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Abstract 

Seasonal deposition fluxes of polycyclic aromatic hydrocarbons (PAHs) in the North Basin of Lake 

Biwa were investigated by monthly collecting sediment trap samples through a year from July 2003. Average 

deposition flux of total PAHs was 75 ng cm
-2
 year

-1
, similar to those for other rural area. Deposition fluxes of 

PAHs did varied seasonally. In the vertical mixing period of the lake, late autumn to early spring, the fluxes of 

less volatile PAHs were enhanced while those for volatile PAHs were not. The size difference of particles 

associated with volatile and less volatile PAHs caused the seasonal variation of the fluxes. Oil discharge from 

water delivery equipments may contribute the fluxes of volatile PAHs in summer to autumn. 
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Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are one of the classes of organic compounds that have two 

or more fused benzene rings. The more the rings the PAHs have, the less volatile and less soluble the PAHs are. 

Although PAHs occur naturally, high levels of them are emitted by combustion process by cars, trucks, wood 

burning, coal fired plant, and waste incinerators in both gas and aerosol phase (Khalili et al, 1995; Venkataraman 

et al., 1999; Yamasaki et al., 1982). PAHs are also concentrated in petroleum, lubricants and crank case oil 

(Kimbrough and Dickhut, 2006), and leakage of them results in PAHs contamination in the environment. In the 

past, ubiquitous presence of PAHs has been revealed in the atmosphere, natural water, soil, and sediment 

(Fernandez et al., 2002; Halsall et al., 1997; Laflamme and Hites, 1977; Mielke et al., 2001; Zhou and Maskaoui, 

2003).  

Some PAHs and their derivatives are mutagenic and carcinogenic (Atkinson and Arey, 1994; 

Kennaway, 1955; Nielsen et al., 1983), being included in the USEPA and EU priority pollutants lists. The fate 

of PAHs after released in the environment has been concerned intensively with adverse effect on living creatures 

in mind. Lake sediment serve as one of the major repositories of PAHs and their concentration and distribution 

have been investigated in many locations. Particularly, past and present deposition fluxes of PAHs into lake 

sediment has been revealed and related to the emission intensity of PAHs by human activities (Gschwend and 

Hites, 1981; Su et al., 1998; Wakeham et al., 1980) and adverse effects on aquatic organisms (Boxall and Maltby, 

1997). However, seasonal variation of the deposition fluxes of PAHs and their variation mechanisms have rarely 

been clarified. 

 Lake Biwa, largest lake in Japan, serves as drinking water resource for about 14 million people along 

the watershed of rivers from the lake. The environmental pollution of the lake has been investigated by many 

researchers in various aspects (e.g. Ichiki et al., 1998; Ichiki and Yamada, 1999; Kobayashi et al., 1975; Naito et 

al., 2002). On the other hand, the deposition fluxes of PAHs have not been investigated yet which may change 

seasonally according to seasonal emission intensity of PAHs, seasonal state of the lake, and physicochemical 

characteristics of the individual PAH. 

 In this context, the purposes of this study are (1) to reveal accurate deposition fluxes of PAHs in Lake 

Biwa, and (2) to clarify seasonal variation of the deposition fluxes of them. We collected sediment trap samples 

monthly through a year from July 2003. The sediment trap samples were characterized by X-ray diffraction 

(XRD), Scanning Electron Microscopy (SEM), total organic carbon (TOC) and particle size analyses to reveal 

the seasonal variation mechanisms of the PAHs fluxes. 

 

Materials and Methods 

Lake Biwa is divided into the South and North Basin according to the geomorphology (Fig. 1). The 

surface area of the lake is 674 km
2 
 (58 km

2
 for South, 616 km

2
 for North) and the averaged depth for the South 

and North Basin are respectively 4 m and 43 m with the deepest part being 103.6m in the North Basin.  

