Distance-regular graphs of q-racah type and the q-tetrahedron Algebra

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00011014

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Distance-regular graphs of q-Racah type and the q-tetrahedron algebra

Tatsuro Ito*† and Paul Terwilliger‡

In Memory of Donald Higman

Abstract

In this paper we discuss a relationship between the following two algebras: (i) the subconstituent algebra T of a distance-regular graph that has q-Racah type; (ii) the q-tetrahedron algebra \boxtimes_q which is a q-deformation of the three-point \mathfrak{sl}_2 loop algebra. Assuming that every irreducible T-module is thin, we display an algebra homomorphism from \boxtimes_q into T and show that T is generated by the image together with the center Z(T).

Keywords. Tetrahedron algebra, quantum affine algebra, distance-regular graph, Q-polynomial.

2000 Mathematics Subject Classification. Primary: 05E30. Secondary: 05E35; 17B37.

1 Introduction

In [20] B. Hartwig and the second author gave a presentation of the three-point \mathfrak{sl}_2 loop algebra via generators and relations. To obtain this presentation they defined a Lie algebra \boxtimes by generators and relations, and displayed an isomorphism from \boxtimes to the three-point \mathfrak{sl}_2 loop algebra. The algebra \boxtimes is called the tetrahedron algebra [20, Definition 1.1]. In [24] we introduced a q-deformation \boxtimes_q of \boxtimes called the q-tetrahedron algebra. In [24] and [25] we described the finite-dimensional irreducible \boxtimes_q -modules. In [26, Section 4] we displayed four homomorphisms into \boxtimes_q from the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$. In [26, Section 12] we found a homomorphism from \boxtimes_q into the subconstituent algebra of a distance-regular graph that is self-dual with classical parameters. In the present paper we do something similar for a distance-regular graph said to have q-Racah type. This type is described as follows. Let Γ denote a distance-regular graph with diameter $D \geq 3$ (See Section 4 for formal definitions). We say that Γ has q-Racah type whenever Γ has a Q-polynomial structure with eigenvalue

^{*}Department of Computational Science, Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

[†]Supported in part by JSPS grant 18340022

[‡]Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison WI 53706-1388 USA

sequence $\{\theta_i\}_{i=0}^D$ and dual eigenvalue sequence $\{\theta_i^*\}_{i=0}^D$ that satisfy

$$\begin{array}{rcl} \theta_i & = & \eta + uq^{2i-D} + vq^{D-2i} & (0 \le i \le D), \\ \theta_i^* & = & \eta^* + u^*q^{2i-D} + v^*q^{D-2i} & (0 \le i \le D), \end{array}$$

where q, u, v, u^*, v^* are nonzero and $q^{2i} \neq 1$ for $1 \leq i \leq D$. Assume Γ has q-Racah type. Fix a vertex x of Γ and let T = T(x) denote the corresponding subconstituent algebra [32, Definition 3.3]. Recall that T is generated by the adjacency matrix A and the dual adjacency matrix $A^* = A^*(x)$ [32, Definition 3.10]. An irreducible T-module W is called thin whenever the intersection of W with each eigenspace of A and each eigenspace of A^* has dimension at most 1 [32, Definition 3.5]. Assuming each irreducible T-module is thin, we display invertible central elements Φ , Ψ of T and a homomorphism $\vartheta : \boxtimes_q \to T$ such that

$$A = \eta I + u \Phi \Psi^{-1} \vartheta(x_{01}) + v \Psi \Phi^{-1} \vartheta(x_{12}),$$

$$A^* = \eta^* I + u^* \Phi \Psi \vartheta(x_{23}) + v \Psi^{-1} \Phi^{-1} \vartheta(x_{30}),$$

where the x_{ij} are the standard generators of \boxtimes_q . It follows that T is generated by the image $\vartheta(\boxtimes_q)$ together with Φ, Ψ . In particular T is generated by $\vartheta(\boxtimes_q)$ together with the center Z(T).

This paper is organized as follows. In Section 2 we recall the definition of \boxtimes_q . In Section 3 we describe how \boxtimes_q is related to $U_q(\widehat{\mathfrak{sl}}_2)$. In Section 4 we recall the basic theory of a distance-regular graph Γ , focusing on the Q-polynomial property and the subconstituent algebra. In Section 5 we discuss the split decomposition of Γ . In Section 6 we give our main results.

Throughout the paper \mathbb{C} denotes the field of complex numbers.

2 The q-tetrahedron algebra \boxtimes_q

In this section we recall the q-tetrahedron algebra. We fix a nonzero scalar $q \in \mathbb{C}$ such that $q^2 \neq 1$ and define

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}},$$
 $n = 0, 1, 2, \dots$

We let $\mathbb{Z}_4 = \mathbb{Z}/4\mathbb{Z}$ denote the cyclic group of order 4.

Definition 2.1 [24, Definition 10.1] Let \boxtimes_q denote the unital associative \mathbb{C} -algebra that has generators

$$\{x_{ij} \mid i, j \in \mathbb{Z}_4, \ j-i=1 \text{ or } j-i=2\}$$

and the following relations:

(i) For $i, j \in \mathbb{Z}_4$ such that j - i = 2,

$$x_{ij}x_{ji} = 1.$$

(ii) For $h, i, j \in \mathbb{Z}_4$ such that the pair (i - h, j - i) is one of (1, 1), (1, 2), (2, 1),

$$\frac{qx_{hi}x_{ij} - q^{-1}x_{ij}x_{hi}}{q - q^{-1}} = 1.$$

(iii) For $h, i, j, k \in \mathbb{Z}_4$ such that i - h = j - i = k - j = 1,

$$x_{hi}^3 x_{jk} - [3]_q x_{hi}^2 x_{jk} x_{hi} + [3]_q x_{hi} x_{jk} x_{hi}^2 - x_{jk} x_{hi}^3 = 0.$$
 (1)

We call \boxtimes_q the *q-tetrahedron algebra* or "*q*-tet" for short. We refer to the x_{ij} as the *standard generators* for \boxtimes_q .

Note 2.2 The equations (1) are the cubic q-Serre relations [29, p. 10].

We make some observations.

