ′(·).
In the second equality, we put ξj = Ξ(tj), xj = X(tj), j = 0, 1, . . . , n−1, and x = xn =

X(tn) = X(t). Notice that here the assignment tj 7→ (Ξ(tj), X(tj)) differs from the

one used for (3.8). This is chronological, while that was anti-chronological. Equation

(3.19) is suggesting us how that functional of the path X(·), which is to be created as

e−S(1)(t,x) in (3.5) by the approximation F (t/n)n, does look.
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Then the last member of (3.19) can be rewritten as

n times︷ ︸︸ ︷∫
R2d

· · ·
∫
R2d

n∏
l=1

{[
ei(xl−xl−1)·ξl−1e−

t
n [
√

ξ2l−1+m2−m]
]

×e
[
iA
(xl−1+xl

2

)
·(xl−xl−1)−V

(xl−1+xl

2

)
t
n

]}
g(x0)

n∏
j=1

dξj−1dxj−1

(2π)d

=

n times︷ ︸︸ ︷∫
Rd

· · ·
∫
Rd

n∏
l=1

{[
e−

t
n [

√
−∆+m2−m]

]
(xl − xl−1)

×e
[
iA
(xl−1+xl

2

)
·(xl−xl−1)−V

(xl−1+xl

2

)
t
n

]}
g(x0) dx0dx1 · · · dxn−1,(3.20)

with x = xn, where we have performed all the dξj integrations. The result is nothing

but F (t/n)ng in (3.10) with F (t) in (3.7).

(2) For L = H(2) = H
(2)
A + V . Similar treatment is valid for L = H(2) = H

(2)
A + V ,

where we may consider for H(2) with∫ 1

0

A
(
(1− θ)X(tl−1) + θX(tl)

)
dθ

in place of

A
(X(tl−1)+X(tl)

2

)
for H(1) on each subinterval [tj−1, tj ]. The same arguments as for L = H(1) above

above will show the expression (3.12) is also obtained heuristically through time-sliced

approximation with F (t) in (3.14).

(3) For H(3) = H
(3)
A +V . In this case, formula (3.17) does not seem to be one which can

be heuristically obtained, probably because H
(3)
A cannot be so explicitly well expressed

by a pseudo-differential operator defined through a certain tractable symbol as H
(1)
A

and H
(2)
A .

Indeed, for the semigroups e−t[H
(1)
A +V ] and e−t[H

(2)
A +V ], take (3.7)/(3.11) as F (t), we

could show that F (t/n)n → e−t[H
(j)
A +V ] strongly for j = 1, 2. But for the semigroup

e−t[H
(3)
A +V ], such an interpretation does not seem possible.

§ 4. Some observation on Chernoff’s theorem and path integral by

time-sliced approximation

It is well-known that, for the solution of Schrödinger equation, the Trotter–Kato

product formula can simply and plainly give a, though naive, meaning to its path
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integral representation by time-sliced approximation, if the Schrödinger operator has no

magnetic vector potential but only electric scalar potential V (x). However, if it has also

magnetic vector potential A(x), it does not seem to go well, and then we need Chernoff’s

theorem. Our aim is to observe how useful and effective a tool Chernoff’s theorem is

to give a meaning to path integral formulas by time-sliced approximation, guaranteeing

its convergence. For this aspect, we also refer to [BoBuScSm-11].

For our convenience, we begin this section with restating the Chernoff’s theorem,

though already done in §3.1. Notice that Trotter–Kato product formula follows from

Chernoff’s theorem, but the converse is not valid.

Chernoff’s Theorem. [Ch-74] Let F be a strongly continuous function on [0,∞)

with values in the Banach space L(X) of bounded linear operators on a Banach space

X. Assume that F further satisfies the following conditions: (i) F (0) = I (I: identity

operator on X), and there exists a real a such that ∥F (t)∥ ≤ eat for all t ≥ 0;

(ii) The linear operator F ′(0) �D[F ′(0)] is closable, and the closure F ′(0) := L generates

a strongly continuous semigroup e−tL.

Then F (t/n)n converges to e−tL strongly, as n → ∞, uniformly on each finite in-

terval in t ≥ 0.