Sediment traps were set in the North Basin of Lake Biwa (35°N19.9, 136°E07, Fig. 1) above 5 m from 

the bottom surface of the lake. The depth from the surface water to the sediment trap was about 95 m. The 

biggest river flowing into the lake near the sampling point is the Ado River (Fig. 1) whose drainage area and 

length are 311 km
2
 and 52 km, respectively. Rural town (called Takashima city, with a population and area of 55 
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thousands and 510 km
2
 respectively) is located along the river. The land is mainly used as rice fields and the 

major national street runs along the west margin of the lake near the sampling location. 

The sediment trap was made by tightly connected two vinyl chloride cylinders with bottom end closed 

by a vinyl chloride cover. The entrance of the sediment trap was covered by vinyl net with opening aperture 3 

mm. Vertical lengths and diameter of the cylinder was 50 cm and 10 cm, respectively. 

Sediment trap samples were collected monthly from July 2003 through a year (Table 1). After drawing 

up the sediment trap from the lake, the samples were separated from lake water by centrifugation (3000×g for 40 

min.) and freeze dried. The dried samples were stored in a refrigerator (4 �) before analysis. Surface sediment 

samples of the lake (0.4 cm from the top of the surface) near the sediment trap location was also taken in 

February 14, 2007 and freeze dried. The dried samples were stored in the refrigerator prior to analysis. 

Mean particle size of the sediment trap samples was calculated after analyzing size distribution of the 

samples by a laser diffraction dispersion method (SHIMADZU, SALD 2000-J). The morphological and chemical 

characteristics of the sediment trap samples were revealed by SEM (JEOL JSM-5600) imaging operated at 25.0 

kV in conjunction with energy dispersive X-ray spectrometry (EDS; Oxford Microanalysis Group EDS Link 

Isis). 

TOC of the sediment trap samples was measured by a TOC analyzer (SHIMADZU, TOC-5000) 

equipped with a solid sample combustor (SHIMADZU, SSM-5000A). The accuracy and standard deviation of 

the measurements were tested using lake sediment reference materials (CANMET, LKSD-2). Standard deviation 

of the measurement was 0.12 % and the discrepancy between standard and average measured values was 0.68 %. 

Mineral composition of each sediment trap sample was determined by XRD on a Rigaku powder diffractometer 

using monochromatic CuKα radiation operated at 40 kV and 30 mA. Precipitation amounts during the sampling 

intervals were calculated from the data provided by the national meteorological observatory (at Imazu), nearest 

from the sampling location. 

 Prior to PAHs extraction, the samples were spiked with five deuterated PAH internal standards: 

Nap-d10, Ace-d10, Phe-d10, Pyr-d10, and Bap-d10.  The extraction procedure of PAHs was followed by 

Hayakawa’s method as follows: each sample was immersed with excess amount of benzene/ethanol (3:1,v/v) and 

ultrasonically agitated twice for 20 minutes. The extracts were concentrated to about 0.5 ml by a rotary 

evaporator at low temperature (T＜36 ℃). The concentrated extracts were redissolved by adding 0.8ml of 

acetonitrile and stored for subsequent high performance liquid chromatography (HPLC) analysis. PAHs were 

separated on an Inertsil ODS-P (4.6 i.d.×250 mm) separation column (GL SCIENCE) with 50:50 

acetonitrile/water-100 % acetonitrile gradient, run over 90 min at a flow rate of 1 mL/min. The gradient was 

produced by dual pumps (THOSO, DP-8020), and detection was by a fluorescence detector (SHISEIDO, 

NANOSPACE SI-2). The quantified PAHs (with their abbreviations) and used excitation/emission wavelengths 

(nm) by the fluorescence detector were as follows: Fluorene (Flu, 286/433), Phenanthrene (Phe, 280/340), 

Anthracene (Ant, 250/400), Benzo[a]anthracene (BaA, 264/407), Chrysene (Chr, 264/407), 

Benzo[k]fluoranthene (BkF, 264/407), Benzo[a]pyrene (BaP, 264/407), Benzo[g,h,i]perylene (BghiP, 264/407). 