Lemma 2.3 [24, Lemma 6.3] There exists a \mathbb{C} -algebra automorphism ϱ of \boxtimes_q that sends each generator x_{ij} to $x_{i+1,j+1}$. Moreover $\varrho^4 = 1$.

Lemma 2.4 [24, Lemma 6.5] There exists a \mathbb{C} -algebra automorphism of \boxtimes_q that sends each generator x_{ij} to $-x_{ij}$.

3 The quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$

In this section we consider how \boxtimes_q is related to the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$. We start with a definition.

Definition 3.1 [7, p. 266] The quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$ is the unital associative \mathbb{C} -algebra with generators $K_i^{\pm 1}$, e_i^{\pm} , $i \in \{0,1\}$ and the following relations:

$$\begin{split} K_i K_i^{-1} &= K_i^{-1} K_i = 1, \\ K_0 K_1 &= K_1 K_0, \\ K_i e_i^{\pm} K_i^{-1} &= q^{\pm 2} e_i^{\pm}, \\ K_i e_j^{\pm} K_i^{-1} &= q^{\mp 2} e_j^{\pm}, \quad i \neq j, \\ \left[e_i^+, e_i^- \right] &= \frac{K_i - K_i^{-1}}{q - q^{-1}}, \\ \left[e_0^{\pm}, e_1^{\mp} \right] &= 0, \end{split}$$

$$(e_i^{\pm})^3 e_j^{\pm} - [3]_q (e_i^{\pm})^2 e_j^{\pm} e_i^{\pm} + [3]_q e_i^{\pm} e_j^{\pm} (e_i^{\pm})^2 - e_j^{\pm} (e_i^{\pm})^3 = 0, \qquad i \neq j.$$

The following presentation of $U_q(\widehat{\mathfrak{sl}}_2)$ will be useful.

Proposition 3.2 ([23, Theorem 2.1], [38]) The quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$ is isomorphic to the unital associative \mathbb{C} -algebra with generators $x_i^{\pm 1}$, y_i , z_i , $i \in \{0,1\}$ and the following relations:

$$\begin{array}{rcl} x_i x_i^{-1} = x_i^{-1} x_i & = & 1, \\ x_0 x_1 & is \; central, \\ & \frac{q x_i y_i - q^{-1} y_i x_i}{q - q^{-1}} & = & 1, \\ & \frac{q y_i z_i - q^{-1} z_i y_i}{q - q^{-1}} & = & 1, \\ & \frac{q z_i x_i - q^{-1} x_i z_i}{q - q^{-1}} & = & 1, \\ & \frac{q z_i y_j - q^{-1} y_j z_i}{q - q^{-1}} & = & x_0^{-1} x_1^{-1}, \qquad i \neq j, \end{array}$$

$$y_i^3 y_j - [3]_q y_i^2 y_j y_i + [3]_q y_i y_j y_i^2 - y_j y_i^3 = 0, i \neq j,$$

$$z_i^3 z_j - [3]_q z_i^2 z_j z_i + [3]_q z_i z_j z_i^2 - z_j z_i^3 = 0, i \neq j.$$

An isomorphism with the presentation in Definition 3.1 is given by:

The inverse of this isomorphism is given by:

$$\begin{array}{cccc} K_i^{\pm 1} & \mapsto & x_i^{\pm 1}, \\ e_i^- & \mapsto & y_i - x_i^{-1}, \\ e_i^+ & \mapsto & (1 - x_i z_i) q^{-1} (q - q^{-1})^{-2}. \end{array}$$

Theorem 3.3 [24, Proposition 7.4] For $i \in \mathbb{Z}_4$ there exists a \mathbb{C} -algebra homomorphism from $U_q(\widehat{\mathfrak{sl}}_2)$ to \boxtimes_q that sends

$$x_1 \mapsto x_{i,i+2}, \quad x_1^{-1} \mapsto x_{i+2,i}, \quad y_1 \mapsto x_{i+2,i+3}, \quad z_1 \mapsto x_{i+3,i},$$

 $x_0 \mapsto x_{i+2,i}, \quad x_0^{-1} \mapsto x_{i,i+2}, \quad y_0 \mapsto x_{i,i+1}, \quad z_0 \mapsto x_{i+1,i+2}.$

Proof: Compare the defining relations for $U_q(\widehat{\mathfrak{sl}}_2)$ given in Proposition 3.2 with the relations in Definition 2.1.

4 Distance-regular graphs; preliminaries

We now turn our attention to distance-regular graphs. After a brief review of the basic definitions we recall the Q-polynomial property and the subconstituent algebra. For more information we refer the reader to [1, 3, 19, 32].

Let X denote a nonempty finite set. Let $\operatorname{Mat}_X(\mathbb{C})$ denote the \mathbb{C} -algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C} . Let $V = \mathbb{C}^X$ denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C} . We observe $\operatorname{Mat}_X(\mathbb{C})$ acts on V by left multiplication. We call V the standard module. We endow V with the Hermitean inner product $\langle \, , \, \rangle$ that satisfies $\langle u,v \rangle = u^t\overline{v}$ for $u,v \in V$, where t denotes transpose and $\overline{}$ denotes complex conjugation. For all $y \in X$, let \hat{y} denote the element of V with a 1 in the y coordinate and 0 in all other coordinates. We observe $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V.

Let $\Gamma = (X, R)$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X and edge set R. Let ∂ denote the path-length distance function for Γ , and set $D := \max\{\partial(x, y) \mid x, y \in X\}$. We call D the diameter of Γ . For an integer $k \geq 0$ we say that Γ is regular with valency k whenever each vertex of Γ is adjacent to exactly k distinct vertices of Γ . We say that Γ is distance-regular whenever for all integers $h, i, j \ (0 \leq h, i, j \leq D)$ and for all vertices $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{ij}^h = |\{z \in X \mid \partial(x, z) = i, \partial(z, y) = j\}|$$

is independent of x and y. The p_{ij}^h are called the *intersection numbers* of Γ . We abbreviate $c_i = p_{1,i-1}^i$ $(1 \le i \le D)$, $b_i = p_{1,i+1}^i$ $(0 \le i \le D-1)$, $a_i = p_{1i}^i$ $(0 \le i \le D)$.