The content of this section is almost independent of the three relativistic Schrödinger

operators H(1), H(2) and H(3) and their path integral representation formulas, about

which we have already discussed enough up to the previous section §3. In this section,

we will study further this wisdom with several other evolution equations in quantum

mechanics to watch their corresponding path integral representation formulas. We first

treat the case of strong convergence and next the case of convergence in norm and/or

pointwise for the integral kernels.

Throughout this section again, the time-sliced approximation, with partition of the

interval [0, t] into n small subintervals: 0 = t0 < t1 < · · · < tn = t, is used only with

equal width t/n, tj − tj−1 = t/n, 1 ≤ j ≤ n.

§ 4.1. Time-sliced approximation in strong topology

We consider, first, the time-sliced approximation for the solution of Schrödinger

equation in real and/or imaginary time, only with scalar potential, that is, without

magnetic vector potential, and see it strongly converge by Trotter–Kato product formula

as well as Chernoff’s theorem. Next, we come to consider the Schrödinger equation and

Dirac equation in presence of magnetic vector potential and realize in turn to need to

use Chernoff’s theorem.
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4.1.1. Schrödinger operator with scalar potential V (x)

The operator concerned is HV := −1
2∆+ V in L2(R3). Put

(F (t)g)(x) := (e−it(− 1
2∆)e−itV )(x) =

∫
[e−it(− 1

2∆)](x− y)e−itV (y)g(y)dy,(4.1)

(G(t)g)(x) := (e−t(− 1
2∆)e−tV g)(x) =

∫
[e−t(− 1

2∆)](x− y)e−tV (y)g(y)dy,(4.2)

where [e−it(− 1
2∆)](x− y) and [e−t(− 1

2∆)](x− y) stand for the the integral kernels of the

Schrödinger unitary group e−it(− 1
2∆) and Schrödinger semigroup e−t(− 1

2∆), respectively.

Under certain reasonable conditions on V (x), it holds in strong resolvent sense in

L2(R3) as t ↓ 0 that I−F (t)
t converges to iHV , while

I−G(t)
t converges to HV . Then

by Chernoff’s theorem or in this case by Trotter–Kato product formula, we have, for

g ∈ L2(R3),

F (t/n)ng → e−it[− 1
2∆+V ]g , strongly,(4.3)

G(t/n)ng → e−t[− 1
2∆+V ]g , strongly ,(4.4)

as n→ ∞. On the other hand, e−it[− 1
2∆+V ]g should be given by the configuration space

path integral through time-sliced approximation as the n→∞ limit of the integral

Cn

n times︷ ︸︸ ︷∫
Rd

· · ·
∫
Rd

e
i
∑n

l=1

[
1
2

(X(tl)−X(tl−1)
t/n

)2
−V (X(tl−1))

]
t
n g(X(0))

n∏
j=1

d(X(tj−1))(4.5)

=Cn

n times︷ ︸︸ ︷∫
Rd

· · ·
∫
Rd

n∏
j=1

[
e
i
t
n

1
2

(xj−xj−1

t/n

)2

e−i
t
nV (xj−1)

]
g(x0)dx0dx1 · · · dxn−1,

with some renormalization constant Cn depending on t, where we put xj = X(tj), j =

0, 1, . . . , n − 1, and x = xn = X(tn) = X(t). Taking Cn =
(

i
2πt/n

)3n/2
, this is what is

meant by F (t/n)ng.

Similarly, e−t[− 1
2∆+V ]g should be given by the configuration space imaginary-time

path integral through time-sliced approximation as the n→∞ limit of the integral

C ′
n

n times︷ ︸︸ ︷∫
Rd

· · ·
∫
Rd

e
−

∑n
l=1

[
1
2

(X(tl)−X(tl−1)
t/n

)2
+V (X(tl−1))

]
t
n g(X(0))

n∏
j=1

d(X(tj−1))(4.6)

=C ′
n

n times︷ ︸︸ ︷∫
Rd

· · ·
∫
Rd

n∏
j=1

[
e
− t

n
1
2

(xj−xj−1

t/n

)2

e−
t
nV (xj−1)

]
g(x0)dx0dx1 · · · dxn−1,
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with some renormalization constant C ′
n depending on t, where put xj = X(tj), j =

0, 1, . . . , n− 1, and x = xn = X(tn) = X(t). Taking C ′
n =

(
1

2πt/n

)3n/2
. This is what is

meant by G(t/n)ng.

