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Abstract

In the present Letter, novel molecular dynamics methods compatible with

corresponding quantum Monte Carlo methods are developed. One is a vari-

ational molecular dynamics method that is a molecular dynamics analog of

quantum variational Monte Carlo method. The other is a variational path

integral molecular dynamics method, which is based on the path integral

molecular dynamics method for finite temperature systems by Tuckerman et

al., J. Chem. Phys. 99, 2796 (1993). These methods are applied to model

systems including the liquid helium-4, demonstrated to work satisfactorily

for the tested ground state calculations.

1. Introduction

Quantum Monte Carlo (QMC) methods have recently attracted great

interest in the field of computational physics and chemistry as tools for accu-

rately calculating ground state properties of many body systems [1, 2, 3, 4].

Variational Monte Carlo (VMC) method [5], for example, is used to calculate
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expectation values of physical quantities using a trial wavefunction of the sys-

tem. The more sophisticated diffusion Monte Carlo (DMC) method [6, 7] is

a projector approach in which a stochastic imaginary time evolution is used

to improve a starting trial wavefunction. The QMC methods including the

VMC and DMC methods have successfully been applied to various quantum

systems ranging from quantum liquids like helium to electronic structure of

atoms and molecules [1, 4]. In the present study, we focus on the variational

Monte Carlo and a variational path integral [1, 8] methods; the latter is

closely related to the diffusion Monte Carlo method.

In this Letter, we develop novel molecular dynamics methods for two

quantum Monte Carlo methods. One is a variational molecular dynamics

(VMD) method, which is a molecular dynamics analog of the variational

Monte Carlo method. Square modulus of a trial wavefunction used in the

VMC method is reinterpreted to be a canonical distribution at a fictitious

temperature. Then, a molecular dynamics method is constructed using an

extended system method like a Nosé-Hoover chain thermostat [9] to gener-

ate the fictitious canonical distribution. The other is a molecular dynamics

method for the variational path integral method [1]. The variational path

integral, which is also called path integral ground state [8], is a method

to numerically generate exact ground state of many body systems. In the

present study, we construct a molecular dynamics algorithm to carry out the

variational path integral calculations on the basis of path integral molecular

dynamics method developed for finite temperature quantum systems [10, 11].

We call it a variational path integral molecular dynamics (V-PIMD) method.

Then, we apply the VMD and V-PIMD methods to model systems for show-
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ing reliability of the present algorithms.

2. Methodology

2.1. Variational molecular dynamics

We start to consider a system consisting of N particles whose coordi-

nates are collectively represented to be R. The ground state of the system

is described using a trial wavefunction ΦT (R,α) where α denotes a set of

variational parameters. Expectation value of a hamiltonian Ĥ using the trial

wavefunction reads [1, 4]

〈H〉 =

∫
dRΦ∗

T (R)ĤΦT (R)∫
dR|ΦT (R)|2

(1)

=

∫
dR|ΦT (R)|2EL(R)∫

dR|ΦT (R)|2
,

where EL(R) represents a local energy defined by

EL(R) =
ĤΦT (R)

ΦT (R)
. (2)

The variational Monte Carlo method is designed so as to generate coordi-

nates R according to a distribution function ρ(R) ∝ |ΦT (R)|2. Then, the

expectation value of the hamiltonian Eq. (1) can be calculated by the local

energy averaged along a Monte Carlo trajectory. Here, we consider a molec-

ular dynamics method to generate the distribution function ρ(R). First, we

define an effective potential VVMC(R) using the distribution function ρ(R):

ρ(R) ≡ e−βVVMC(R), (3)

where a parameter β is a fictitious inverse temperature. The distribution

function ρ(R) can be regarded as a canonical distribution at the fictitious β.
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To sample the distribution, we introduce the following classical hamiltonian:

HVMC =
N∑

i=1

p2
i

2m′
i

+ VVMC(R), (4)

where pi is a fictitious momentum of an i-th particle and m′
i is an associ-

ated fictitious mass. Then, we can obtain equations of motion based on the

Hamilton equation. Furthermore, we attach a single Nosé-Hoover chain ther-

mostat to the system for generating the canonical distribution Eq. (3). The

resulting thermostatted equations of motion are basic equations of the varia-

tional molecular dynamics method. Then, as in the variational Monte Carlo

method, we can obtain quantum mechanical expectation values of various

physical quantities using a molecular dynamics trajectory.