For the rest of this paper we assume Γ is distance-regular; to avoid trivialities we always assume $D \geq 3$. Note that Γ is regular with valency $k = b_0$. Moreover $k = c_i + a_i + b_i$ for $0 \leq i \leq D$, where $c_0 = 0$ and $b_D = 0$.

We mention a fact for later use. By the triangle inequality, for $0 \le h, i, j \le D$ we have $p_{ij}^h = 0$ (resp. $p_{ij}^h \ne 0$) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two.

We recall the Bose-Mesner algebra of Γ . For $0 \leq i \leq D$ let A_i denote the matrix in $\mathrm{Mat}_X(\mathbb{C})$ with (x, y)-entry

$$(A_i)_{xy} = \begin{cases} 1, & \text{if } \partial(x,y) = i \\ 0, & \text{if } \partial(x,y) \neq i \end{cases} \quad (x,y \in X).$$

We call A_i the *i*th distance matrix of Γ . We abbreviate $A = A_1$ and call this the adjacency matrix of Γ . We observe (i) $A_0 = I$; (ii) $\sum_{i=0}^{D} A_i = J$; (iii) $\overline{A_i} = A_i$ ($0 \le i \le D$); (iv) $A_i^t = A_i$ ($0 \le i \le D$); (v) $A_i A_j = \sum_{h=0}^{D} p_{ij}^h A_h$ ($0 \le i, j \le D$), where I (resp. J) denotes the identity matrix (resp. all 1's matrix) in $\operatorname{Mat}_X(\mathbb{C})$. Using these facts we find $\{A_i\}_{i=0}^{D}$ is a basis for a commutative subalgebra M of $\operatorname{Mat}_X(\mathbb{C})$, called the Bose-Mesner algebra of Γ . It turns out that A generates M [1, p. 190]. By [3, p. 45], M has a second basis $\{E_i\}_{i=0}^{D}$ such that (i) $E_0 = |X|^{-1}J$; (ii) $\sum_{i=0}^{D} E_i = I$; (iii) $\overline{E_i} = E_i$ ($0 \le i \le D$); (iv) $E_i^t = E_i$ ($0 \le i \le D$); (v) $E_i E_j = \delta_{ij} E_i$ ($0 \le i, j \le D$). We call $\{E_i\}_{i=0}^{D}$ the primitive idempotents of Γ .

We recall the eigenvalues of Γ . Since $\{E_i\}_{i=0}^D$ form a basis for M there exist complex scalars $\{\theta_i\}_{i=0}^D$ such that $A = \sum_{i=0}^D \theta_i E_i$. Observe $AE_i = E_i A = \theta_i E_i$ for $0 \le i \le D$. By [1, p. 197] the scalars $\{\theta_i\}_{i=0}^D$ are in \mathbb{R} . Observe $\{\theta_i\}_{i=0}^D$ are mutually distinct since A generates M. We call θ_i the eigenvalue of Γ associated with E_i ($0 \le i \le D$). Observe

$$V = E_0 V + E_1 V + \dots + E_D V$$
 (orthogonal direct sum).

For $0 \le i \le D$ the space E_iV is the eigenspace of A associated with θ_i .

We now recall the Krein parameters. Let \circ denote the entrywise product in $\operatorname{Mat}_X(\mathbb{C})$. Observe $A_i \circ A_j = \delta_{ij} A_i$ for $0 \le i, j \le D$, so M is closed under \circ . Thus there exist complex scalars q_{ij}^h $(0 \le h, i, j \le D)$ such that

$$E_i \circ E_j = |X|^{-1} \sum_{h=0}^{D} q_{ij}^h E_h \qquad (0 \le i, j \le D).$$

By [2, p. 170], q_{ij}^h is real and nonnegative for $0 \le h, i, j \le D$. The q_{ij}^h are called the Krein parameters of Γ . The graph Γ is said to be Q-polynomial (with respect to the given ordering $\{E_i\}_{i=0}^D$ of the primitive idempotents) whenever for $0 \le h, i, j \le D$, $q_{ij}^h = 0$ (resp. $q_{ij}^h \ne 0$) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two [3, p. 235]. See [4, 5, 6, 10, 11, 14, 15, 30] for background information on the Q-polynomial property. From now on we assume Γ is Q-polynomial with respect to $\{E_i\}_{i=0}^D$. We call the sequence $\{\theta_i\}_{i=0}^D$ the eigenvalue sequence for this Q-polynomial structure.

We recall the dual Bose-Mesner algebra of Γ . For the rest of this paper we fix a vertex $x \in X$. We view x as a "base vertex." For $0 \le i \le D$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $\operatorname{Mat}_X(\mathbb{C})$ with (y,y)-entry

$$(E_i^*)_{yy} = \begin{cases} 1, & \text{if } \partial(x, y) = i \\ 0, & \text{if } \partial(x, y) \neq i \end{cases} \quad (y \in X).$$
 (2)

We call E_i^* the ith dual idempotent of Γ with respect to x [32, p. 378]. We observe (i) $\sum_{i=0}^{D} E_i^* = I$; (ii) $\overline{E_i^*} = E_i^*$ ($0 \le i \le D$); (iii) $E_i^{*t} = E_i^*$ ($0 \le i \le D$); (iv) $E_i^* E_j^* = \delta_{ij} E_i^*$ ($0 \le i, j \le D$). By these facts $\{E_i^*\}_{i=0}^{D}$ form a basis for a commutative subalgebra $M^* = M^*(x)$ of $\mathrm{Mat}_X(\mathbb{C})$. We call M^* the dual Bose-Mesner algebra of Γ with respect to x [32, p. 378]. For $0 \le i \le D$ let $A_i^* = A_i^*(x)$ denote the diagonal matrix in $\mathrm{Mat}_X(\mathbb{C})$ with (y,y)-entry $(A_i^*)_{yy} = |X|(E_i)_{xy}$ for $y \in X$. Then $\{A_i^*\}_{i=0}^{D}$ is a basis for M^* [32, p. 379]. Moreover (i) $A_0^* = I$; (ii) $\overline{A_i^*} = A_i^*$ ($0 \le i \le D$); (iii) $A_i^{*t} = A_i^*$ ($0 \le i \le D$); (iv) $A_i^*A_j^* = \sum_{h=0}^{D} q_{ij}^h A_h^*$ ($0 \le i, j \le D$) [32, p. 379]. We call $\{A_i^*\}_{i=0}^{D}$ the dual distance matrixes of Γ with respect to x. We abbreviate $A^* = A_1^*$ and call this the dual adjacency matrix of Γ with respect to x. The matrix A^* generates M^* [32, Lemma 3.11].