Relative standard deviations of the measurements were less than 0.13 tested by spiked PAH standards. Average 

recoveries for each spiked PAH standards ranged 50-80 %. 
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Results and discussions 

Deposition fluxes of the particles 

Seasonal deposition fluxes of the particles with the precipitation amount are shown in Fig. 2. The 

prominent increment of the flux (12.3 mg cm
-2
 30 days

-1
) was recognized in August 2003. The increasing trend 

of the deposition fluxes was observed from December 2003 (6.00 mg cm
-2
 30 days

-1
) to April 2004 (13.8 mg 

cm
-2
 30 days

-1
) followed by the sudden drop of the flux in May 2004.  

The high deposition flux observed in August 2003 would be caused by the typhoon No 10 hit around 

the sampling location from August 7 to 10, 2003. The high deposition fluxes from December to April regardless 

of low precipitation amount were caused by the “vertical mixing” of the lake, described below. From spring to 

late autumn, the North Basin of Lake Biwa is thermally stratified forming a themocline (Kumagai et al., 1987), 

above which warmed epilimnion tends to remain there (which gets lighter than hypolimnion below). From late 

autumn to early spring, the thermocline is destroyed by cooled eplimion that sinks downward called “vertical 

mixing” in the lake (Aota et al., 2006; Inouchi, 1990).  

 

Seasonal characteristics of the sediment trap samples 

Fig. 3 shows mean particle size of the sediment trap samples. The mean particle size is comparably 

large (9-12 µm in diameter) during October to December 2003, and tended to decrease until April 2004 (3.3 

µm in diameter). The SEM observations of the sediment trap samples showed the existence of crustal materials 

(whose major chemical composition is Si, Al, Mg and O), diatom cells and other materials (organic matter etc.). 

The marked enrichment of diatom cells was observed in the samples collected from January to May 2004 (Fig. 

4a, 4b). Carbon content was not detected in the diatom cells suggesting decomposition of the organic 

components along their course of deposition (Soumiya et al., 2000). TOC (%) in the sediment trap samples 

increased from September to its highest value (11.03 %) in November 2003 (Fig. 5). The TOC continuously 

decreased from this month until its lowest value (4.06 %) in April 2004, and increased again until the end of the 

sampling period (July 2004) (Fig. 5). XRD analyses for the sediment trap samples show that the mineral 

components of the sample are consisted from quartz, feldspar, kaolinite and mica for all seasons.  

The decreasing trend of the mean particles size from December 2003 to April 2004 in the vertical 

mixing period (Fig. 3) would be explained by facilitated transportation of fine particles, including diatom cells to 

the bottom part of the lake. That is consistent with the decreasing trend of TOC in the corresponding period (Fig. 

5) because of relative enrichment of siliceous diatom cells in the samples. Fig. 6 shows the peak intensity ratio of 

mica (at about 8.8° 2θ) over quartz (at about 26.6°2θ) in the XRD patterns. The higher the ratio is, the higher the 

content of mica relative to quartz in the sample. The marked feature was increasing trend of the ratio from 

January to its highest value in April 2004. The trend would also suggest facilitated transportation of fine particles 

in this period because clay minerals are comparably smaller than quartz (Moore and Reynolds, 1997). 

The mean particles size, morphological characteristics, TOC, and mica/quartz ratio of the samples 

suggest that facilitated transportation of fine particles downward in the vertical mixing period.  

 

Contents and deposition fluxes of PAHs in the sediment trap samples 

 As a general trend, PAHs contents in sediment and their fluxes are higher in urban/industrial area and 
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lower in rural/remote area. The comparison of the PAHs contents and fluxes with those by other studies should 

reveal the pollution level of PAHs in Lake Biwa with an outward-looking perspective. Table 2 shows the 

comparison of average PAHs contents (ng g
-1
) in the sediment trap samples and the surface sediment collected 

with those in other studies. The PAHs contents are generally comparable to those in remote/rural or midsize city 

area. The average deposition flux of total PAHs (ng cm
-2
 year

-1
) in this study was higher than that in remote lakes 

(Gschwend and Hites, 1981), comparable to that in rural area (Ikenaka et al., 2005), and lower than that near 

urban area (Bixian et al., 2001; Latimer and Quinn, 1996) (Table 3).  