2.2. Variational path integral molecular dynamics

In this subsection, a method to systematically improve the description of

the system is considered. The exact ground state of the system, |Ψ0〉, can be

obtained using a trial wavefunction |ΦT 〉 by the following relation: [1, 4]

|Ψ0〉 = lim
β→∞

e−
β
2
Ĥ |ΦT 〉, (5)

where β is an imaginary time [1]. Here, we refer to a scalar product of the

above exact wavefunction as a pseudo partition function Z0 [12], which plays

a central role to construct a variational path integral:

Z0 = 〈Ψ0|Ψ0〉 = 〈ΦT |e−βĤ |ΦT 〉 (6)

=

∫ ∫
dRdR′〈ΦT |R〉〈R|e−βĤ |R′〉〈R′|ΦT 〉,

where we use the closure relation for the coordinate basis:
∫

dR|R〉〈R| = 1.

A matrix element 〈R|e−βĤ |R′〉 in Eq. (6) is found to be the same as a density
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matrix at the inverse temperature β, ρ(R,R′; β). The density matrix can be

written on the basis of the discretized path integral as [1]

ρ(R,R′; β) = 〈R|[e−∆τĤ ]M |R′〉 (7)

=

∫
· · ·

∫
{

M−1∏
s=1

dR(s)}
M−1∏
s=0

〈R(s)|e−∆τĤ |R(s+1)〉

∝
∫

· · ·
∫
{

M−1∏
s=1

dR(s)}e−S({R(s)};∆τ),

where ∆τ = β/M and S({R(s)}; ∆τ) is a discretized imaginary time action.

Explicit expression of the action is dependent on an approximation on a

short time propagator 〈R|e−∆τĤ |R′〉. In the present study, the primitive

approximation [1] is adopted. Then, the pseudo partition function can be

written by

Z0 ∝
∫

· · ·
∫

{
M∏

s=0

dR(s)}ΦT (R(0))e−S({R(s)};∆τ)ΦT (R(M)). (8)

As in the standard path integral method for finite temperature systems [13],

the pseudo partition function can be regarded as a configurational integral of

classical polymers. However, in the variational path integral, the classical iso-

morphic systems consist of open chain polymers. Furthermore, distributions

of end-point coordinates at s = 0 and M are affected by the trial wave-

function ΦT (R(0)) and ΦT (R(M)), respectively. Here, we consider a molecular

dynamics method to sample configurations of the above isomorphic polymers.

First, we define the following classical hamiltonian:

HV−PIMD =
M∑

s=0

N∑
i=1

(p
(s)
i )2

2m′
i

+
S({R(s)})

β
− ln ΦT (R(0))

β
− ln ΦT (R(M))

β
, (9)
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where p
(s)
i denotes a fictitious momentum of an i-th particle at an s-th time

slice and m′
i is a fictitious mass of the i-th particle. Using the above hamil-

tonian, we can derive equations of motion based on the Hamilton equation.

Then, to generate the distribution compatible with Eq. (8), we attach a

single Nosé-Hoover chain thermostat to each degree of freedom. The result-

ing equations of motion are basic equations for the variational path integral

molecular dynamics (V-PIMD) method. In the present study, we use staging

coordinates [10] to describe the polymer configurations for enhancing sam-

pling efficiency. The standard definition [11, 14] on the staging variables and

associated staging masses m(s) are adopted.

It is commented that in Eq. (9), the logarithm of the trial wavefunction is

needed to define HV−PIMD. However, trial wavefunctions can not be positive

everywhere, for example, for fermionic wavefunctions. Although a formally

exact formulation is possible using the absolute value of the wavefunction,

this scheme suffers from the so-called “sign problem” that is a problem com-

mon to projector Monte Carlo methods such as the diffusion Monte Carlo [4].

Thus, one usually resort to the fixed node approximation [4, 7]; it gives

ground state energies that satisfy a variational principle and are usually very

accurate, which is used in almost all current large scale applications of the

diffusion Monte Carlo method [4]. Since in the fixed node approximation, a

part of configuration space with the same sign of the trial wavefunction is

sampled, this approximation may provide a practical route to construct the

variational path integral molecular dynamics method; however, numerical

studies are needed to show that the molecular dynamics calculations can be

performed stably.
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3. Results on pilot calculations

3.1. Harmonic oscillator

We first consider a one-dimensional harmonic oscillator as a model sys-

tem. The hamiltonian of the oscillator is written as

Ĥ = − ~2

2m

d2

dx2
+

1

2
mω2x2. (10)

Hereafter, we use units by which m = ω = ~ = 1. To describe the ground

state of the oscillator, the following trial wavefunction is employed:

ΦT (x) ∝ e−αx2

, (11)

where α is a variational parameter. When the parameter α = 0.5, the trial

wavefunction becomes exact. The expectation value of the hamiltonian with

the trial wavefunction can be calculated analytically as

〈Ĥ〉 =
1

2

(
α +

1

4α

)
. (12)

On the other hand, the local energy Eq. (2) for the above trial wavefunction

has the following form:

EL(x) = α +

(
1

2
− 2α2

)
x2. (13)

Here, we summarize computational details on the oscillator calculations.

For the variational molecular dynamics (VMD) calculations, the fictitious

inverse temperature β was chosen to be 1.0 and the fictitious mass was set

to be equal to the oscillator’s mass: m′ = m = 1.0. The equations of motion

were integrated with a time step ∆t = 2π/100. The VMD calculations have

been performed for various values of the variational parameter α. For each
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α, the VMD calculation was performed 500000 steps. On the other hand, for

the variational PIMD, the imaginary time increment ∆τ was chosen to be 0.1

and the number of time slices M = 100, and then the total imaginary time

β = 10.0. As noted in Sec. 2.2, the V-PIMD calculation was performed using

the staging variables. The fictitious masses for the staging variables m(s)′

were set to be equal to the corresponding staging masses except end-point

coordinates (at s = 0 and M) where m(0)′ = m(M)′ = γm. The parameter

γ = 0.01 was used. The V-PIMD calculation was performed 500000 steps

with a time increment ∆t = 2π/(100ωM) where ωM =
√

M/β.

In Fig. 1, we show the total energy of the oscillator for various α calcu-

lated by the VMD method. It is found that the VMD results are in good

agreement with the analytical results for all the cases presented. Since the

trial wavefunction becomes exact at α = 0.5, the total energy has a minimum

at the parameter value. We can find the variance of the energy decreases with

approaching the exact quantum state, and the variance vanishes at α = 0.5.

This corresponds to the well known zero variance property [1, 4] of the vari-

ational Monte Carlo method. We next show the averaged potential energy

as a function of the imaginary time τ obtained by the V-PIMD method. The

variational parameter of the wavefunction at s = 0 and M was chosen to

be α = 0.7 for showing how the poor description of the ground state is im-

proved by the variational path integral. As seen in Fig. 2, starting from an

initial potential energy at τ = 0, the energy quickly decreases and reaches

a plateau around τ = 2.0 where the energy is the exact ground state value.

Thus, in the time range τ = 2.0 ∼ 8.0, the system is in the exact ground

state. Actually, the total energy was calculated to be 0.500±0.005 using the
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mixed estimator derived by the following relation [4]:

E0 =
〈ΦT |Ĥe−βĤ |ΦT 〉
〈ΦT |e−βĤ |ΦT 〉

, (14)

where E0 is the ground state energy. The variational PIMD energy is found

to be in perfect agreement with the exact ground state energy. The following

probability distribution of the oscillator is also presented in Fig. 3:

P (x) =
|Ψ0(x)|2∫
dx|Ψ0(x)|2

. (15)

While the probability distribution using the trial wavefunction with α =

0.7 shows poor description of the system, the V-PIMD is found to give the

numerically exact distribution of the oscillator.

Here, we comment on how large β one need to obtain the exact ground

state when a good trial wavefunction is not available. For an enough large

β, Eq. (14) can be written by

〈ΦT |Ĥe−βĤ |ΦT 〉
〈ΦT |e−βĤ |ΦT 〉

= − d

dβ
ln〈ΦT |e−βĤ |ΦT 〉 (16)

= E0 + O(e−β∆E1),

where ∆E1 is the energy difference between the first excited state and the

ground state. The above relation can be verified using the trial wavefunction

expanded by eigenfunctions of the hamiltonian Ĥ. Using the above relation,

β ≈ 1/∆E1 is needed to relax to the exact ground state. In the case of

the harmonic oscillator example, β ≈ 1 since ∆E1 = ~ω = 1 in the units

employed.

3.2. Liquid helium-4

Next, we consider the liquid helium-4 at the ground state as a realistic

application. To describe the liquid state of the helium-4, the following trial
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wavefunction is employed:

ΦT (R) =
N∏

i<j

e
− 1

2
( b

rij
)5

, (17)

where b is a variational parameter. In the present study, b = 3.07 Å was

adopted for both the VMD and V-PIMD calculations [8]. The density of the

system was set to be the experimental equilibrium value ρ = 0.0218 Å−3. The

system consisted of N = 108 helium atoms in a cubic box under the periodic

boundary condition. The interatomic interaction was represented by the pair

interaction developed by Aziz and coworkers [15]. For the VMD calculation,

the fictitious inverse temperature was chosen to be 1.0 and the fictitious mass

was set to be the physical mass of the helium-4 atom. The VMD calculation

was carried out 300000 steps with a time increment ∆t = 20 fs after an

equilibration period. On the other hand, for the V-PIMD calculation, the

imaginary time increment was set to be ∆τ = 0.001 K−1 and M = 400.

Then, the total imaginary time was β = 0.4 K−1. The fictitious masses were

chosen as in the case of the oscillator in Sec. 3.1 with γ = 0.02. The V-PIMD

calculation was performed 500000 steps with a time increment ∆t = 10 fs.

Figure 4 shows the potential energy of the helium per atom as a function of

the imaginary time τ by the V-PIMD calculation. After an initial transient

regime, the potential energy is found to relax to a plateau value around

τ = 0.1 K−1 where the energy can be expected to be the exact ground-state

potential energy for the given hamiltonian. Then, in the imaginary time

interval τ = 0.1 ∼ 0.3 K−1, the system is in the ground state of the helium-4.

Using the mixed estimator, the total energy was calculated to be −7.33 ±

0.01 K, which was in good agreement with the experimental value −7.17
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K [16]. To see atomistic structural correlation in the ground state, the radial

distribution function g(r) is presented in Fig. 5. The radial distribution

function is defined using the ground state wavefunction as follows:

g(r12) =
N(N − 1)

ρ2

∫
dr3 · · · drN |Ψ0(r1, . . . , rN)|2∫
dr1 · · · drN |Ψ0(r1, . . . , rN)|2

. (18)

As shown in the figure, the g(r) by the V-PIMD calculation is more struc-

tured than the VMD counterpart. The V-PIMD result is found to be in

good agreement with the experimental g(r) [17], indicating the numerical

improvement of the trial wavefunction by the variational path integral.

4. Discussion

In this section, we compare the present methods with other related quan-

tum Monte Carlo methods. We first discuss the variational molecular dy-

namics method. For comparison, we have performed a set of the variational

Monte Carlo calculations for the liquid helium. The conventional Metropo-

lis [5, 18] and smart Monte Carlo [19, 20] methods have been implemented;

in the latter method, the force on a selected atom is used to enhance sam-

pling efficiency in configuration space. In one MC step, we performed N

attempts to displace atoms; each VMC run consisted of 300000 MC steps.

We also performed a VMD calculation of the liquid helium for 300000 steps

with ∆t = 40.0 fs. Using this time increment, the average error of the energy

per step was evaluated to be about 0.02 % in the total energy. The mean

square displacement of a tagged atom was calculated as a function of MD or

MC step; this quantity provides a measure to see sampling efficiency in con-

figuration space. A self-diffusion coefficient D is defined by the slope of the
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mean squre displacement. In Fig. 6, the calculated diffusion coefficients by

the VMC and VMD methods are presented. Using the standard Metropolis

method, the diffusion coefficient becomes large with decreasing the accep-

tance ratio Pacc. In the case of Pacc = 31%, the diffusion coefficient is almost

the same as that by the VMD calculation. The largest D presented in the

Figure is provided in the case of Pacc = 15%, which is 1.3 times larger than

the VMD result. In this case, the standard MC method is 1.3 times more

efficient than the VMD method. On the other hand, the diffusion coefficient

as a function of the acceptance ratio has a maximum around Pacc = 50% by

the smart MC method. In this case, the smart MC method is 1.2 times more

efficient than the VMD method. Here, we present the CPU cost needed for

the VMC and VMD calculations. The averaged amounts of the CPU time

for 300000 steps were 500, 659, and 192 seconds for the standard MC, smart

MC, and VMD methods, respectively, using a Xeon 3.0 GHz workstation.

The present VMC codes were written using the part of the potential and

force calculations in the VMD code. In the present implementation of the

MC methods, the potential between a selected atom and other atoms, and

the force on a selected atom for the smart MC, were calculated for old and

suggested configurations in each trial move, straightforwardly. The VMC

and VMD codes were compiled by an intel C compiler without optimiza-

tion options. We define the following factor to discuss the computational

cost: ζ = tVMC/tVMD where tVMC and tVMD represent the amount of CPU

time needed for the VMC and VMD calculations; ζ = 2.6 and 3.4 for the

standard and smart MC methods, respectively. We also define an effective

diffusion coefficient D? = D/ζ which measures computational efficiency of
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the VMC method compared with the VMD method. Owing to the factor

ζ, the effective diffusion coefficient by the VMD method (ζ = 1) is larger

than those by the VMC methods, although the value of ζ depends on the

details of the codes. These results indicate that the computational efficiency

of the VMD method can be competitive with that of the VMC method for

the present system.

Here, we move on to the variational path integral molecular dynamics

method. The V-PIMD method is constructed on the basis of the path in-

tegral molecular dynamics (PIMD) method developed for finite temperature

systems. Tuckerman et al. [10] have shown that the PIMD method can be

almost as efficient as the path integral Monte Carlo method. Then, the effi-

ciency of the V-PIMD method is likely to be competitive with the variational

path integral sampled by the Monte Carlo method [1, 8], although direct nu-

merical comparison may be required for quantitative discussion. Compared

with the diffusion Monte Carlo (DMC) by which the ground state energy can

be calculated accurately, the variational path integral has the advantage of

providing relatively easily expectation values for physical quantities that do

not commute with the hamiltonian [8]. Although the variational path integral

needs a trial wavefunction ΦT as in DMC, it has been demonstrated [8] that

results for quantities other than the energy are considerably less sensitive to

the choice of ΦT than in DMC.

Finally, the advantage of the molecular dynamics method over the Monte

Carlo method is summarized. In MD, unlike the standard MC method, all

the coordinates are simultaneously updated; this feature enables us to use

efficient parallel computation algorithms developed for the classical MD [21],
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which are useful to perform large scale quantum simulations. Moreover, in

V-PIMD, the force calculations at each time slice can almost be performed

independently. Thus, the V-PIMD method can efficiently be implemented in

parallel computations. Although the same parallel computation procedures

can be used in MC, a sequence of local MC moves corresponding to one MD

step is difficult to perform in parallel. It is noted that an efficient global

update of the coordinates is possible by a Monte Carlo method called the

hybrid Monte Carlo (HMC) [10, 22]; this is a combined method of MD and

MC. In HMC, trial configurations are generated by equations of motion as

in MD. The trial configurations are accepted according to an appropriate

Metropolis criterion by which the errors arising from the finite time step ∆t

are eliminated. In HMC, one can use a time step ∆t which is too long for

MD. However, one can not make the time step for a single HMC move too

long, because the acceptance would become very small. As a consequence,

the performance of HMC is not dramatically better than that of the corre-

sponding MD. Moreover, the acceptance probability of HMC moves with a

fixed ∆t decreases with the systems size, because the root mean square error

in the energy increases with
√

N [18]; on the other hand, the stability of the

MD algorithm does not deteriorate with N . Thus, for large systems, MD

can be more efficient than HMC, although there is room for methodological

improvements.

5. Concluding remarks

Variational molecular dynamics (VMD) and variational path integral

molecular dynamics (V-PIMD) methods have been developed. These meth-
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ods are designed to accurately calculate ground state properties of many

body systems using suitably introduced equations of motion. The VMD is a

molecular dynamics analog of the variational Monte Carlo method. Square

modulus of a trial wavefunction is reinterpreted to be a fictitious canonical

distribution, then a molecular dynamics method for generating the canonical

distribution is constructed. On the other hand, the V-PIMD is a molecu-

lar dynamics algorithm for a variational path integral method which can be

used to numerically obtain an exact ground state. A molecular dynamics

algorithm is constructed on the basis of the path integral molecular dynam-

ics method developed for finite temperature systems. Two model systems

have been tested as pilot calculations of the present methods. One is a one-

dimensional harmonic oscillator as a simple model system that is analytically

solvable. The VMD method perfectly works for various values of a variational

parameter in the trial wavefunction employed and recovers the zero variance

property of the total energy. On the other hand, the V-PIMD method is

demonstrated to generate the exact ground state of the oscillator; total and

potential energies and distribution function of the oscillator are found to

be in good agreement with analytical results. The other model system is

the liquid helium-4 as a realistic application. Total energy by the V-PIMD

method agrees well with experimental value. Radial distribution function by

the V-PIMD is found to be much closer to experimental one than that by

the VMD method. It indicates that the description of the ground state is

largely improved by the V-PIMD method, starting from a trial wavefunction

used in the VMD calculation.

In the present study, the molecular dynamics methods have been applied
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to the simple model systems. Methodological improvements are important

for large scale quantum simulations. For example, in V-PIMD, higher or-

der factorization schemes of the density matrix [23, 24, 25] may be useful

to reduce the number of time slices. In the higher order schemes, however,

we need derivatives of the interaction potential; the use of the higher order

approximations is computationally more expensive than that of the primi-

tive approximation (PA). It has been suggested [23] that using the molecular

dynamics method, computational cost can be reduced close to that by PA

using multiple time step algorithms, in which the higher order terms by the

derivatives do not have to be evaluated at every time step. The hybrid Monte

Carlo algorithm [10, 22], which can be easily constructed by the present MD

method, also may provide an efficient way to perform variational path in-

tegral simulations with the higher order approximations; short MD runs to

generate trial configurations are performed without the higher order terms,

which are included in the Metropolis criterion. On the other hand, it is inter-

esting to extend the variational molecular dynamics method for dynamically

searching variational parameters’ space. This could be realized by choosing

the variational parameters to be additional dynamic variables and employing

an adiabatic molecular dynamics technique developed by Rosso et al. [26].

These issues will be addressed in the near future.
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Figure 1: Total energy of the one-dimensional harmonic oscillator at the ground-state

as a function of the variational parameter α. Green solid curve indicates the analytical

result of the total energy using the trial wavefunction, Eq. (13). Blue open circles are

the variational molecular dynamics results. The error bar is expressed at 95 % confidence

level, and is smaller than the size of the corresponding data symbol when it is not shown.
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Figure 2: Averaged potential energy of the one-dimensional harmonic oscillator as a func-

tion of the imaginary time τ . Blue solid line is for the variational path integral molecular

dynamics results. Green dashed line indicates the exact quantum mechanical potential

energy of the oscillator, 0.25. The error bar is expressed at 95 % confidence level, for the

V-PIMD potential energy at τ = 5.0.
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Figure 3: Spatial distribution of the one-dimensional harmonic oscillator as a function

of the coordinate x, P (x). Blue open circles are for variational path integral molecular

dynamics results. Blue solid line is for the exact P (x) of the oscillator and red dashed line

for P (x) using the trial wavefunction with the variational parameter α = 0.7.
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Figure 4: Averaged potential energy of the liquid helium-4 per atom as a function of the

imaginary time τ . Blue solid line is for the variational path integral molecular dynamics

result and blue dashed line indicates the averaged potential energy at τ = 0.2. The error

bar is expressed at 95 % confidence level for the potential energy at τ = 0.2.
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Figure 5: Radial distribution function of the liquid helium-4, g(r). Blue solid line is for

the variational path integral molecular dynamics result and red dashed line is for the

variational molecular dynamics result with the variational parameter b = 3.07 Å. Green

open circles are for the experimental results [17].
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Figure 6: Self-diffusion coefficient D as a function of the acceptance ratio Pacc for the

liquid helium, which is defined by the slope of the mean square displacement of a tagged

atom as a function of MC or MD step. Red triangles are the results by the standard

Metropolis Monte Carlo method and green circles are by the smart Monte Carlo method.

Dashed blue line indicates the variational molecular dynamics result.
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