We recall the dual eigenvalues of Γ . Since $\{E_i^*\}_{i=0}^D$ form a basis for M^* there exist complex scalars $\{\theta_i^*\}_{i=0}^D$ such that $A^* = \sum_{i=0}^D \theta_i^* E_i^*$. Observe $A^* E_i^* = E_i^* A^* = \theta_i^* E_i^*$ for $0 \le i \le D$. By [32, Lemma 3.11] the scalars $\{\theta_i^*\}_{i=0}^D$ are in \mathbb{R} . The scalars $\{\theta_i^*\}_{i=0}^D$ are mutually distinct since A^* generates M^* . We call θ_i^* the dual eigenvalue of Γ associated with E_i^* $(0 \le i \le D)$. We call the sequence $\{\theta_i^*\}_{i=0}^D$ the dual eigenvalue sequence for the given Q-polynomial structure.

We recall the subconstituents of Γ . From (2) we find

$$E_i^* V = \operatorname{span}\{\hat{y} \mid y \in X, \quad \partial(x, y) = i\} \qquad (0 \le i \le D). \tag{3}$$

By (3) and since $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V we find

$$V = E_0^* V + E_1^* V + \dots + E_D^* V$$
 (orthogonal direct sum).

For $0 \le i \le D$ the space E_i^*V is the eigenspace of A^* associated with θ_i^* . We call E_i^*V the ith subconstituent of Γ with respect to x.

We recall the subconstituent algebra of Γ . Let T = T(x) denote the subalgebra of $\mathrm{Mat}_X(\mathbb{C})$ generated by M and M^* . We call T the subconstituent algebra (or Terwilliger algebra) of Γ with respect to x [32, Definition 3.3]. Observe that T has finite dimension. Moreover T is semisimple since it is closed under the conjugate transponse map [13, p. 157]. We note that A, A^* together generate T. By [32, Lemma 3.2] the following are relations in T:

$$E_h^* A_i E_j^* = 0 \text{ iff } p_{ij}^h = 0,$$
 $(0 \le h, i, j \le D),$ (4)
 $E_h A_i^* E_j = 0 \text{ iff } q_{ij}^h = 0,$ $(0 \le h, i, j \le D).$ (5)

$$E_h A_i^* E_j = 0 \quad \text{iff} \quad q_{ij}^h = 0, \qquad (0 \le h, i, j \le D).$$
 (5)

See [8, 9, 12, 16, 17, 18, 21, 31, 32, 33, 34] for more information on the subconstituent algebra.

We recall the T-modules. By a T-module we mean a subspace $W \subseteq V$ such that $BW \subseteq W$ for all $B \in T$. Let W denote a T-module and let W' denote a T-module contained in W. Then the orthogonal complement of W' in W is a T-module [18, p. 802]. It follows that each T-module is an orthogonal direct sum of irreducible T-modules. In particular V is an orthogonal direct sum of irreducible T-modules.

Let W denote an irreducible T-module. Observe that W is the direct sum of the nonzero spaces among E_0^*W, \ldots, E_D^*W . Similarly W is the direct sum of the nonzero spaces among E_0W,\ldots, E_DW . By the endpoint of W we mean $\min\{i|0\leq i\leq D,\ E_i^*W\neq 0\}$. By the diameter of W we mean $|\{i|0 \le i \le D, E_i^*W \ne 0\}| - 1$. By the dual endpoint of W we mean $\min\{i|0 \le i \le D, E_iW \ne 0\}$. By the dual diameter of W we mean $|\{i|0 \le i \le D\}$ $D, E_iW \neq 0\}|-1$. It turns out that the diameter of W is equal to the dual diameter of W [30, Corollary 3.3]. By [32, Lemma 3.4] dim $E_i^*W \leq 1$ for $0 \leq i \leq D$ if and only if $\dim E_i W < 1$ for 0 < i < D; in this case W is called thin.

We finish this section with a few comments.

Lemma 4.1 [32, Lemma 3.4, Lemma 3.9, Lemma 3.12] Let W denote an irreducible Tmodule with endpoint ρ , dual endpoint τ , and diameter d. Then ρ, τ, d are nonnegative integers such that $\rho + d \leq D$ and $\tau + d \leq D$. Moreover the following (i)-(iv) hold.

- (i) $E_i^*W \neq 0$ if and only if $\rho \leq i \leq \rho + d$, $(0 \leq i \leq D)$.
- (ii) $W = \sum_{h=0}^{d} E_{\rho+h}^* W$ (orthogonal direct sum).
- (iii) $E_iW \neq 0$ if and only if $\tau \leq i \leq \tau + d$, $(0 \leq i \leq D)$.
- (iv) $W = \sum_{h=0}^{d} E_{\tau+h} W$ (orthogonal direct sum).

Lemma 4.2 [26, Lemma 12.1] For $Y \in \operatorname{Mat}_X(\mathbb{C})$ the following are equivalent:

- (i) $Y \in T$;
- (ii) $YW \subseteq W$ for all irreducible T-modules W.

5 The split decomposition

We are going to make use of a certain decomposition of V called the *split decomposition*. The split decomposition was defined in [37] and discussed further in [26, 28]. In this section we recall some results on this topic.

Definition 5.1 [37, Definition 5.1] For $-1 \le i, j \le D$ we define

$$V_{i,j}^{\downarrow\downarrow} = (E_0^*V + \dots + E_i^*V) \cap (E_0V + \dots + E_jV),$$

$$V_{i,j}^{\downarrow\uparrow} = (E_0^*V + \dots + E_i^*V) \cap (E_DV + \dots + E_{D-j}V).$$

In the above two equations we interpret the right-hand side to be 0 if i = -1 or j = -1.