Seasonal deposition fluxes of PAHs in the sampling location are shown in Fig. 7. The relatively high 

values of the deposition fluxes of 3 rings PAHs were observed from August to November 2003 while deposition 

fluxes of 5-6 rings PAHs tended to be high from January to April 2004 in the vertical mixing period. The 

variation of the deposition fluxes of 4 rings PAHs seem to behave the intermediate between 3 and 5-6 rings 

PAHs. Giving attention to the August when particles deposition flux was high due to the typhoon event (Fig. 2), 

the deposition fluxes of 3-4 rings PAHs were relatively high (Flu and BaA marked their highest values) while 

those of 5-6 rings PAHs were not.  

  

Seasonal variation mechanisms of the fluxes of PAHs 

PAHs concentration associated with aerosol particles are generally high in winter and low in summer 

(Kaupp and McLachlan, 1999; Kiss et al., 2001; Tamamura et al., 2007; Tang et al., 2005). Such trend was not 

observed for the deposition fluxes of PAHs in the lake especially for volatile PAHs (3 rings). The simple 

atmospheric fallout of PAHs and their direct deposition into the lake sediment would not explain seasonal 

variation of the deposition fluxes of PAHs.  

Atmospheric dry and wet deposition fluxes of total PAHs in the sampling region would be comparable 

to those at rural area for similar setting. We assume those fluxes in the sampling location comparable to those of 

Wolf Neck (a peninsula jutting about 4 km into Casco Bay) measured by Golomb et al. (2001). From their data, 

total atmospheric deposition flux of PAHs in the sampling location are estimated to be 30 ng cm
-1
 year

-1
 (10 ng 

cm
-1
 year

-1
 for dry and 20 ng cm

-1
 year

-1
 for wet deposition, assuming annual precipitation amount of 1900 mm 

in our sampling location) which is less than the total deposition flux of PAHs (74 ng cm
-2
 year

-1
 on average, 

Table 3) in the sampling location. Atmospheric deposition flux of PAHs would not solely compensate for the 

total deposition flux of PAHs in Lake Biwa. Terrestrial runoff particles (e.g. automobile exhaust, asphalt, tire 

particles, humic substances, crustal materials) must be considered as another source of PAHs (Hoffman et al., 

1984; Su et al., 1998; Wakeham et al., 1980; Yang, 2000). 

The aerosol particles are generally smaller than 10 µm (Mészáros, 1999), while runoff particles are 

usually in the size range from 50-2000 µm (Yang et al, 1999; Lee et al., 2005). Less volatile PAHs (5-6 rings) 

tend to distribute in pyrolytic aerosol particles (Ross and Oros, 2004; Lee et al., 2005). On the other hand, 

volatile PAHs (3 rings) tend to distribute not only in the (fine) aerosol particles, but also in (coarse) runoff 

particles (Hoffman et al., 1984; Lee et al., 2005; Takada et al., 1990; Venkataraman et al., 1999). Consistently, 

Simpson et al. (1998) and Oen et al., (2006) pointed out that less volatile PAHs tend to be enriched in fine 

particles while volatile PAHs tend to distribute in coarse particles in coastal sediment.  

The mechanisms for coarser particles to be enriched in volatile PAHs include (1) While less volatile 



 6

PAHs tend to remain in the (originally sorbed) soot particles, volatile PAHs mainly distribute in gas phase and 

secondary sorb on coarser particles in the surface environment (Venkataraman et al., 1999) to be deposited as 

coastal sediment. (2) Street dust particles are generally coarser than aerosol particles and contain tar-like 

materials (Wakeham et al., 1980) which could be the source of Phenanthrene rich particles (Hoffman et al., 

1984).  

The increased deposition fluxes of less volatile PAHs in the vertical mixing period (Fig. 7) would be 

explained by facilitated transportation of (fine) aerosol particles which are enriched with less volatile PAHs. 

