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Manipulation of autoresonant intrinsic localized
modes in MEMS arrays

M. Sato, N. Fujita, S. Imai, S. Nishimura, Y. Hori and A. J. Sievers

Abstract The smallness of MEMS oscillators makes them an important platform
for studying nonlinear phenomena. A unique feature, not shared by a harmonic sys-
tem, is the dynamical steady state localization of some vibrations in driven nonlinear
micromechanical lattices. Such an Intrinsic Localized Mode (ILM) is stable at any
lattice site, and its position can be controlled by it interacting with an external field,
a defect or another ILM. Both experiments and numerical simulations are used to
explore the ILM-impurity attractive and repulsive interactions in micro-cantilever
arrays in autoresonant states. The various findings reported here have a direct bear-
ing on the application of nonlinear energy localization to implement smart functions
in large-scale MEMS arrays.

1 Introduction

The small size of MEMS oscillators gives us a unique opportunity to study nonlin-
ear dynamics because of the ease of exciting it into a nonlinear regime; for even
if the total driving energy is small, the energy density will be large in a small sys-
tem. Using a single oscillator platform fundamental nonlinear properties such as
periodic attractors[1, 2] and stochastic resonances[3] have been investigated while
at the same time applications such as sensors[4] and amplifiers[5] are being devel-
oped. Because of these possibilities, MEMS oscillators have been studied not only
in single element form but also as coupled periodic arrays. Such micromechanical
arrays provide a natural habitat for the study of dynamical localization of vibrations
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in driven nonlinear lattices. An important property, not shared by a harmonic lattice,
is the appearance of an Intrinsic Localized Mode (ILM)[6, 7, 8, 9, 10, 11, 12, 13].
In general a stationary ILM is stable in any lattice unit cell, but its position can be
controlled by interacting with an external field, a vibrational defect mode or an-
other ILM[7]. With the aid of an impurity mode different ILM processes have been
identified, such as seeding, annihilating, repelling and attracting autoresonant ILMs.

In this paper first we experimentally explore controlling ILMs by introducing im-
purities into micro-cantilever arrays. The resulting attractive and repulsive impurity-
ILM interactions that cause the ILM to move from one unit cell to the next are then
analyzed in some detail using numerical simulations. Next by introducing a distri-
bution of time dependent impurities in the lattice simulations are used to demon-
strate ILM logic operations ”NOR” and ”OR”. The end result of the different ILM-
impurity perturbations is a variety of possible functions.

2 Experimental observations of ILM position control by
introducing an impurity

For many of our experiments a di-element type array is used, consisting of a 300
nm thick cantilever elements on a silicon substrate. The elements are coupled one to
another by a bridging silicon nitride overhang. The reason for a short and long can-
tilever in a unit cell is so the highest frequency plane wave mode can couple to the
uniformly excited PZT attached to the silicon substrate. Since the sign of a cantilever
onsite and intersite nonlinearities are both positive, the band frequencies increase as
the displacement increases. Given the appropriate experimental conditions a nonlin-
ear localized excitation, the ILM, will rises out of the top of the extended wave spec-
trum. Since energy damping naturally occurs continuous driving is required to main-
tain a steady state ILM. The end result is that the oscillation frequency is slightly
higher than the top of the band, and this resulting ILM is continuously frequency
locked to the driver[14]. In this autoresonant state[15] the amplitude of the ILM is
controlled by the frequency of the driver. At the heart of the experimental measure-
ment method is an optical lever. The tips of the cantilevers of the micromechanical
array are illuminated by a line focused visible laser beam and the reflected light from
each is recorded as a function of time using a one-dimensional CCD camera[16].
Figure 1 shows the experimentally observed ILMs for the micro-mechanical di-
element cantilever array with hard nonlinearity. A stationary cantilever produces a
signal at a pixel while a dark image identifies large amplitude motion of a cantilever
tip so that the laser beam misses the camera. The image of cantilevers versus time
is displayed in Fig. 1. The PZT is turned on att = 0 ms and then its frequency is
chirped up from the highest linear extended mode frequency (top of the band) to
above it to reach the high amplitude autoresonant ILM state[15]. In the middle time
interval of this figure there are many highly excited regions but after about 12 ms
three stationary ILMs remain. As illustrated, the ILMs can appear at any short can-
tilever site. (The short cantilever sites are preferred because of the two cantilevers in
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Fig. 1 Intrinsic localized modes in a cantilever array versus time. Top view of the cantilevers
is shown on the left. Dark regions represent high amplitude vibrational states. These localized
excitations are generated by chirping up the driver frequency above the highest band frequency
of the linear spectrum. The driver is turned on att = 0 ms, and linear chirp end at about 1.6 ms.
The dark horizontal thick lines after about 12 ms represent stationary ILMs, where the amplitude
is sufficient to pin the ILMs at a lattice site. In the intermediate time region they jumps between
stable sites and collide with each other because of the relatively weak pinning effect associated
with the smaller amplitudes.