Definition 5.2 [37, Definition 5.5] With reference to Definition 5.1, for $(\mu, \nu) = (\downarrow, \downarrow)$ or $(\mu, \nu) = (\downarrow, \uparrow)$ we have $V_{i-1,j}^{\mu\nu} \subseteq V_{i,j}^{\mu\nu}$ and $V_{i,j-1}^{\mu\nu} \subseteq V_{i,j}^{\mu\nu}$. Therefore

$$V_{i-1,j}^{\mu\nu} + V_{i,j-1}^{\mu\nu} \subseteq V_{i,j}^{\mu\nu}.$$

Referring to the above inclusion, we define $\tilde{V}_{i,j}^{\mu\nu}$ to be the orthogonal complement of the left-hand side in the right-hand side; that is

$$\tilde{V}_{i,j}^{\mu\nu} = (V_{i-1,j}^{\mu\nu} + V_{i,j-1}^{\mu\nu})^{\perp} \cap V_{i,j}^{\mu\nu}.$$

The following is a mild generalization of [37, Corollary 5.8].

Lemma 5.3 With reference to Definition 5.2 the following holds for $(\mu, \nu) = (\downarrow, \downarrow)$ and $(\mu, \nu) = (\downarrow, \uparrow)$:

$$V = \sum_{i=0}^{D} \sum_{j=0}^{D} \tilde{V}_{i,j}^{\mu\nu} \qquad \text{(direct sum)}.$$
 (6)

Proof: For $(\mu, \nu) = (\downarrow, \downarrow)$ this is just [37, Corollary 5.8]. For $(\mu, \nu) = (\downarrow, \uparrow)$, in the proof of [37, Corollary 5.8] replace the sequence $\{E_i\}_{i=0}^D$ by $\{E_{D-i}\}_{i=0}^D$.

Note 5.4 Following [28, Definition 6.4] we call the sum (6) the (μ, ν) -split decomposition of V.

We now recall how the split decompositions are related to the irreducible T-modules. we start with a definition.

Definition 5.5 [37, Definition 4.1] Let W denote an irreducible T-module with endpoint ρ , dual endpoint τ , and diameter d. By the displacement of W of the first kind we mean the scalar $\rho + \tau + d - D$. By the displacement of W of the second kind we mean the scalar $\rho - \tau$. By the inequalities in Lemma 4.1, each kind of displacement is at least -D and at most D.

Lemma 5.6 [37, Theorem 6.2] For $-D \le \delta \le D$ the following coincide:

- (i) The subspace of V spanned by the irreducible T-modules for which δ is the displacement of the first kind;
- (ii) $\sum \tilde{V}_{ij}^{\downarrow\downarrow}$, where the sum is over all ordered pairs $i,j \ (0 \leq i,j \leq D)$ such that $i+j=\delta+D$.

Lemma 5.7 For $-D \le \delta \le D$ the following coincide:

- (i) The subspace of V spanned by the irreducible T-modules for which δ is the displacement of the second kind;
- (ii) $\sum \tilde{V}_{ij}^{\downarrow\uparrow}$, where the sum is over all ordered pairs $i, j \ (0 \le i, j \le D)$ such that $i+j = \delta + D$.

Proof: In the proof of [37, Theorem 6.2], replace the sequence $\{E_i\}_{i=0}^D$ by the sequence $\{E_{D-i}\}_{i=0}^D$.

6 A homomorphism $\vartheta : \boxtimes_q \to T$

We now impose an assumption on Γ .

Assumption 6.1 We fix complex scalars $q, \eta, \eta^*, u, u^*, v, v^*$ with q, u, u^*, v, v^* nonzero and $q^{2i} \neq 1$ for $1 \leq i \leq D$. We assume that Γ has a Q-polynomial structure with eigenvalue sequence

$$\theta_i = \eta + uq^{2i-D} + vq^{D-2i} \qquad (0 \le i \le D)$$

and dual eigenvalue sequence

$$\theta_i^* = \eta^* + u^* q^{2i-D} + v^* q^{D-2i} \qquad (0 \le i \le D).$$

Moreover we assume that each irreducible T-module is thin.

Remark 6.2 In the notation of Bannai and Ito [1, p. 263] the Q-polynomial structure from Assumption 6.1 is type I with $s \neq 0, s^* \neq 0$. We caution the reader that the scalar denoted q in [1, p. 263] is the same as our scalar q^2 .

Example 6.3 The ordinary cycles are the only known distance-regular graphs that satisfy Assumption 6.1 [3].

Under Assumption 6.1 we will display a \mathbb{C} -algebra homomorphism $\vartheta : \boxtimes_q \to T$. To describe this homomorphism we define two matrices in $\mathrm{Mat}_X(\mathbb{C})$, called Φ and Ψ .

Definition 6.4 With reference to Lemma 5.3 and Assumption 6.1, let Φ (resp. Ψ) denote the unique matrix in $\operatorname{Mat}_X(\mathbb{C})$ that acts on $\tilde{V}_{ij}^{\downarrow\downarrow}$ (resp. $\tilde{V}_{ij}^{\downarrow\uparrow}$) as $q^{i+j-D}I$ for $0 \leq i, j \leq D$. Observe that each of Φ , Ψ is invertible.

Lemma 6.5 Under Assumption 6.1 let W denote an irreducible T-module with endpoint ρ , dual endpoint τ , and diameter d. Then Φ and Ψ act on W as $q^{\rho+\tau+d-D}I$ and $q^{\rho-\tau}I$ respectively.

Proof: Concerning Φ , abbreviate $\delta = \rho + \tau + d - D$ and recall that this is the displacement of W of the first kind. We show that Φ acts on W as $q^{\delta}I$. Let V_{δ} denote the common subspace from parts (i), (ii) of Lemma 5.6. By Lemma 5.6(i) we have $W \subseteq V_{\delta}$. In Lemma 5.6(ii) V_{δ} is expressed as a sum. The matrix Φ acts on each term of this sum as $q^{\delta}I$ by Definition 6.4, so Φ acts on V_{δ} as $q^{\delta}I$. By these comments Φ acts on W as $q^{\delta}I$ and this proves our assertion concerning Φ . Our assertion concerning Ψ is similarly proved using the displacement of the second kind and Lemma 5.7.

Lemma 6.6 Under Assumption 6.1 the matrices Φ and Ψ are central elements of T.