4.1.2. Schrödinger operator with vector and scalar potentials A(x) and V (x)

The operator concerned is HA,V := 1
2 (−i∇−A(x))2 + V in L2(R3). Put

(F (t)g)(x) :=

∫
[e−it

1
2 (−∆)](x− y)ei[A(

x+y
2 )(y−x)−V (

x+y
2 )t]g(y)dy ;(4.7)

(G(t)g)(x) :=

∫
[e−t

1
2 (−∆)](x− y)eiA(

x+y
2 )(y−x)−V (

x+y
2 )tg(y)dy .(4.8)

Then, under certain reasonable conditions on A(x) and V (x), though one cannot use

Trotter–Kato product formula because of presence of the vector potential A(x), we have

by Chernoff’s theorem in stead that as n→ ∞,

F (t/n)ng → e−it[
1
2 (−i∇−A(x))2+V ]g , strongly,(4.9)

G(t/n)ng → e−t[
1
2 (−i∇−A(x))2+V ]g , strongly.(4.10)

On the other hand, e−it[− 1
2 (−i∇−A(x))2+V ]g should be given by the phase space path

integral ([G-66], [M-78]) through time-sliced approximation. We make the same argu-

ment for HA,V as used in (3.19) through (3.20) for the relativistic Schrödinger operator

H(1) = H
(1)
A +V , but here (and also below in §4.2.3), for simplicity, by skipping the step

of performing the change of variables (on the space of phase space paths) inside (3.19).

Then e−it[− 1
2 (−i∇−A(x))2+V ]g should be reached as the n→∞ limit of the integral

n times︷ ︸︸ ︷∫
R2d

· · ·
∫
R2d

ei
∑n

l=1

[
(X(tl)−X(tl−1))·Ξ(tl−1)−

t
n

Ξ(tl−1)
2

2

]
(4.11)

×ei
∑n

l=1

[
A
(X(tl)+X(tl−1)

2

)
·(X(tl)−X(tl−1))−

t
nV (X(tl−1))

]
g(X(0))

n∏
j=1

dΞ(tj−1)dX(tj−1)
(2π)3

=

n times︷ ︸︸ ︷∫
R2d

· · ·
∫
R2d

n∏
j=1

{
e

[
i(xj−xj−1)·ξj−1−i

t
n

ξ2j−1

2

]
ei
[
A
(xj+xj−1

2

)
·(xj−xj−1)−

t
nV (xj−1)

]}
g(x0)

×dξ0dx0

(2π)3
dξ1dx1

(2π)3 · · · dξn−1dxn−1

(2π)3

=

n times︷ ︸︸ ︷∫
Rd

· · ·
∫
Rd

n∏
l=1

{
[e−i

t
n

1
2 (−∆)](xl−xl−1)ei

[
A
(xl+xl−1

2

)
·(xl−xl−1)−

t
nV (xl−1)

]}
g(x0)

×dx0dx1 · · · dxn−1,
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where put ξj = Ξ(tj), xj = X(tj), j = 0, 1, . . . , n − 1, and x = xn = X(tn) = X(t).

This is what is meant by G(t/n)ng.

Similarly, e−t[− 1
2 (−i∇−A(x))2+V ]g should be given by the imaginary-time phase space

path integral through time-sliced approximation as the n→∞ limit of the integral

n times︷ ︸︸ ︷∫
R2d

· · ·
∫
R2d

e
∑n

l=1

[
i(X(tl)−X(tl−1))·Ξ(tl−1)−

t
n

1
2Ξ(tl−1)

2
]

(4.12)

×e
∑n

l=1

[
iA
(X(tl)+X(tl−1)

2

)
·(X(tl)−X(tl−1))−

t
nV (X(tl−1))

]
g(X(0))

n∏
j=1

dΞ(tj−1)dX(tj−1)
(2π)3

=

n times︷ ︸︸ ︷∫
R2d

· · ·
∫
R2d

n∏
j=1

{
e[i(xj−xj−1)·ξj−1−

t
n

1
2 ξ

2
j−1]e

[
iA
(xj+xj−1

2

)
·(xj−xj−1)−

t
nV (xj−1)

]}
g(x0)

×dξ0dx0

(2π)3
dξ1dx1

(2π)3 · · · dξn−1dxn−1

(2π)3

=

n times︷ ︸︸ ︷∫
Rd

· · ·
∫
Rd

n∏
j=1

{
[e−

t
n

∆
2 ](xj − xj−1)e

[
iA
(xj+xj−1

2

)
·(xj−xj−1)−

t
nV (xj−1)

]}
g(x0)

×dx0dx1 · · · dxn−1,

where put ξj = Ξ(tj), xj = X(tj), j = 0, 1, . . . , n−1, and x = xn = X(tn) = X(t). This

is what is meant by G(t/n)ng. Equation (4.12) is suggesting us how that functional

of the (Brownian) path B(·), which is to be created as the integrand of the Feynman–

Kac–Itô formula (3.18) by the approximation G(t/n)n, does look (See [S-05, (15.1-2),

p.159]).

4.1.3. Dirac operator with vector and scalar potentials A(x) and V (x)

The operator concerned is α · (−i∇ − A) + mβ + V in L2(R3;C4) where α :=

(α1, α2, α3) and β are Dirac four matrices. Put

(F (t)f)(x) : =

∫
R3

KDirac(t, x− y)ei[A(
x+y
2 )(x−y)−V (

x+y
2 )t]f(y)dy

=

∫
R3

[e−it(α·(−i∇)+mβ)](x− y)ei[A(
x+y
2 )(x−y)−V (

x+y
2 )t]f(y)dy(4.13)

for f ∈ L2(R3;C4), where KDirac(t, x − y) := [e−it(α·(−i∇)+mβ)](x − y) is the integral

kernel of the unitary group of free Dirac operator α · (−i∇) +mβ. Then, under certain

reasonable conditions on A(x) and V (x), we have by Chernoff’s theorem that as n→ ∞,

(4.14) F (t/n)nf → e−it[(α·(−i∇−A)+mβ)+V ]f , strongly.
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On the other hand, e−it[α·(−i∇−A)+mβ+V ]f should be given by the phase space path

integral through time-sliced approximation as the n→∞ limit of the integral

n times︷ ︸︸ ︷∫
R6

· · ·
∫
R6

ei
∑n

l=1

[
(X(tl)−X(tl−1))·Ξ(tl−1)−

t
n (α·Ξ(tl−1)+mβ)

]
(4.15)

×ei
∑n

l=1

[
A
(X(tl)+X(tj−1)

2

)
·(X(tl)−X(tl−1))−

t
nV (X(tl−1))

]
f(X(0))

n∏
j=1

dΞ(tj−1)dX(tj−1)
(2π)3

=

n times︷ ︸︸ ︷∫
R6

· · ·
∫
R6

n∏
j=1

{
e

[
i(xj−xj−1)·ξj−1−i

t
n (α·ξj−1+mβ)

]
ei
[
A
(xj+xj−1

2

)
·(xj−xj−1)−

t
nV (xj−1)

]}
×f(x0)dξ0dx0

(2π)3
dξ1dx1

(2π)3 · · · dξn−1dxn−1

(2π)3

=

n times︷ ︸︸ ︷∫
R3

· · ·
∫
R3

n∏
j=1

{[
e−i

t
n (α·(−∇)+mβ)

]
(xj − xj−1)

[
ei
[
A
(xj+xj−1

2

)
·(xj−xj−1)−

t
nV (xj−1)

]}
×f(x0)dx0dx1 · · · dxn−1

=

n times︷ ︸︸ ︷∫
R3

· · ·
∫
R3

KDirac( t
n , xn − xn−1)K

Dirac( t
n , xn−1 − xn−2) · · · · ·KDirac( t

n , x1 − x0)

×
{
ei

∑n
j=1

[
A
(xj+xj−1

2

)
·(xj−xj−1)−

t
nV (xj−1)

]}
f(x0) dx0dx1 · · · dxn−1.

Here we have put ξj = Ξ(tj), xj = X(tj), j = 0, 1, . . . , n − 1, x = xn = X(tn) = X(t),

and in the last equality, we have performed all the dξj integrations. The last member of

(4.15) is nothing but what is meant by F (t/n)nf , and is suggesting us what a kind of

functional of the path X(·) the expected path integral formula should turn out to have

in its integrand. For instance, since n→ ∞,

n∑
j=1

[
A
(xj+xj−1

2

)
· (xj − xj−1)− t

nV (xj−1)
]
→

∫ t

0

[A(X(s)) · d(X(s) + V (X(s))ds],

we should have an expression⟨
f1, e

−it[α·(−i∇−A)+mβ+V ]f2
⟩

=

∫ ∫
R3×R3

dxdy
⟨
f2(x), dν

Dirac
t,x;0,y(X) ei

∫ t
0
[A(X(s))·dX(s)−V ((s))ds]f1(y)

⟩
,

for all functions f1, f2, say, in the Schwartz space S(R3;C4), if there should exist a

3× 3-matrix-valued (countable additive) measure νDirac
t,x;0,y(X) on the space of Lipschitz-

continuous paths [0, t] ∋ s 7→ X(s) ∈ R3 with X(0) = y, X(t) = x. However, no such

measure νDirac
t,x;0,y(X) can exist for this 3-dimensional Dirac operator α·(−i∇−A)+mβ+V ,
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although it can for 1-dimensional Dirac operator instead (cf. [I-82, 84], [ITa-84, 87], [I-

93]).

§ 4.2. Time-sliced approximation in norm and pointwise

4.2.1. Trotter–Kato product formula and Chernoff’s theorem in norm

In [IT-01, ITTZ-01], we proved the selfadjoint Trotter–Kato product formula in

norm, i.e. in operator norm:

If A and B are nonnegative selfadjoint operators in a Hilbert space such that their

operator sum C := A+B is also selfadjoint with domain D[C] := D[A]∩D[B], then as

n→ ∞, (e−
t
nAe−

t
nB)n as well as (e−

t
2nBe−

t
nAe−

t
2nB)n converges to e−tC in operator

norm, with optimal error estimate O(n−1). This means nothing but that F (t/n)n →
e−tC in operator norm, with F (t) := e−tAe−tB or F (t) := e−tB/2e−tAe−tB/2.

Applying this result to the Schrödinger semigroup with HV := −1
2∆ + V , where

V (x) ≥ 0 and HV becomes a selfadjoint operator in L2(Rd) with domain D[HV ] =

D[∆] ∩D[V ], we have

(e−
t
n

1
2 (−∆)e−

t
nV )n → e−tHV , in operator norm ,

(e−
t
2nV e−

t
n

1
2 (−∆)e−

t
2nV )n → e−tHV , in operator norm ,

as n→ ∞, with error estimate O(n−1).

The proof of this operator-norm version of Trotter–Kato product formula is thanks

to an operator-norm version of Chernoff’s theorem, even with error estimate, established

also in [IT-01] (cf. [NeZ-99]). Only part of it without error estimate is given here.

Chernoff’s Theorem in operator norm. Let {F (t)}t≥0 be a family of selfadjoint

operators in a Hilbert space with 0 ≤ F (t) ≤ 1. Then if

∥
(
1 + t−1(I − F (t))

)−1 − (1 + C)−1∥ → 0, t ↓ 0,

with C some nonnegative selfadjoint operator, then

∥F (t/n)n − e−tC∥ → 0, n→ ∞.

As for the unitary Trotter product formula in operator norm, it does not in general

hold. For some counterexamples, see [I-03, pp.88–90]. However, there are some special

cases where it holds for the unitary groups for the Dirac operator and the relativistic

Schrödinger operator with suitable potentials. For the details, see [IT-04a].
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4.2.2. Time-sliced approximation for Schrödinger equation in real and imag-

inary time — convergence in norm and pointwise

As touched on only briefly at the end of §4.2.1 just above, the unitary Trotter product

formula in norm, i.e. in operator norm does not hold for the nonrelativistic Schrödinger

operator HV = −1
2∆+ V considered in §4.1.1.

However, we want to discuss a little more how about the convergence in operator

norm and/or pointwise for the integral kernels by time-sliced approximation and to

observe some remarkable fact on the error estimate of this approximation comparing

the cases for the real-time and imaginary-time nonrelativistic Schrödinger equations.

First, for the real-time nonrelativistic Schrödinger equation i ∂
∂tψ(t, x) = HV ψ(t, x),

we visit Fujiwara’s result [Fu-79, 80], in particular, book [Fu-99, Theorems 4.22, 4.26,

5.4.1 (pp.79, 82, 105)] or survey [Fu-12, Theorems 3.3, 3.4 (p.105)], [FuKu-06, Theo-

rem 2(p.843)] (cf. [Ku-04], [FuKu-05]). He made use of a sophisticated way of time-

sliced approximation for Feynman path integral to construct the fundamental solution

e−itHV (x, y), i.e. the integral kernel of the Schrödinger unitary group e−itHV . It is a

much more elaborate time-sliced approximation than the one naturally stemming from

the Trotter product formula.

For explanation, let V (x) be a smooth function satisfying |∂αV (x)| ≤ Cα(1 +

x2)(2−|α|)+/2 for every multi-index α with constant Cα, though V (x) need not be

bounded below. [For instance, this condition is satisfied by V (x) = ±|x|2.] Put

(4.16) (E(t)φ)(x) = (2πit)−d/2

∫
Rd

eiS(t,x,y)φ(y)dy

for φ ∈ C∞
0 (Rd), with action S(t, x, y) =

∫ t

0
[ 12 (dX(s)/ds)2 − V (X(s))]ds, where X(s)

is the classical trajectory starting at X(0) = y and ending at X(t) = x. Then Fujiwara

proved, among others, that, for sufficiently small t > 0, the n→∞ limit of the integral

kernel [E(t/n)n](x, y) of E(t/n)n exists pointwise and is equal to the integral kernel

e−itHV (x, y) of the Schrödinger unitary group e−itHV , i.e. the fundamental solution for

the Schrödinger equation, and further that one has

(4.17) [E(t/n)n](x, y)− e−itHV (x, y) = O(n−1)t2(2πt)−d/2,

as n→ ∞, uniformly in x, y, together with all the x, y–derivatives of the left-hand side,

where O(n−1) is independent of x, y and t. The proof also yields further that

(4.18) ∥E(t/n)n](x, y)− e−itHV ∥L2→L2 = O(n−1).

It turns out that this time-sliced approximation to the Schrödinger unitary group e−itHV

converges both pointwise for the integral kernels and in operator norm, with error

estimate O(n−1).
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Next, in the imaginary-time case, we will give a little more detailed account of

the related situation than what was briefly mentioned in §4.2.1. Assume that V (x)

satisfies the condition that there exist constants ρ ≥ 0 and 0 < δ ≤ 1 such that

V (x) ≥ C(1 + |x|2)ρ/2 and |∂αxV (x)| ≤ Cα(1 + |x|2)(ρ−δ|α|)/2 for every multi-index α

with constant Cα. Here the case δ = 0 is allowed for ρ = 0. Therefore, in particular, it

is the case if V (x) is nonnegative and satisfies the same condition as Fujiwara’s. Then

the operator HV = −1
2∆+V becomes selfadjoint with domain D[HV ] = D[−1

2∆]∩ [V ].

As noted in [I-03], so we can obtain analogous results for the Schrödinger semigroup

e−tHV with the same error estimate O(n−1) in operator norm by the general abstract

theory in [IT-01, ITTZ-01] quoted in §4.2.1, and pointwise for the integral kernels as

briefly sketched in [I-03, p.86].

However, we have in fact proved much more in [IT-04b, 06] that, with F (t) :=

e−
t
2V e−t

1
2 (−∆)e−

t
2V , F (t/n)n converges to e−tHV with the error estimate O(n−2),

sharper than the general optimal O(n−1), both in operator norm and pointwise for

the integral kernels:

∥F (t/n)n − e−tHV ∥L2→L2 = O(n−2),(4.19)

[F (t/n)n](x, y)− e−tHV (x, y) = O(n−2)t2(2πt)−d/2, uniformly on Rd ×Rd,(4.20)

locally uniformly in t > 0. The error estimate O(n−2) here is also seen, in [AzI-08], to be

optimal from below in [AzI-08]. Notice also that this error estimate O(n−2) is sharper

than in the real-time case (4.17), (4.18) of the nonrelativistic Schrödinger equation,

though the two time-sliced approximations E(t/n)n and F (t/n)n are coming from quite

different thoughts and ideas.

Acknowledgment. I am most grateful to Professor Daisuke Fujiwara for illuminating

and fruitful discussion on the issue in §4.2.2 connected with his works.
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[Sa-99] K.-I. Sato: Lévy Processes and Infinite Divisibility, Cambridge University Press 1999.

[S-05] B. Simon: Functional Integration and Quantum Physics, 2nd ed., AMS Chelsea Pub-

lishing, Providence, RI, 2005.

[Y-68] K. Yosida: Functional analysis, Springer-Verlag New York Inc., New York, 2nd ed.

1968.