a unit cell, it has the higher resonant frequency.) Although the ILM is translationally
stable when its amplitude is large, in a collision with a movable excitation it may
also move. The middle time region of the figure shows that for small ILM amplitude
its mobility is significant. The next experiments involve the introduction and control
of impurities in the lattice. The location of an ILM can be controlled by using an
impurity mode outside of the extended wave frequency spectrum that is introduced
externally[17]. Figure 2(a) shows the interaction of the ILM with an impurity pro-
duced by an IR laser beam. The strongly focused laser beam is introduced to heat
up a few cantilevers and soften their harmonic restoring forces so that they form
an impurity in the lattice. The resulting local mode has a frequency lower than the
lowest extended mode of the branch. To record the experimental results shown in
Fig. 2(a) first the focused laser beam is located nearby the ILM but at a small power
level. Then, the power level of the IR laser is increased. The ILM is repelled and
one picture is recorded. The figure is made by repeating the same sequence with
the impurity at different spatial locations, demonstrating that an external probe can
be used to move the ILM. Figure 2(b) demonstrates the capturing (tweezing) of an
ILM using the same soft impurity produced by the IR laser as described above. The
difference is in the array, which now supports soft (or negative) nonlinearity. This
change in sign is produced by a thin electrode uniformly deposited over the can-
tilevers. When a DC voltage is applied between the cantilevers and the substrate the
negative nonlinearity appears because of the resulting electrostatic attractive force
between them. The impurity is then introduced as described above.
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Fig. 2 Top view of the ILM
position versus frame number
of the picture taken after each
operation. Dark region (see
arrow) identifies the ILM. Its
position is controlled by a
movable impurity. White rect-
angles are due to a focused
IR laser beam that increases
the temperature of a few
cantilevers and lowers their
resonance frequency resulting
in a lattice impurity. (a) Mov-
ing the ILM with the repulsive
interaction produced by a soft
impurity in a hard nonlinear
lattice. (b) Moving the ILM
with the attractive interaction
produced by a soft impurity in
a soft nonlinear lattice.
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3 Simulation of ILM position control with a lattice impurity

To better understand the ILM-impurity interaction we use numerical simulations
to explore the repulsive and attractive effects identified in Fig. 2. For these com-
plimentary simulation studies we have found that a lumped ball and spring model
provides a satisfactory representation of the nonlinear dynamics. Already treated is
the case of a soft linear impurity, with the cantilever intrasite potential nonlinear-
ity represented by either hard or soft quartic terms, respectively[7]. For the detailed
simulations reported below the sign of both intrasite and inter site potential nonlin-
earities is always positive so the repulsive and attractive interactions are produced
by either a soft or hard linear impurity.

The driven lumped element equation of motion for cantileveri in a di-element
array is of the form[7]

mi ẍi +
mi

τ
ẋi +k2Oixi +k4Ox3

i

+ ∑
j

k( j)
2I (2xi−xi+ j −xi− j)

+ k4I [(xi−xi+1)3 +(xi−xi−1)3] = miα cosωdt (1)
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wheremi is the mass,τ is a life time,k2Oi andk4O are onsite harmonic and quartic

spring constants,k( j)
2I is a harmonic intersite spring constant ofj-th nearest neighbor,

k4I is a quartic intersite spring constant,α is an acceleration, andωd is the driver
frequency. The array is made from an alternative sequence of long and short can-
tilevers. Thus,mi andk2Oi are alternatively repeated along the array. The nonlinear
componentsk4O andk4I are both positive andk4I >> k4O. The center of the ILM
is at the short cantilever site (odd number site in the simulation). The driver fre-
quency and amplitude are fixedωd/2π =139 kHz andα =500m/s2. An impurity is
introduced by changingk2Oi at a particular short cantilever lattice site.

Figure3 shows the ILM changes that take place when a soft impurity (k′2Oi < k2Oi

) is slowly introduced into the lattice. The time dependence of the onsite force con-
stant is given in Fig. 3(a). The initial lattice position of the ILM center at site 49,
the position of the impurity (dotted line at site 47) and the final position of the ILM
(site 51) are shown in Fig. 3(b). Note that with increasing time the amplitude of the
ILM at site 50 grows while its amplitude at site 48 decreases. Since the ILM is in the
autoresonant state its vibrational frequency is fixed in the run up to the transition to
a new lattice site but the energy of this state is not fixed as is illustrated in Fig. 3(c).
Since it requires more anharmonic energy at the impurity site than away from it
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Fig. 3 Dynamics of the ILM during the repulsion by a lattice impurity. (a) Impurity time profile
of an onsite spring constantk′2Oi/k2Oi at short cantilever site next of the ILM. (b) Initial ILM at
site 49. As the impurity is introduced at site 47 the ILM finally jumps to site 51. (c) Total energy
of the ILM vs time. Energy gradually increases then returns to the initial value after the transition.
Energy oscillations immediately after the transition are associated with lateral motion of the ILM.
(d) Dotted trace; initial ILM eigenvector (single peaked); solid trace: ILM eigenvector (double
peaked) just before the transition. The arrow identifies impurity position. (e) Magnified time scale
near the transition. Oscillations in ILM amplitude both before and after the transition are associated
with a lateral vibration induced by the transition.
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the ILM is repelled. The energy oscillations after the transition are associated with
the energy going from the ILM into the lattice and back again to the ILM as it un-
dergoes translational oscillations about the new equilibrium lattice site. Because of
the small damping in the system it takes some time to reach the new steady state
energy, which is the same as the initial ILM energy. Figure 3(d) presents eigenvec-
tor details of what unfolds locally. Before the impurity is introduced the vibrational
eigenvector has the shape given by the dotted trace, where the center site has maxi-
mum amplitude. The solid trace shows the eigenvector after the impurity (see arrow)
is introduced and just before the transition to the new lattice site. Now three sites
have nearly the same amplitude. The initial energy increase is associated with the
change in the eigenvector shape from single peaked to double peaked. This change
in the eigen-form reduces the intersite potential barrier, facilitating the transition to
the next lattice site. The final frame, Fig. 3(e), presents a snapshot of the transition
over a smaller time scale. The lateral oscillations of the ILM around the new equi-
librium position are evident. Note that a somewhat weaker version of these same
lateral oscillations is evident before the transition. The excitation of this new degree
of freedom is necessary; since, even in the transition region from single peaked to
double peaked and back to single peaked again the ILM must remain in the same
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Fig. 4 Dynamics of the ILM during the attraction by a lattice impurity. (a) Impurity time profile of
an onsite spring constantk′2Oi/k2Oi at short cantilever site next of the ILM. (b) Initial ILM at site
49. As the impurity is introduced at site 47 the ILM finally jumps to site 47. (c) Total energy of
the ILM vs time. Before the transition the energy increase is much smaller than for repulsive case.
Very large lateral oscillations occur because of the large energy loss by the trapped ILM after the
transition. (d) Dotted trace; initial ILM eigenvector (single peaked); solid trace: ILM eigenvector
(double peaked) just before the transition. (e) Magnified time scale near the transition. Because of
the large energy change during the transition lateral oscillations are excited involving more than
one degree of freedom.
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fixed frequency autoresonant state. Because the ILM at the new site is farther from
the impurity it has lower energy and the transition from the double peaked mode to
the new single peaked mode is rapid.