Proof: The matrices Φ and Ψ are contained in T by Lemma 4.2 and Lemma 6.5. These matrices are central in T since by Lemma 6.5 they act as a scalar multiple of the identity on every irreducible T-module.

The following is our main result.

Theorem 6.7 Under Assumption 6.1 there exists a \mathbb{C} -algebra homomorphism $\vartheta : \boxtimes_q \to T$ such that both

$$A = \eta I + u\Phi\Psi^{-1}\vartheta(x_{01}) + v\Psi\Phi^{-1}\vartheta(x_{12}), \tag{7}$$

$$A^* = \eta^* I + u^* \Phi \Psi \vartheta(x_{23}) + v^* \Psi^{-1} \Phi^{-1} \vartheta(x_{30}). \tag{8}$$

We will prove the above theorem after a few lemmas.

Lemma 6.8 Under Assumption 6.1 let W denote an irreducible T-module with endpoint ρ , dual endpoint τ , and diameter d. Then there exists a \boxtimes_q -module structure on W such that the adjacency matrix A acts as $\eta I + uq^{2\tau+d-D}x_{01} + vq^{D-d-2\tau}x_{12}$ and the dual adjacency matrix A^* acts as $\eta^*I + u^*q^{2\rho+d-D}x_{23} + v^*q^{D-d-2\rho}x_{30}$. This \boxtimes_q -module structure is irreducible.

Proof: By [22, Example 1.4] and since the *T*-module *W* is thin the pair *A*, A^* acts on *W* as a Leonard pair in the sense of [35, Definition 1.1]. In the notation of [35, Definition 5.1] this Leonard pair has an eigenvalue sequence $\{\theta_{\tau+i}\}_{i=0}^d$ and a dual eigenvalue sequence $\{\theta_{\rho+i}\}_{i=0}^d$ in view of Lemma 4.1. To motivate what follows we note that

$$\begin{array}{lcl} \theta_{\tau+i} & = & \eta + uq^{2\tau+d-D}q^{2i-d} + vq^{D-d-2\tau}q^{d-2i}, \\ \theta_{\rho+i}^* & = & \eta^* + u^*q^{2\rho+d-D}q^{2i-d} + v^*q^{D-d-2\rho}q^{d-2i} \end{array}$$

for $0 \le i \le d$. In both equations above the coefficients of q^{2i-d} and q^{d-2i} are nonzero; therefore the action of A, A^* on W is a Leonard pair of q-Racah type in the sense of [36, Example 5.3]. Referring to this Leonard pair, let $\{\varphi_i\}_{i=1}^d$ (resp. $\{\phi_i\}_{i=1}^d$) denote the first (resp. second) split sequence [35, Section 7] associated with the eigenvalue sequence $\{\theta_{\tau+i}\}_{i=0}^d$

and the dual eigenvalue sequence $\{\theta_{\rho+i}^*\}_{i=0}^d$. By [35, Section 7] each of φ_i , ϕ_i is nonzero for $1 \leq i \leq d$. By [36, Example 5.3] there exists a nonzero $r \in \mathbb{C}$ such that

$$\varphi_{i} = (q^{i} - q^{-i})(q^{d-i+1} - q^{i-d-1})$$

$$\times (q^{d-i} - r^{-1}q^{i-1})(uu^{*}rq^{2\tau+2\rho+d+i-2D} - vv^{*}q^{2D-2d-2\tau-2\rho+1-i}),$$

$$\phi_{i} = (q^{i} - q^{-i})(q^{d-i+1} - q^{i-d-1})$$

$$\times (urq^{2\tau+d-D+1-i} - vq^{D-2d-2\tau+i})(u^{*}q^{2\rho+d-D+i-1} - v^{*}r^{-1}q^{D-2\rho-i})$$

for $1 \leq i \leq d$. Observe that r is not among $q^{d-1}, q^{d-3}, \ldots, q^{1-d}$ since each of $\varphi_1, \varphi_2, \ldots, \varphi_d$ is nonzero. By [35, Section 7] there exists a basis $\{v_i\}_{i=0}^d$ of W such that

$$Av_{i} = \theta_{\tau+d-i}v_{i} + v_{i+1} \qquad (0 \le i \le d-1), \quad Av_{d} = \theta_{\tau}v_{d},$$

$$A^{*}v_{i} = \theta_{\rho+i}^{*}v_{i} + \phi_{i}v_{i-1} \qquad (1 \le i \le d), \quad A^{*}v_{0} = \theta_{\rho}^{*}v_{0}.$$

For convenience we adjust this basis slightly. For $1 \le i \le d$ define

$$\gamma_i = (q^i - q^{-i})(urq^{2\tau + d - D + 1 - i} - vq^{D - 2d - 2\tau + i}).$$

In the above equation the right-hand side is nonzero since it is a factor of ϕ_i , so $\gamma_i \neq 0$. Define $u_i = (\gamma_1 \gamma_2 \cdots \gamma_i)^{-1} v_i$ for $0 \leq i \leq d$ and note that $\{u_i\}_{i=0}^d$ is a basis for W. By the construction

$$Au_{i} = \theta_{\tau+d-i}u_{i} + \gamma_{i+1}u_{i+1} \qquad (0 \le i \le d-1), \quad Au_{d} = \theta_{\tau}u_{d},$$

$$A^{*}u_{i} = \theta_{\rho+i}^{*}u_{i} + \phi_{i}\gamma_{i}^{-1}u_{i-1} \qquad (1 \le i \le d), \quad A^{*}u_{0} = \theta_{\rho}^{*}u_{0}.$$