When thermocline is developed, coarse particles (which are enriched with volatile PAHs) would exclusively be 

deposited resulting in the relatively high fluxes of the volatile PAHs in the period (Fig. 7). In August 2003, 

enhanced deposition fluxes of 3-4 rings PAHs would be induced by the increased deposition flux of runoff 

particles due to the typhoon event in this month. In addition, discharge of oil (which is enriched with volatile 

PAHs (Wang et al., 1997; Wang et al., 2001)) from water delivery equipments such as cruise ships, personal 

water crafts and ferries (Davenport and Davenport, 2006) may contribute to enhance the deposition fluxes of 

volatile PAHs from summer to early autumn. 

Phenanthrene and Anthracene are two structural isomers of which Phenanthrene is more 

thermodynamically stable compound than Anthracene. Phe/Ant ratio of sediment is used as source indicator of 

the PAHs with higher ratio suggesting petrogenic origin rather than pyrolytic aerosol origin (Tam et al, 2001; 

Yang, 2000). Reported values of Phe/Ant rations (Fang et al., 2004; Omar et al., 2002) are generally higher for 

runoff particles than ambient aerosols. Tarlike particles resembling asphalt (Wakeham et al., 1980) could be a 

reason of relative enrichment of Phe compared to Ant in runoff particles. Fig. 8 illustrates seasonal Phe/Ant 

ratios of the sediment trap samples. The ratios tended to be lower in the vertical mixing period suggesting 

relative enrichment of pyrolytic aerosols in this period. This effect may also have been contributed by the 

contamination of oil-derived Phe (rather than pyrolytic Ant) in sediment trap samples discharged from the water 

delivery equipments from summer to early autumn. 

 Seasonal deposition fluxes of PAHs indicate that PAHs of any origins are deposited as lake sediment 

due to vertical mixing of the lake every year. Lake sediment should serve as annual PAHs repository. Detailed 

analyses of PAHs in core samples would reveal past annual fluxes of PAHs (pollution history by PAHs) and 

related human activities around the lake. 

 

Conclusion 

Seasonal deposition fluxes of PAHs are influenced by the size of the particles with which they are 

associated, and seasonal condition of the lake. In the vertical mixing period of the lake, deposition fluxes of 

(fine) aerosol particles are facilitated resulting in enhanced deposition fluxes of less volatile PAHs. Volatile 

PAHs are relatively enriched in (coarse) run off particles and their deposition fluxes are enhanced from summer 

to early autumn, especially in storm events. The contamination of oil-derived PAHs from water delivery 

equipments such as cruise ships, personal water crafts and ferries may also contribute deposition fluxes of 

volatile PAHs in this period. PAHs of any origin are entirely deposited due to vertical mixing of the lake every 

year. PAHs deposition fluxes of the North Basin of Lake Biwa is comparable to those in rural area in other 

locations. 
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Dates of installation and withdrawal of sediment trap. 
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Figure captions 

Fig. 1 

Geomorphological map of Lake Biwa and sampling location. 

 

Fig. 2 

Seasonal change in deposition fluxes of particles and precipitation amount. 

 

Fig. 3 

Seasonal change in mean particle size of sediment trap samples 

 

Fig. 4 

Scanning electron microscope (SEM) image of sediment trap samples collected in (a) October 

2003 and (b) March 2004. Diatom cells are dominantly recognized in figure 4b while those 

are only sparsely recognized in figure 4a. 

 

Fig. 5 

Seasonal change in total organic carbon (TOC) (%) of sediment trap samples. 

 

Fig. 6 

Seasonal change in peak intensity ratio (mica/quartz) of sediment trap samples in X-ray 

diffraction (XRD) analyses. 

 

Fig. 7 

Seasonal change in deposition fluxes of Polycyclic Aromatic Hydrocarbons (PAHs) 

 

Fig. 8 

Seasonal change in Phenanthrene(Phe)/Anthracene(Ant) ratio of sediment trap samples. 
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