The attractive interaction is more intriguing since it corresponds to capturing lo-
calized energy and moving it through the lattice with the aid of an impurity. Figure 4
shows the ILM changes that take place when a hard impurity (k′2Oi > k2Oi ) is slowly
introduced into the lattice. The onsite force constant now increases with time as il-
lustrated in Fig. 4(a). The initial lattice position of the ILM center and the position
of the impurity are the same as for the previous example. But now at the transition
the ILM hops to the impurity site as shown in Fig. 4(b). In the run up to the tran-
sition Fig. 4(c) indicates that only a small increase in energy occurs as a function
of time. The oscillations after the transition are associated with the energy going
from the ILM into the lattice and back again to the ILM as it undergoes transla-
tional oscillations about the new equilibrium lattice site. Figure 4(d) presents the
same initial single peaked eigenvector (dotted trace) as for the previous example,
but now the eigenvector (solid trace) just before the transition, although again dou-
ble peaked, has one maximum located on top of the impurity. Since it now requires
less anharmonic energy at the impurity site than away from it the ILM is attracted
to that site. The final frame, Fig. 4 (e), presents a snapshot of the transition over a
smaller time scale. Note that there are now two different kinds of lateral oscillations
of the ILM around the new equilibrium position. A somewhat weaker version of one
of these same lateral oscillations also appears before the transition. Because of the
large change in energy associated with the transition it is evident that two degrees
of freedom have been excited in order to maintain the autoresonant state of the ILM
during this large energy change.

The experiments described in Sect. 2 showed that for the case of hard ILM non-
linearity plus a soft harmonic impurity then repulsion occurred, while for the case of
soft ILM nonlinearity plus soft impurity the result was attraction. In the simulations
described above the case of hard nonlinearity plus a soft impurity was reproduced

Fig. 5 Impurity force con-
stant profile and associated lo-
calized island modes. (a) Spa-
tial distribution ofk′2Oi/k2Oi

profile. (b) Site dependence of
island mode frequencies and
amplitudes. Darker regions
identify larger amplitudes.
The modes below 137.1 kHz
are extended modes. 16 lo-
calized modes are induced by
this distribution of impurities.
The highest frequency impu-
rity mode is close to the driver
frequency (139kHz) for the
simulation shown in Fig. 6.
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while the second simulation example was a case of hard nonlinearity plus hard im-
purity where attraction also was found. This second example was introduced here to
illustrate that all of these cases demonstrate the same basic principle for the autores-
onant state. If the anharmonic energy of the ILM is increased when the harmonic
impurity approaches then the ILM is repelled while if the anharmonic energy of the
ILM is decreased then attraction occurs.

4 Simulation of an ILM-impurity island logic operation

We have demonstrated how an impurity with a time dependent strength can be
used to trap an ILM. A slow time dependence is required because the ILM is in
an autoresonant state and any rapid variation would dislodge it from that condition.
Rather than move the impurity to translate the attached ILM another method of lo-
comotion is to introduce an impurity array. Here we introduce such a time and spa-
tially dependent array to demonstrate how this same ILM-impurity interaction can
be employed to produce a simple logic operation. The spatial dependence of the dis-
tributed set of harmonic spring constants for the impurities is shown in Fig. 5(a). It
extends over a third of the lattice. At the time of its maximum application Fig. 5(b)
displays the 16 highest frequency modes of the lattice. As illustrated these island
modes are spatially localized. The remaining band of extended modes occurs below
the lowest island mode.

We now illustrate two different ways to create an ILM in the perturbed lattice
with hard nonlinearity. The driver frequency (139kHz) is set slightly above the top
of the extended wave band (137.1kHz) and remains there through out the simula-
tion. The driving amplitude is large enough to maintain an ILM once it is generated,
but still small enough so that it cannot be generated directly without the assistance
of the high frequency impurity mode. Method 1: With the impurities in place the
highest frequency linear island mode resonates with the driver. By adiabatically
lowering the strength of the impurities to zero the impurity resonance becomes an
autoresonant ILM and remains at the same site. Method 2: Turn on the strength of
the impurity distribution at a speed consistent with ILM relaxation time. Because
the highest impurity mode frequency is tuned to the driver frequency, as shown in
Fig. 5, resonance commences at the end of the ramp up. Now a localized pulsat-
ing structure appears at the center of the impurity distribution indicating amplitude
modulation (AM) of the trapped excitation. Next remove the impurities in a time
characteristic of the ILM relaxation time. Depending on the relative phase of the
AM at the initiation of this removal process one finds either one ILM or no ILMs.
The case for one ILM is shown in Fig. 6(a). The underlying dynamical behavior of
the impurity modes makes this operation possible. The ILM is pulsing during the
removal process, and the resulting phase difference changes the final ILM result.

In Figs. 6(b-c) the initial ILM is attracted toward the center of the impurity dis-
tribution. It collides with the seeded ILM at aroundt = 4000 period and perturbs the
pulsing phase of the ILM, changing it by 180 degrees. Similarly if the initial con-
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Fig. 6 Logic operation ”NOR” demonstrated by simulations in a model for the hard nonlinear can-
tilever array. The existence and absence of the ILM correspond to logic ”1” and ”0”, respectively.
Input sites are 87 and 135, output is site 111. The same impurity operation is applied with differ-
ent input conditions (a)-(d), where the number or location of input ILMs are different. Triangular
distribution of impurity mode frequencies over sites 70-151 (dashed line) are applied as a function
of time as shown by the solid curve in (d), where the spring constant of cantilever is modified as
shown in Fig. 5. The ordinate for the impurity axis shows the ratio of the spring constant at the
center impurity site. Among (a)-(d), no initial ILM cause the ILM output ”1”, that logic operation
is ”NOR”. A pulsing oscillation of the ILM occurs during the operation. Its phase is modified and
inverted by the existence of the initial ILM(s). The final result depends on the phase. In (e)-(h), the
impurities are removed one half cycle earlier compared with cases in (a)-(d). Each output is the
opposite from the corresponding case in (a)-(d). This operation is ”OR”.

dition is two ILMs placed equally on either side of the center of the impurity mode
distribution as shown in Fig. 6(d) the pulsing phases of both ILMs are changed by
180 degrees. In all of the cases shown in Figs. 6(b)-(d) the end result is no ILM.
Figure 6(e) through (h) show different time-profile cases. Here the removal of the
impurities takes place one half cycle earlier than in Figs. 6(a)-(d). These frames
show that the final state is the opposite from that shown in frames (a) through (d),
in all cases the control variable is the phase of the pulsing ILM amplitude relative to
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the initiation time for removing the impurities. The end results depend on whether
or not the ILM can continue to resonate with the driver as the extended impurity is
removed.

In the series of simulations described here the speed of removing the impurities
has been kept fixed, but the removal initiation time relative to the amplitude modu-
lation signature is different. The opportunity to reach the high amplitude state (pure
ILM) is favorable, if the impurity removal begins at an instant when the amplitude
starts to increase. Conversely the no ILM state can be obtained by initiating impu-
rity removal when the amplitude starts to decrease so that the impurity strength is
reduced when the next AM maximum appears. If the modulation amplitude is too
small, or if the impurity removal speed is too slow the end result is unchanged and
the logic process is suppressed.

5 Summary

Our experiments with micro-cantilever arrays demonstrate both the production of
ILMs and their control by space and time dependent impurities. The resulting attrac-
tive and repulsive ILM-impurity interactions are analyzed in some detail by using
simulations. We have shown that the shape of the ILM eignevector is changed by the
presence of a nearby impurity from a single-peaked to a double-peaked eigenmode
signature, while the ILM itself continues to be locked to the driver frequency (auto-
resonance). As the eigenvector evolves, the energy increases until the transition to
the new location takes place. If the anharmonic energy of the ILM increases when
the harmonic impurity approaches then the ILM is repelled while if the anharmonic
energy of the ILM decreases then attraction occurs.

By employing a time dependent distributed set of attractive impurities that in-
duces many island impurity modes, the ILM logic operations ”NOR” and ”OR”
have been obtained, The operation is based on switching into and out of the auto-
resonant state, and the pulsing behavior of the seeded ILM is produced by the rapid
turn on of the impurity resonance. If the initiation time of the decreasing impurity
strengths matches the phase of the increasing amplitude of the AM, the seeded ILM
remains in auto-resonance, while it loses that state if the initiation time matches the
phase of deceasing amplitude. It was also found that an existing ILM can modify the
pulsing phase via the collision interaction between the initial ILM and the seeded
one. It will be interesting to see if logic operations such as those mentioned here
find applications in information processing, actuator arrays, and sensor arrays.
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