We let each standard generator of \boxtimes_q act linearly on W; to define this action we specify what it does to the basis $\{u_i\}_{i=0}^d$. Here are the details:

$$\begin{split} x_{01}.u_i &= q^{d-2i}u_i + (q^d - q^{d-2i-2})q^{1-d}ru_{i+1} & (0 \leq i \leq d-1), \quad x_{01}.u_d = q^{-d}u_d, \\ x_{12}.u_i &= q^{2i-d}u_i + (q^{-d} - q^{2i+2-d})u_{i+1} & (0 \leq i \leq d-1), \quad x_{12}.u_d = q^du_d, \\ x_{23}.u_i &= q^{2i-d}u_i + (q^d - q^{2i-2-d})u_{i-1} & (1 \leq i \leq d), \quad x_{23}.u_0 = q^{-d}u_0, \\ x_{30}.u_i &= q^{d-2i}u_i + (q^{-d} - q^{d-2i+2})q^{d-1}r^{-1}u_{i-1} & (1 \leq i \leq d), \quad x_{30}.u_0 = q^du_0, \\ x_{13}.u_i &= q^{2i-d}u_i & (0 \leq i \leq d), \\ x_{31}.u_i &= q^{d-2i}u_i & (0 \leq i \leq d), \\ x_{02}.u_i &= (1 - rq^{-d-1})\frac{(1 - q^{2d-2i+2})(1 - q^{2d-2i+4}) \cdots (1 - q^{2d})q^{d-2i}}{(1 - rq^{d-1-2i})(1 - rq^{d+1-2i}) \cdots (1 - rq^{d-1})}u_0 \\ &+ & (1 - rq^{d+1})(1 - rq^{-d-1})\sum_{h=1}^{i}\frac{(1 - q^{2d-2i+2})(1 - q^{2d-2i+4}) \cdots (1 - q^{2d-2h})q^{d-2i}}{(1 - rq^{d-1-2i})(1 - rq^{d+1-2i}) \cdots (1 - rq^{d+1-2h})}u_h \\ &+ & \frac{(q^{2i+2} - 1)r}{q^{2i+1}(1 - rq^{d-1-2i})}u_{i+1} & (0 \leq i \leq d-1), \\ x_{02}.u_d &= \frac{(1 - q^2)(1 - q^4) \cdots (1 - q^{2d})q^{-d}}{(1 - rq^{1-d})(1 - rq^{3-d}) \cdots (1 - rq^{d-1})}u_0 \\ &+ & (1 - rq^{d+1})\sum_{h=1}^{d}\frac{(1 - q^2)(1 - q^4) \cdots (1 - q^{2d-2h})q^{-d}}{(1 - rq^{1-d})(1 - rq^{3-d}) \cdots (1 - rq^{d+1-2h})}u_h, \end{split}$$

$$x_{20}.u_{0} = (1 - rq^{d+1}) \sum_{h=0}^{d-1} \frac{(1 - q^{2})(1 - q^{4}) \cdots (1 - q^{2h})r^{h}q^{h-dh-d}}{(1 - rq^{1-d})(1 - rq^{3-d}) \cdots (1 - rq^{2h-d+1})} u_{h}$$

$$+ \frac{(1 - q^{2})(1 - q^{4}) \cdots (1 - q^{2d})r^{d}q^{-d^{2}}}{(1 - rq^{1-d})(1 - rq^{3-d}) \cdots (1 - rq^{d-1})} u_{d},$$

$$x_{20}.u_{i} = \frac{q^{d} - q^{2i-2-d}}{1 - rq^{2i-d-1}} u_{i-1}$$

$$+ (1 - rq^{d+1})(1 - rq^{-d-1}) \sum_{h=i}^{d-1} \frac{(1 - q^{2i+2})(1 - q^{2i+4}) \cdots (1 - q^{2h})r^{h-i}q^{(d+1)i-(d-1)h-d}}{(1 - rq^{2i-d-1})(1 - rq^{2i-d+1}) \cdots (1 - rq^{2h-d+1})} u_{h}$$

$$+ (1 - rq^{-d-1}) \frac{(1 - q^{2i+2})(1 - q^{2i+4}) \cdots (1 - q^{2d})r^{d-i}q^{di+i-d^{2}}}{(1 - rq^{2i-d-1})(1 - rq^{2i-d-1})} u_{d} \qquad (1 \le i \le d).$$

In the above formulae the denominators are nonzero since r is not among $q^{d-1}, q^{d-3}, \ldots, q^{1-d}$. One checks (or see [27]) that the above actions satisfy the defining relations for \boxtimes_q from Definition 2.1, so these actions induce a \boxtimes_q -module structure on W. Comparing the action of A (resp. A^*) on $\{u_i\}_{i=0}^d$ with the actions of x_{01}, x_{12} (resp. x_{23}, x_{30}) on $\{u_i\}_{i=0}^d$ we find that both

$$A = \eta I + uq^{2\tau + d - D}x_{01} + vq^{D - d - 2\tau}x_{12},$$

$$A^* = \eta^* I + u^*q^{2\rho + d - D}x_{23} + v^*q^{D - d - 2\rho}x_{30}$$

on W. By these equations and since the T-module W is irreducible we find the \boxtimes_q -module W is irreducible. The result follows.

Lemma 6.9 Under Assumption 6.1 let W denote an irreducible T-module and consider the \boxtimes_q -action on W from Lemma 6.8. Then the following equations hold on W:

$$A = \eta I + u\Phi\Psi^{-1}x_{01} + v\Psi\Phi^{-1}x_{12},$$

$$A^* = \eta^* I + u^*\Phi\Psi x_{23} + v^*\Psi^{-1}\Phi^{-1}x_{30}.$$

Proof: Combine Lemma 6.5 and Lemma 6.8.

It is now a simple matter to prove Theorem 6.7.

Proof of Theorem 6.7: We start with a comment. Let W and W' denote irreducible T-modules, and consider the \boxtimes_q -module structure on W and W' from Lemma 6.8. From the construction we may assume that if the T-modules W and W' are isomorphic then the \boxtimes_q -modules W and W' are isomorphic. With our comment out of the way we proceed to the main argument. The standard module V decomposes into a direct sum of irreducible T-modules. Each irreducible T-module in this decomposition supports a \boxtimes_q -module structure from Lemma 6.8. Combining these \boxtimes_q -modules we get a \boxtimes_q -module structure on V. This module structure induces a \mathbb{C} -algebra homomorphism $\vartheta: \boxtimes_q \to \operatorname{Mat}_X(\mathbb{C})$. The map ϑ satisfies (7), (8) in view of Lemma 6.9. To finish the proof it suffices to show that $\vartheta(\boxtimes_q) \subseteq T$.

To this end we pick $\zeta \in \boxtimes_q$ and show $\vartheta(\zeta) \in T$. Since T is semisimple, and by our preliminary comment, there exists $B \in T$ that acts on each irreducible T-module in the above decomposition as $\vartheta(\zeta)$. The T-modules in this decomposition span V so $\vartheta(\zeta)$ coincides with B on V; therefore $\vartheta(\zeta) = B$ and in particular $\vartheta(\zeta) \in T$ as desired. We have now shown that $\vartheta(\boxtimes_q) \subseteq T$ and the result follows.

Remark 6.10 In Theorem 6.7 we obtained a \mathbb{C} -algebra homomorphism $\vartheta: \boxtimes_q \to T$. In Theorem 3.3 we displayed four \mathbb{C} -algebra homomorphisms from $U_q(\widehat{\mathfrak{sl}}_2)$ into \boxtimes_q . Composing these homomorphisms with ϑ we obtain four \mathbb{C} -algebra homomorphisms from $U_q(\widehat{\mathfrak{sl}}_2)$ into T.

We conjecture that the conclusion of Theorem 6.7 still holds if we weaken Assumption 6.1 by no longer requiring that each irreducible T-module is thin.

References

- [1] E. Bannai and T. Ito. Algebraic Combinatorics I: Association Schemes. Ben-jamin/Cummings, London, 1984.
- [2] N. Biggs Algebraic Graph Theory. Second edition. Cambridge University Press, Cambridge, 1993.
- [3] A. E. Brouwer, A. M. Cohen, and A. Neumaier. *Distance-Regular Graphs*. Springer-Verlag, Berlin, 1989.
- [4] A. E. Brouwer, C. D. Godsil, J. H. Koolen, W. J. Martin. Width and dual width of subsets in polynomial association schemes. J. Combin. Theory Ser. A 102 (2003), 255-271.
- [5] J. S. Caughman IV. Spectra of bipartite P- and Q-polynomial association schemes. $Graphs\ Combin.\ 14\ (1998),\ 321-343.$
- [6] J. S. Caughman IV. The Terwilliger algebras of bipartite *P* and *Q*-polynomial association schemes. *Discrete Math.* **196** (1999), 65–95.
- [7] V. Chari and A. Pressley. Quantum affine algebras. Comm. Math. Phys. 142 (1991), 261–283.
- [8] B. Curtin. Bipartite distance-regular graphs I. Graphs Combin. 15 (1999), 143–158.
- [9] B. Curtin. Bipartite distance-regular graphs II. Graphs Combin. 15 (1999), 377–391.
- [10] B. Curtin. 2-homogeneous bipartite distance-regular graphs. *Discrete Math.* **187** (1998), 39–70.
- [11] B. Curtin. Distance-regular graphs which support a spin model are thin. 16th British Combinatorial Conference (London, 1997). Discrete Math. 197/198 (1999), 205–216.

- [12] B. Curtin and K. Nomura. Distance-regular graphs related to the quantum enveloping algebra of sl(2). *J. Algebraic Combin.* **12** (2000), 25–36.
- [13] C. Curtis and I. Reiner. Representation Theory of Finite Groups and Associative Algebras. Interscience, New York, 1962.
- [14] G. Dickie. Twice Q-polynomial distance-regular graphs are thin. European J. Combin. 16 (1995), 555–560.
- [15] G. Dickie and P. Terwilliger. A note on thin *P*-polynomial and dual-thin *Q*-polynomial symmetric association schemes. *J. Algebraic Combin.* **7** (1998), 5–15.
- [16] E. Egge. A generalization of the Terwilliger algebra. J. Algebra 233 (2000), 213–252.
- [17] J. T. Go. The Terwilliger algebra of the hypercube. European J. Combin. 23 (2002), 399–429.
- [18] J. T. Go and P. Terwilliger. Tight distance-regular graphs and the subconstituent algebra. *European J. Combin.* **23** (2002), 793–816.
- [19] C. D. Godsil. Algebraic Combinatorics. Chapman and Hall, Inc., New York, 1993.
- [20] B. Hartwig and P. Terwilliger. The Tetrahedron algebra, the Onsager algebra, and the \$\sil_2\$ loop algebra. J. Algebra 308 (2007), 840–863. arXiv:math-ph/0511004.
- [21] S. A. Hobart and T. Ito. The structure of nonthin irreducible *T*-modules: ladder bases and classical parameters. *J. Algebraic Combin.* **7** (1998), 53–75.
- [22] T. Ito, K. Tanabe, P. Terwilliger. Some algebra related to P- and Q-polynomial association schemes. Codes and Association Schemes (Piscataway NJ, 1999), 167–192, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. **56**, Amer. Math. Soc., Providence RI 2001. arXiv:math.CO/0406556.
- [23] T. Ito and P. Terwilliger. Tridiagonal pairs and the quantum affine algebra $U_q(\widehat{sl}_2)$. Ramanujan J. 13 (2007), 39–62; arXiv:math.QA/0310042.
- [24] T. Ito and P. Terwilliger. The q-tetrahedron algebra and its finite-dimensional irreducible modules. Comm. Algebra; in press. arXiv:math.QA/0602199.
- [25] T. Ito and P. Terwilliger. q-Inverting pairs of linear transformations and the q-tetrahedron algebra. Linear Algebra Appl.; in press. arXiv:math.RT/0606237.
- [26] T. Ito and P. Terwilliger. Distance-regular graphs and the q-tetrahedron algebra. European J. Combin.; submitted. arXiv:math.CO/0608694.
- [27] T. Ito and P. Terwilliger. Evaluation modules for the q-tetrahedron algebra. In preparation.
- [28] Joohyung Kim. A duality between pairs of split decompositions for a Q-polynomial distance-regular graph. *Discrete Math*; submitted.

- [29] G. Lusztig. Introduction to Quantum Groups, Birkhauser, Boston, 1990.
- [30] A. A. Pascasio. On the multiplicities of the primitive idempotents of a Q-polynomial distance-regular graph. European J. Combin. 23 (2002), 1073–1078.
- [31] K. Tanabe. The irreducible modules of the Terwilliger algebras of Doob schemes. J. Algebraic Combin. 6 (1997), 173–195.
- [32] P. Terwilliger. The subconstituent algebra of an association scheme I. J. Algebraic Combin. 1 (1992), 363–388.
- [33] P. Terwilliger. The subconstituent algebra of an association scheme II. J. