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ABSTRACT 30 

The stable carbon isotopic compositions (δ13C) and chain-length distribution [ACL and 31 

n-C31/(n-C29+n-C31)] of sedimentary leaf wax n-alkanes were investigated across the 32 

Cretaceous–Paleogene (K–Pg) boundary at Loma Capiro, Central Cuba, to reconstruct 33 

paleoenvironmental changes that are recorded in terrestrial higher plants. The 34 

stratigraphic profiles of the n-alkane δ13C values show a negative excursion in the 35 

lowermost Paleocene, although its magnitude is much smaller (~0.3‰) than the global 36 

signals (1.5 to 2.0‰) in the surface ocean-atmospheric carbon reservoir. Relations 37 

between the n-alkane δ13C values and the C31/(C29 + C31) ratios exhibit two different 38 

trends, suggesting that our δ13C records are likely affected by two types of 39 

paleoenvironmental factors in addition to the δ13C variations in the exogenous carbon 40 

reservoir. Rare occurrence of terrigenous organic matter that is usually transported by 41 

rivers suggests that the n-alkanes at Loma Capiro are likely to have been transported by 42 

trade winds, which recorded paleoenvironmental conditions of the northwestern part of 43 

the African continent. The n-alkane δ13C values show a parallel decrease with the ACL 44 

and C31/(C29 + C31) values in the first 37,000 yrs following the K–Pg boundary. Such 45 

decreases are consistent with plant physiological responses to reduced net evaporation, 46 

suggesting a possible influence of the impact-induced warm-humid condition in the 47 

early Paleocene. In contrast, the n-alkane δ13C values are negatively correlated with the 48 

C31/(C29 + C31) ratios from 40,000 to 67,000 yrs after the K–Pg boundary. This time 49 

period matches well with that required for the recovery of terrestrial floras from the 50 

K–Pg mass extinction to those with diversity equivalent to the late Cretaceous, 51 

suggesting that the n-alkane signals are also likely affected by the plant diversification 52 
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process after the mass extinction. 53 

 54 
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1. Introduction 57 

The mass extinction event at the Cretaceous–Paleogene (K–Pg) boundary is 58 

one of the five largest mass extinction events in the Phanerozoic. More than 15% of 59 

fossil families went extinct in the ocean (Raup and Sepkoski, 1982), and 15% to 57% of 60 

diverse Cretaceous flora abruptly disappeared on land (Orth et al., 1981; Wolfe and 61 

Upchurch, 1987; Johnson et al., 1989; Vajda and Raine, 2003; Wilf and Johnson, 2004; 62 

Nichols, 2007). The stable carbon isotopic compositions (δ13C) of the surface ocean (e.g. 63 

Hsü et al., 1982; Gilmour et al., 1987; Keller and Lindinger, 1989; Meyers and Simoneit, 64 

1990; Meyers, 1992; Hollander et al., 1993) and terrestrial sedimentary carbon 65 

(Schimmelmann and DeNiro, 1984; Arinobu et al., 1999; Arens and Jahren, 2000, 2002) 66 

show an abrupt negative excursion at the K–Pg boundary, suggesting a large impact of 67 

this mass extinction on global carbon cycles. Combined stratigraphical, 68 

micropaleontological, petrological and geochemical data show that this mass extinction 69 

was triggered by a large asteroid impact at Chicxulub on Yucatan peninsula, Mexico 70 

(Schulte et al., 2010). 71 

The δ13C values of terrestrial higher plants are primarily controlled by the 72 

isotopic composition of atmospheric CO2 (Farquhar et al., 1982; Arens et al., 2000). 73 

Therefore, stratigraphic records of plant δ13C values can provide good constraints on the 74 

rate and magnitude of disruption in the global carbon cycles. The δ13C excursion in 75 

sedimentary leaf wax n-alkanes implies a loss of at most 24% of the Cretaceous 76 

biomass at the boundary (Arinobu et al., 1999). 77 
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On the other hand, the δ13C values of terrestrial higher plants are also 78 

sensitive to isotopic fractionations that reflect ecological and physiological responses to 79 

their growing environment (Farquhar et al., 1989; Arens et al., 2000), as well as 80 

taxonomic variations within contributing plant communities (Arens and Jahren, 2002). 81 

Because abundant evidences suggest a global turnover in vegetation (Vajda and Raine, 82 

2003) and changes in continental climate (Wolfe and Upchurch, 1987; Wolfe, 1990; 83 

Lehman, 1990) at the K–Pg boundary, these changes might have affected the δ13C 84 

values of terrestrial higher plants. In fact, the magnitudes of the δ13C excursions 85 

recorded in terrigenous organic matter across the K–Pg boundary range from –1.1 to 86 

–2.8‰ (Arinobu et al., 1999; Arens and Jahren, 2000, 2002), exhibiting much larger 87 

variations than those caused by the plant vital effects (~0.8‰; Arens and Jahren, 2002). 88 

However, the causes for these δ13C variations still remain unclear. 89 

Several studies have shown that comparison of the δ13C fluctuations of 90 

terrigenous organic matter with those in the exogenous carbon reservoir, such as marine 91 

carbonate, is useful to reconstruct paleoenvironmental signals that are recorded in 92 

terrestrial higher plants (e.g. Hasegawa et al., 2003). However, this approach cannot be 93 

utilized for K–Pg boundary sequences because the shape and magnitude of the δ13C 94 

changes of marine carbonates are also affected by changes in calcareous microfossil 95 

compositions, size distributions of planktonic foraminiferal species, and local 96 

productivity (D’Hondt and Zachos, 1993; Barrera and Keller, 1994). 97 

Long chain (C27 to C33) n-alkanes with an odd/even carbon number 98 

predominance are typical of terrestrial higher plant waxes (Eglinton and Hamilton, 99 

1967). These n-alkanes are ubiquitous in marine sediments (Pancost and Boot, 2004), 100 

and their chain-length distributions are sensitive to changes in the plant growing 101 

environment and the composition of their source vegetation (Hall and Jones, 1961; 102 

Poynter et al., 1989; Schefuß et al., 2003; Sachse et al., 2006). Hence, we assess 103 
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paleoenvironmental conditions that may have been recorded in terrestrial higher plants 104 

using two n-alkane biomarker proxies based on their chain length distribution, i.e., the 105 

average chain length (ACL27-33) and the C31/(C29 + C31) ratio. The ACL27-33 is the 106 

concentration-weighted mean chain length of the C27 to C33 odd carbon number 107 

n-alkanes (Poynter et al., 1989), and its variations are generally related to environmental 108 

changes such as the temperature and aridity in which their source vegetation grows 109 

(Gagosian and Peltzer, 1986; Poynter et al., 1989; Schefuβ et al., 2003; 110 

Rommerskirchen et al., 2003). In contrast, the C31/(C29 + C31) ratio is the concentration 111 

ratio of the C31 n-alkanes to the sum of the C29 and C31 n-alkanes (Schefuβ et al., 2003), 112 

and its variations are more closely related to changes in aridity, than in temperature and 113 

vegetation type (Schefuβ et al., 2003). 114 

The ultimate objective of this study is to reconstruct the environmental and 115 

vegetational changes that may be recorded in the δ13C variations across the K–Pg 116 

boundary. Here we report the results from the hemipelagic K–Pg sequence at Loma 117 

Capiro, central Cuba, in which a published planktonic foraminiferal biostratigraphy 118 

(Alegret et al., 2005) and a high sedimentation rate allow us to conduct a 119 

stratigraphically well-constrained, high-resolution analysis of this boundary sequence. 120 

2. Setting and stratigraphy of Loma Capiro 121 

Loma Capiro is a small hill of ca. 180 m height in the northeast part of the 122 

Santa Clara city, central Cuba (Fig. 1), that provides an excellent exposure of the K–Pg 123 

boundary sequence on its southern slope. The K–Pg boundary sequence at Loma Capiro 124 

is composed of a hemipelagic sequence of foraminifera-rich massive gray calcareous 125 

mudstone and sandstone, and a 10.9 m-thick clastic complex (Fig. 2). These sediments 126 

are included in the upper Maastrichtian Santa Clara Formation and the Paleocene Ochoa 127 

Formation (Rojas-Consuegra et al., 2007). Paleogeographic reconstructions suggest that 128 
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the K–Pg location of the site was about 500 km south of its present position and that its 129 

sediment accumulated on the northeastern slope of the Cuban carbonate platform on the 130 

south edge of the proto-Caribbean Basin (Fig. 1d; Rojas-Consuegra et al., 2005; 131 

Núñez-Cambra and Rojas-Consuegra, 2007; Goto et al., 2008). Benthic foraminiferal 132 

assemblages indicate a paleodepth of 700 m to 3,000 m (Alegret et al., 2005). 133 

The lithology of uppermost 1.5 m of the Maastrichtian is marked by 134 

well-lithified gray calcareous mudstone followed by a continuous upward-fining 135 

sequence of the clastic complex with an erosional contact (Fig. 2). The basal 6.5 m of 136 

the sequence is characterized by a matrix-supported breccia with siltstone to very fine 137 

sandstone matrix and rounded clasts of mudstone, limestone, gabbro and serpentinite. 138 

Diameters of these clasts are generally less than 10 cm. Neither imbrication nor changes 139 

in grain size are observed. The subsequent 1.5 m of the sequence is upward-fining 140 

microbreccia with cross lamination, which is overlain by 65 cm-thick medium to coarse 141 

sandstones. The uppermost 2.5 m of the complex is composed of an upward-fining 142 

sequence of coarse-medium to medium-fine sandstones with intercalations of 15 143 

cm-thick limestone and 10 cm-thick whitish clay layers. 144 

Similar end-Cretaceous clastic deposits have been widely recognized around 145 

the Gulf of Mexico and in the proto-Caribbean Sea (Smit et al., 1996; Tada et al., 2003; 146 

Schulte et al., 2006; Goto et al., 2008). Lithologic and paleontologic evidence suggests 147 

that these sediments were deposited in a geologically instantaneous period by the 148 

collapse of carbonate platforms, gravity flows and large tsunamis that are associated 149 

with the K–Pg impact at Chicxulub (Bralower et al., 1998). Likewise, the presence of 150 

reworked Cretaceous foraminifera and impact materials in the clastic complex at Loma 151 

Capiro suggests its link to the K–Pg impact (Alegret et al., 2005). We therefore placed 152 

the K–Pg boundary at the bottom of the clastic complex (= basal 0 in Fig. 2). 153 

The boundary between the clastic complex and the Paleocene mudstone is 154 
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sharp and marked by light to dark gray mudstone that has a strike of N75°E and a 155 

northward dip of 56° (Fig. 1c). The lower half of the Paleocene sequence is mainly 156 

composed of light gray to brownish gray mudstone with intercalations of sandstone 157 

layers. In contrast, the upper half of the sequence is generally characterized by 158 

alternating beds of light gray to reddish brown mudstone and 1 to 15 cm-thick light gray 159 

fine to medium sandstone. An intercalation of ca. 50 cm-thick fine to medium sandstone 160 

is observed at the 454 cm horizon above the clastic complex (Fig. 2). 161 

Three planktonic foraminiferal datums are assigned to the 200 cm, 248.7 cm 162 

and 520 to 620 cm horizons above the clastic complex by comparison to the results of 163 

Alegret et al. (2005) (Fig. 2). The ages of these datums are 64.9 Ma, 64.5 Ma and 63.0 164 

Ma, respectively (Berggren et al., 1995). Linear sedimentation rates (LSR) of the 165 

Paleocene sequence above the clastic complex are therefore calculated as 2.0 cm/kyr for 166 

the 0–200 cm, 0.1 cm/kyr for the 200–248.7 cm, and 0.2 cm/kyr for the 248.7–620 cm 167 

interval. 168 

3. Materials and Methods 169 

3.1. Samples 170 

Samples were obtained from the upper 1.5 m of the Maastrichtian calcareous 171 

mudstone and the lower 11 m of the Paleocene mudstone above the clastic complex (Fig. 172 

2). We did not collect samples from the complex because it is mainly composed of 173 

reworked Cretaceous materials that the impact left behind, and therefore we put a 0 174 

horizon for the Paleocene sequence at the top of the clastic complex (= top 0 in Fig. 2). 175 

We used two slightly separated transects for sampling because the vertical exposure that 176 

contained the Maastrichtian section did not allow collection of stratigraphically 177 

continuous Paleocene samples. Both transects are well correlated by the upper boundary 178 



 8 

of the clastic complex. The outcrop was trenched to about 1 m to obtain fresh 179 

unweathered samples. Sampling resolutions that are estimated from the LSRs of the 180 

Paleocene range from several thousand years to several hundreds of thousand years. 181 

3.2. Measurements of calcium carbonate (CaCO3) and total organic carbon (TOC) 182 

concentrations 183 

Powdered samples were treated with 5N-HCl for 24h to remove carbonate 184 

minerals. Subsequently, the sediments were rinsed with deionized water to remove 185 

CaCl2 and dried in an oven (60 °C). The concentrations of calcium carbonate were 186 

calculated using weight differences before and after the acid treatment. Measurements 187 

of total organic carbon (TOC) content were performed on a Thermo Finnigan FlashEA 188 

1112 elemental analyzer at the Center for Marine Core Research, Kochi University. 189 

3.3. Organic geochemical analysis 190 

3.3.1. Extraction and separation 191 

The samples were powdered in an agate mill after removal of surface 192 

contaminants and drying in an oven (60 °C) overnight. Finely ground samples (ca. 25̶193 

120 g) were Soxhlet extracted with CH2Cl2 (DCM) for 48 h. The extracts were 194 

separated into aliphatic, aromatic, ketone and polar fractions using silica gel column 195 

chromatography (5% H2O deactivated) by elution with n-hexane (2 ml), n-hexane/DCM 196 

(3:1, v/v, 3 ml), DCM (3 ml) and DCM/MeOH (4:1, v/v, 4 ml), respectively. Blank tests 197 

showed that there was no laboratory contamination of n-alkanes during the procedure. 198 

These lipid fractions were analyzed using gas chromatography (GC) and GC/mass 199 

spectrometry (MS) at Kanazawa University. For compound-specific stable carbon 200 

isotope analyses, sufficient amounts of n-alkanes were purified using the urea adduction 201 

technique (Hasegawa et al., 2006) and then determined by GC/isotope ratio monitoring 202 
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MS (GC/irmMS) at the Center for Marine Core Research, Kochi University. 203 

3.3.2. GC and GC/MS 204 

GC analysis was performed using a Hewlett-Packard 6890 gas chromatograph 205 

equipped with an on-column injector, an HP-1 fused silica capillary column (30 m × 206 

0.32 mm i.d., 0.25 μm film thickness) connected with 5 m guard column and a flame 207 

ionization detector (FID). Helium was used as the carrier gas. The GC oven temperature 208 

was programmed from 50 °C to 120 °C at 30 °C/min, then to 310 °C at 5 °C/min and 209 

held isothermally for 19.57 min. GC/MS analysis was performed using a 210 

Hewlett-Packard 5973 Mass Selective Detector coupled to a Hewlett-Packard 6890 GC 211 

equipped with a HP-5MS fused silica capillary column (30 m × 0.25 mm i.d., 0.25 μm 212 

film thickness) and split/splitless injector. The temperature program was the same as for 213 

GC analysis. The MS was operated in Electron-Impact mode at 70 eV, scanning a mass 214 

range of m/z 40-650 at 2.44 scans per second. The compounds were identified on the 215 

basis of their mass spectra, GC retention times, and comparison with literature spectra. 216 

3.3.3. Compound-specific carbon isotope analysis 217 
13C/12C ratios of individual n-alkanes were determined using a Finnigan MAT 218 

Delta plus XP mass spectrometer interfaced with a Trace GC, via a combustion furnace 219 

maintained at 840 °C. The GC was equipped with a HP-5MS fused silica capillary 220 

column (30 m × 0.32 mm i.d., 0.25 μm film thickness) and split/splitless injector. 221 

Helium was used as the carrier gas. The GC oven was ramped from 50 °C to 310 °C at 222 

4 °C/min and held isothermally for 25 min. CO2 gas with a pre-calibrated isotopic 223 

composition was used as a standard. The δ13C values are expressed as per mil (‰) 224 

relative to the Vienna Pee Dee Belemnite (VPDB). A standard mixture consisting of C16 225 

to C30 n-alkanes of known isotopic values was daily injected into the system to check 226 

the data quality and to ensure the analytical error to be ±0.5‰. Reported isotopic data 227 
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represent an averaged value of the multiple analyses. 228 

3.4. Organic petrological examination 229 

Crushed mudstone was prepared into polished blocks following the standard 230 

preparation procedure described in Bustin et al. (1983). Observation of organic particles 231 

was performed using a MPV-2 microscope. 232 

4. Results 233 

4.1. CaCO3 and TOC concentrations 234 

 CaCO3 concentrations in the Cretaceous samples range from 42.7% to 56.4%, 235 

whereas those in the Paleocene range from 14.2% to 61.8% (Fig. 2). The concentration 236 

drops to 25.4% at the top 0 horizon and stays low until LC-A-113.1. The concentration 237 

increases to 53.3% at LC-A-129.7 and fluctuates between 22.6% and 61.8% for the rest 238 

of the section (Fig. 2). TOC concentrations are extremely low (0.01% to 0.05%) 239 

throughout the sequence and do not show any significant stratigraphic variation (Fig. 2). 240 

4.2. Extractable organic compounds 241 

 Aliphatic hydrocarbon fractions are mainly composed of terrestrial higher 242 

plant-derived long chain (C27 to C33) n-alkanes. These n-alkanes are characterized by a 243 

strong odd/even carbon number predominance (Fig. 3), as evidenced by high carbon 244 

preference index (CPI29-33) values of 3.7 to 6.0 for the upper Cretaceous samples and 1.8 245 

to 7.4 for the Paleocene samples (Fig. 4). The concentrations of C29 and C31 n-alkanes 246 

range from 0.4 to 39.0 ng/g dry sediment and 0.5 to 46.4 ng/g dry sediment, 247 

respectively (Fig. 4). The C31 n-alkane is found as the most abundant homologue except 248 

for samples LC-A-29.2 and LC-C-34.5 in which the C29 n-alkane dominates. The 249 
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occurrence of resin-derived higher plant biomarkers, i.e., aromatic terpenoids, is rare, 250 

and higher plant-derived n-fatty acids and alcohols are not detected. 251 

4.3. Stratigraphic fluctuations in the δ13C, ACL, and C31/(C29 + C31) values of n-alkanes 252 

Fig. 4 shows the stratigraphic fluctuations of stable carbon isotopic 253 

compositions (δ13C), average chain length (ACL27-33) and C31/(C29 + C31) ratio of 254 

n-alkanes. The δ13C values of the C29 n-alkane range from –28.8‰ to –27.8‰, whereas 255 

those of the C31 n-alkanes range from –29.7‰ to –28.6‰. The δ13C values of the C31 256 

n-alkane are found to be more depleted in 13C by up to 1.2‰ compared to the C29 257 

n-alkane throughout the section. The ACL and the C31/(C29 + C31) ratio range from 29.91 258 

to 30.63 and 0.47 to 0.64, respectively. The ACL values are relatively low (29.91 to 259 

30.17) in the lower Paleocene (LC-C-2 to LC-A-79.7), and the other proxies show 260 

prominent negative excursions from LC-C-24.5 to LC-A-61.7 with peak values of 0.47 261 

for the C31/(C29 + C31) ratio (LC-A-29.2) and of –28.8‰ (LC-C-40) and –29.5‰ 262 

(LC-C-40, 50) for the δ13C of the C29 and C31 n-alkanes, respectively. 263 

The stratigraphic profiles of the δ13C, ACL and C31/(C29 + C31) values enable 264 

us to subdivide the section into four distinctive intervals (LC I–IV; Fig. 4). LC I is the 265 

upper Cretaceous interval that is characterized by relatively constant values of the δ13C, 266 

ACL and C31/(C29 + C31) ratio. LC II is the first 79.7 cm interval above the clastic 267 

complex that is characterized by low ACL values and prominent negative shifts in the 268 

C31/(C29 + C31) and δ13C values. LC III is the interval between LC-A-79.7 and 269 

LC-A-224.7 in which the δ13C values and the ACL and C31/(C29 + C31) values vary in 270 

opposite directions. LC IV covers the rest of the section, characterized by parallel trends 271 

in these three parameters. 272 

4.4. Microscopic observation of organic particles 273 
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 Organic particles in two Paleocene samples (LC-C-2, LC-A-243.5) are mainly 274 

composed of terrestrially derived tiny (<10 µm) vitrinite fragments. The occurrence of 275 

these organic particles is rare, and the shapes of the fragments are subrounded to 276 

subangular with medium to high reflectance. Organic particles derived from marine 277 

organisms were not detected. 278 

5. Discussion 279 

5.1. Transportation mechanism of terrestrial higher plant-derived n-alkanes 280 

Terrestrially derived organic matter is generally transported to marine 281 

sediments by winds and fluvial processes (De Leeuw et al., 1995). The location of 282 

Loma Capiro was more than 500 km south of its present position at the time of the 283 

K–Pg event (Tada et al., 2003; Goto et al., 2008), and thus riverine delivery of organic 284 

matter from the North American continent is unlikely due to the long transport distance 285 

(>1,000 km; Fig. 1d). However, contributions from the nearby Cuban arc complex could 286 

have occurred. 287 

Because rivers can transport large quantities of particulate and dissolved 288 

organic carbon from the continents (Hedges et al., 1997), sediments deposited near 289 

rivers are expected to contain a significant amount of terrestrial organic matter. 290 

However, the occurrence of higher plant derived particulate organic matter at Loma 291 

Capiro is rare (See 4.4). In addition, low concentrations of resin-derived organic 292 

compounds that are usually transported by rivers (Simoneit, 1977) such as retene 293 

suggest that the riverine transport of terrigenous organic compounds had also been not 294 

very significant at Loma Capiro. 295 

According to model simulations of late Cretaceous atmospheric circulation, 296 

the proto-Caribbean sedimentary basin was under the influence of the Northeast trade 297 
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winds (Cousin-Rittemard et al., 2002). Hence, the terrestrial higher plant-derived 298 

n-alkanes at Loma Capiro are most likely to have been long-range transported via the 299 

trade winds. 300 

5.2. Stratigraphic fluctuations of the n-alkane δ13C values across the K–Pg boundary 301 

The δ13C of terrestrial higher plants is primarily controlled by that in 302 

atmospheric CO2 (Farquhar et al., 1982; Arens et al., 2000). However, our δ13C profiles 303 

of terrestrial higher plant-derived n-alkanes exhibit only a weak negative shift (~0.3‰) 304 

in the lowermost Paleocene (LC II; Fig. 4), compared to the globally synchronous 1.5 to 305 

2.0‰ negative excursion observed in the surface ocean-atmospheric carbon reservoir 306 

(e.g. Hsü et al., 1982; Zachos and Arthur, 1986; Keller and Lindinger, 1989; Arinobu et 307 

al., 1999; Arens and Jahren, 2000; 2002). 308 

Similarly diminished excursions at the boundary have been reported in the 309 

δ13C values of bulk organic matter from Dogie Creek, Montana (Maruoka et al., 2007) 310 

and Stevns Klint, Denmark (Brisman et al., 2001). These studies attributed such a small 311 

shape of the excursions to an increased input of 13C-enriched organic materials from 312 

algae and wildfires. However, n-alkane contributions from these sources are not likely 313 

to have occurred at Loma Capiro because relatively high CPI values of the n-alkanes 314 

suggest that they originated exclusively from terrestrial higher plant waxes. In addition, 315 

although the TOC concentrations of our samples are extremely low, a contamination 316 

from contemporary plant sources is very unlikely because of the absence of long chain 317 

n-fatty acids and alcohols, main constituents of contemporary plant leaf waxes as along 318 

with the n-alkanes (Eglinton and Hamilton, 1967). 319 

In general, there is a large input of ancient plant materials from soil to marine 320 

sediments (Eglinton et al., 1997; Matsumoto et al., 2001). Thus, enhanced delivery of 321 

these materials could have concealed the global 13C-enriched signal. However, a marked 322 
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change in the n-alkane distributions before and after the K–Pg boundary (Fig. 3) 323 

indicates a systematic change in their plant sources. Further, the averaged time lag in 324 

delivery of soil organic matter (12,000 yrs; Eglinton et al., 1997; Matsumoto et al., 325 

2001) is too short to dilute the signal of the globally synchronous excursion spanning 326 

more than several tens of thousands years (Arinobu et al., 1999; Arens and Jahren, 327 

2000; Therrien et al., 2007). 328 

Our lowermost Paleocene sample (LC-C-2) represents sediments that 329 

deposited within the first 20,000 yrs following the K–Pg boundary (Alegret et al., 2005) 330 

in which the δ13C of terrestrial organic matter shows the globally synchronous excursion. 331 

Thus, the δ13C values of the n-alkanes at Loma Capiro should exhibit a 1.5 to 2.0‰ 332 

negative excursion in LC II if they reflected the global δ13C signal. The absence of such 333 

excursion suggests that our δ13C records are likely affected by factors other than the 334 

δ13C variations in the exogenous carbon reservoir. 335 

5.3. Factors controlling the n-alkane δ13C values at Loma Capiro 336 

The stable carbon isotopic compositions (δ13C) of terrestrial higher plants are 337 

sensitive to photosynthetic carbon fixation pathways and isotopic fractionations that 338 

reflect physiological responses to conditions in their growing environment, such as 339 

continental aridity, light level, and growing temperature (Farquhar et al., 1982; Arens et 340 

al., 2000), as well as taxonomic variations in contributing plant communities (Arens et 341 

al., 2000; Chikaraishi and Naraoka, 2003). However, n-alkane contribution from C4 342 

plants is very unlikely at the time of the K–Pg boundary because the expansion of C4 343 

grass-dominated savannah did not occur until the Middle to Late Miocene (Jacobs et al., 344 

1999). Lower δ13C values in C31 n-alkane as compared with C29 also suggest that the 345 

n-alkanes unlikely originated from C4 plants in which n-alkanes usually show nearly 346 

constant isotopic composition across their different chain lengths (–17‰ to –24‰; 347 
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Collister et al., 1994; Kuypers et al., 1999). 348 

In Fig. 5, we show a cross plot of the weighted-mean δ13C values of the C29 349 

and C31 n-alkanes (δ13CWM) and the C31/(C29 + C31) ratios from the four stratigraphic 350 

intervals (LC I to IV). Although the correlations are not significant in LC I and LC IV, 351 

the δ13CWM and the C31/(C29 + C31) values are positively correlated in LC II (r = 0.89; p = 352 

0.04), whereas in LC III negatively correlated (r = 0.91; p < 0.01) (Fig. 5). Because the 353 

chain length distribution of n-alkanes are sensitive to changes in the plant growing 354 

environment and the composition of their source vegetation (Hall and Jones, 1961; 355 

Poynter et al., 1989, Schefuβ et al., 2003; Sachse et al., 2006), the presence of these 356 

different trends in the δ13C-C31/(C29 + C31) diagram suggests that the n-alkane δ13C 357 

values are controlled by two types of paleoenvironmental factors in addition to the δ13C 358 

of the exogenous carbon reservoir. 359 

Contemporary observations reveal that important quantities of African dust 360 

are carried across the equatorial Atlantic to the Caribbean via the trade winds (Prospero 361 

and Lamb, 2003). Hence, the n-alkane signals at Loma Capiro likely represent 362 

paleoenvironmental conditions of the northwestern part of the African continent 363 

reflecting a wide zonal wind regime of the trade winds and a mixing during the 364 

long-range transport. 365 

5.4. Environmental control on the n-alkane δ13C values in the lower Paleocene (LC II) 366 

Several lines of evidence indicate enhanced greenhouse warming at the early 367 

Paleocene as a result of the impact-induced CO2 release from carbonate platforms and 368 

the reduction of primary productivity (Hsü et al., 1982; O’Keefe and Ahrens, 1989). 369 

Oxygen isotope records in marine carbonates reveal a period of gradual warming of 370 

surface waters spanning a few hundred to several hundred thousand years following the 371 

K–Pg boundary (Hsü et al., 1982; Zachos et al., 1989; Kaiho et al., 1999). At the same 372 
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time, records of plant leaf fossils and clay minerals also give evidence for increased 373 

temperature and precipitation on land (Wolfe and Upchurch, 1987; Wolfe, 1990; Kaiho 374 

et al., 1999), although a study on paleosols estimates a humid but cool climate in 375 

western North America (Lehman, 1990). In the Southern Hemisphere, pollen 376 

assemblages in New Zealand suggest transient warm humid conditions (Vajda et al., 377 

2001). 378 

The stratigraphic variations of the δ13C values show parallel decreases with 379 

the ACL and C31/(C29 + C31) values in LC II (Fig. 4). In terms of plant physiology, such 380 

decreases in these n-alkane proxies can be interpreted as plant responses to reduced 381 

evapotranspiration. This response is because plants can alter the chain-length of leaf 382 

waxes to minimize loss of water vapor from their leaves (Sachse et al., 2006). Under a 383 

less evaporative condition, plants no longer need to reduce stomatal conductance to 384 

conserve water in their leaves, which results in the δ13C values becoming more 13C 385 

depleted (Farquhar et al., 1982). Hence, the concurrent decreases in the ACL and 386 

C31/(C29 + C31) values and the δ13C values in LC II seem to indicate a less evaporative 387 

condition in the early Paleocene. 388 

The age calculation based on the LSR for this interval indicates that the 389 

duration of decreases in the δ13C, ACL and C31/(C29 + C31) values range from 9,700 to 390 

37,000 yrs after the K-Pg boundary. This time period is consistent with that estimated 391 

for the impact-induced warming (104 to 105 years; O’Keefe and Ahrens, 1989), 392 

suggesting its relation to this transient warmth, although geochemical evidence indicates 393 

that such warmth lasted only for a few thousand years following the boundary (Kaiho et 394 

al., 1999). In contrast, the record of dinoflagellate cysts and benthic foraminifera at El 395 

Kef, Tunisia, implies a ~2,000 yrs cooling following the K–Pg boundary in association 396 

with an impact winter (Galeotti et al., 2004). Relatively high δ13C, ACL and C31/(C29 + 397 

C31) values in our lowermost sample in the Paleocene (LC-C-2) might, thus, have been 398 
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resulted from plant responses to this cooling. 399 

5.5. Vegetational control on the n-alkane δ13C values in the lower Paleocene (LC III) 400 

The C31/(C29 + C31)-δ13C distributions exhibit marked differences between 401 

before (LCI) and after (LC II) the K–Pg boundary, but the distribution of LC II 402 

gradually shift back to the identical area as in the upper Cretaceous (LC I) through the 403 

lower Paleocene (LC III; Fig. 5). Because the LC I and LC III distributions lie away 404 

from the regression lines of LC II (Fig. 5), the shifts in the distributions should have 405 

been controlled by some factor other than what caused the LC II variations (see 5.4). 406 

In Fig. 6, we showed the stratigraphic profiles of the C31/(C29 + C31) ratio at 407 

Loma Capiro and those in the K–Pg boundary sediments from Far East Asia (Mita and 408 

Shimoyama, 1999). Interestingly, both C31/(C29 + C31) patterns exhibit similar decreases 409 

following the K–Pg boundary. Such similarities between the sections that are >10,000 410 

km apart indicate that the variations are likely resulted from a globally simultaneous 411 

event, i.e., the K–Pg mass extinction. 412 

At the K–Pg boundary, 15% to 57% of the late Cretaceous mega and 413 

palynofloral species went extinct (e.g. Vajda and Raine, 2003; Wilf and Johnson, 2004; 414 

Nichols, 2007). The devastated land flora was for a short period replaced by a fungal 415 

community (Vajda and McLoughlin, 2004), which followed by the recovery succession 416 

of photosynthetic plants that starts with a fern dominance, the so-called fern spike, in 417 

North America, New Zealand and Far East Asia (Tschudy et al., 1984; Vajda et al., 418 

2001; Saito et al., 1986). In contrast, a rise of angiosperm and bryophyte floras are 419 

reported in northern Canada and in the Netherlands, respectively (Sweet et al., 1990; 420 

Brinkhuis and Schiøler, 1996). Vegetation with a diversity equivalent to that in the late 421 

Cretaceous was subsequently established through angiosperm recolonization in North 422 

America and tree ferns and gymnosperm dominances in New Zealand (Wolfe and 423 
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Upchurch, 1987; Vajda et al., 2001). 424 

Although Méon (1990) concluded that no abrupt extinction occurred in 425 

northwestern Africa, palynological data at El Kef, Tunisia, which is close to the possible 426 

source area of leaf wax n-alkanes at Loma Capiro, show disappearance of 13.6% of the 427 

upper Maastrichtian palynoflora at the boundary (Nichols and Johnson, 2008). Because 428 

the C31 n-alkane is generally more abundant in grasses and in certain species of other 429 

angiosperms and conifers (Cranwell, 1973; Bi et al., 2005; Sachse et al., 2006; 430 

Rommerskirchen et al., 2006), the good negative correlation between the n-alkane δ13C 431 

values and the C31/(C29 + C31) ratios in LC III might be attributed to vegetational 432 

changes at the K–Pg boundary. In support for this idea, the C31/(C29 + C31) variations 433 

show good correspondence with an increase of the angiosperm/fern ratios in Far East 434 

Asia (Fig. 6). However, there is no corresponding fern spore increase reported in 435 

northwest Africa (Ben Abdelkader et al., 1997). 436 

Based on the LSR of 2.0 cm/kyr for the lower Paleocene, the duration of LC 437 

III is calculated as 40,000 to 67,000 yrs after the K–Pg boundary. This time period is 438 

fairly longer than the time range for the fern dominance in Far East Asia and New 439 

Zealand (several thousands of years; Vajda and Raine, 2003). Instead, it is rather close 440 

to the duration taken for the recovery of the pre-boundary pollen assemblages in North 441 

America (92,600 to 115,800 yrs; Therrien et al., 2007). Although the lack of a 442 

palynological record at Loma Capiro does not allow us to assign any taxonomic 443 

information, such correspondence in timing suggest that the δ13C and C31/(C29 + C31) 444 

variations in LC III are likely a consequence of the plant diversification process after 445 

the K–Pg mass extinction. 446 

6. Conclusions 447 

The chain-length distribution [ACL and C31/(C29 + C31) ratio] and stable 448 
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carbon isotopic compositions (δ13C) of sedimentary leaf wax n-alkanes were 449 

investigated across the Cretaceous-Paleogene (K–Pg) boundary at Loma Capiro, Central 450 

Cuba, to assess environmental and vegetational changes that are recorded in terrestrial 451 

higher plants. The δ13C profiles of the n-alkanes exhibit a negative excursion following 452 

the K–Pg boundary. However, the magnitude of the excursion is much smaller (~0.3‰) 453 

than the global signals (1.5 to 2.0‰). The relations between the δ13C and C31/(C29 + C31) 454 

ratios of the n-alkanes reveal that two types of paleoenvironmental factors (such as 455 

temperature, humidity and vegetation) have affected this diminished δ13C variation. The 456 

n-alkanes at Loma Capiro are likely long-range transported by trade winds, and their 457 

signals can be interpreted as reflecting paleoenvironmental conditions of the 458 

northwestern part of the African continent. The n-alkane δ13C values show a parallel 459 

decrease with the ACL and C31/(C29 + C31) values in the first 37,000 yrs following the 460 

K–Pg boundary, suggesting a possible influence of the impact-induced warm-humid 461 

climate in the early Paleocene. In contrast, the n-alkane δ13C values are negatively 462 

correlated with the C31/(C29 + C31) ratios between 40,000 to 67,000 yrs after the K–Pg 463 

boundary, suggesting that they likely reflect the plant diversification process after the 464 

K–Pg mass extinction. 465 
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Figure captions 746 

Fig. 1. Map showing the location of (a) Santa Clara, (b) Loma Capiro, (c) distribution 747 

of the exposure at Loma Capiro, (d) paleogeotectonic setting of Loma Capiro at the 748 

Cretaceous–Paleogene boundary (modified after Goto et al., 2008). 749 

Fig. 2. Stratigraphy, lithology, samples and bulk geochemistry (calcium carbonate and 750 

total organic carbon content) of the Cretaceous–Paleogene section at Loma Capiro. 751 

*adapted from Alegret et al. (2005). Abbreviation: Cret.; Cretaceous, A. maya.; 752 

Abathomphalus mayaroensis Zone. Note the change in scale due to the presence of a 753 

clastic complex at the base of the Paleogene. 754 

Fig. 3. Gas chromatograms of aliphatic hydrocarbon fraction obtained from (a) 755 

Cretaceous and (b) Paleogene samples. Numbers on the GC peaks indicate the 756 

carbon chain length of n-alkanes. The carbon preference index (CPI) values are also 757 

displayed. 758 

Fig. 4. Stratigraphic profiles of (a) concentration, (b) carbon preference index (CPI), (c) 759 

stable carbon isotope ratios (δ13C), (d) C31/(C29 + C31) ratio and (e) average chain 760 

length (ACL) of leaf wax n-alkanes in the sediments, which can be separated into 761 

four distinctive intervals (LC I to LC IV). For legend and abbreviations, refer Fig. 2. 762 

Fig. 5. Cross-plot of the weighted-mean δ13C of C29 and C31 n- alkanes (δ13C WM) versus 763 

n-C31/(n-C29+n-C31) ratio. Although relations are not significant in LC I and IV, the 764 

δ13CWM and C31/( C29 + C31) values are positively correlated in LC II (r = 0.89; p = 765 

0.04), and are negatively correlated in LC III (r = 0.91; p < 0.01). 766 

Fig. 6. Comparison of the stratigraphic variations of (a) C31/( C29 + C31) ratio at Loma 767 

Capiro, and (b) C31/( C29 + C31) ratio and (c) floral composition in Far East Asia 768 

across the Cretaceous–Paleogence boundary. *Berggren et al. (1995); **Smit 769 

(1982); ***Arenillas et al. (2004). 770 

771 
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