## Supporting Information

## Determination of the Electrostatic Potential of Oil-in-Water Emulsion Droplets by Combined Use of Two Membrane Potential-Sensitive Dyes

## Tomoya IWATA,\* Hirohisa NAGATANI,\*\* and Toshiyuki OSAKAI\* $^{\dagger}$

- \* Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
- \*\* Faculty of Chemistry, Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan

<sup>&</sup>lt;sup>†</sup> To whom correspondence should be addressed.

E-mail: osakai@kobe-u.ac.jp



Fig. S1 Optical micrograph of the O/W emulsion prepared from 2 mL of DCE containing 0.005 M TEATCIPB and 50 mL of W containing 0.01 M SDS and 0.001 M TEACI.



Fig. S2 Dependences of  $\xi_i^W$  or  $\xi_i^O$  on  $\Delta_0^W \phi$  in the TPrA<sup>+</sup> system (with r = 1). [TPrACl] = (A) 50; (B) 10; (C) 1 mM; [TPrATClPB] = 5 mM; [SDS] = 10 mM (it is assumed that 5% of SDS is adsorbed at the O-droplet surfaces). In each panel, i = (a) TPrA<sup>+</sup> (W), (b) Cl<sup>-</sup> (W), (c) TPrA<sup>+</sup> (O), (d) TClPB<sup>-</sup> (O), (e) Na<sup>+</sup> (W), (f) DS<sup>-</sup> (W), (g) for all ions, i.e.,  $\xi_{total}$  being given by Eq. (4); the value of  $\Delta_0^W \phi_{eq}$  is indicated in red at the top left corner.



Fig. S3 Dependences of  $\xi_i^W$  or  $\xi_i^O$  on  $\Delta_0^W \phi$  in the TPrA<sup>+</sup> system (with r = 0.04). [TPrACI] = (A) 50; (B) 10; (C) 1 mM; [TPrATCIPB] = 5 mM; [SDS] = 10 mM (it is assumed that 5% of SDS is adsorbed at the O-droplet surfaces). In each panel, i = (a) TPrA<sup>+</sup>(W), (b) Cl<sup>-</sup>(W), (c) TPrA<sup>+</sup>(O), (d) TCIPB<sup>-</sup> (O), (e) Na<sup>+</sup> (W), (f) DS<sup>-</sup> (W), (g) for all ions, i.e.,  $\xi_{total}$  being given by Eq. (4); the value of  $\Delta_0^W \phi_{eq}$  is indicated in red at the top left corner.



Fig. S4 Change of  $\Delta_0^W \phi_{eq}$  with  $-\log([TEACI]/M)$  for the TEA<sup>+</sup> system with [TEATCIPB] = 5 mM and [SDS] = 10 mM. r = (a) 1, (b) 0.5, (c) 0.25, (d) 0.1, (e) 0.04, (f) 0.01, (g) 0.001. It is assumed that 5% of SDS is adsorbed at the O-droplet surfaces.



Fig. S5 Fluorescence spectra of O/W emulsions containing only dye **B** (added initially at 30  $\mu$ M to DCE). [SDS] = 10 mM; r = 0.040. (A): [TPrATClPB] = 5.0 mM; [TPrACl] = 0.5, 1.0, 2.0, 3.0, and 5.0 mM; (B): [TEATClPB] = 5.0 mM; [TEACl] = 0.5, 1.0, 2.0, 3.0, and 5.0 mM. Excitation wavelength = 473 nm.



Fig. S6 The  $F_A/F_B$  vs.  $\Delta_0^W \phi_{eq}$  plot of O/W emulsions containing both dyes A and B for the TEA<sup>+</sup> system.



Fig. S7 The  $F_A/F_C$  vs.  $\Delta_0^W \phi_{eq}$  plot of O/W emulsions containing both dyes A and C for the TPrA<sup>+</sup> system.



Fig. S8 Fluorescence spectra of O/W emulsions containing only dye C (added initially at 40  $\mu$ M to DCE). [SDS] = 10 mM; r = 0.040. (A): [TPrATClPB] = 5.0 mM; [TPrACl] = 0.5, 1.0, 2.0, 3.0, and 5.0 mM; (B): [TEATClPB] = 5.0 mM; [TEACl] = 1.0, 2.0, 3.0, and 5.0 mM. There is no plot for [TEACl] = 0.5 mM, because the O/W emulsion was unstable on this condition. Excitation wavelength = 473 nm.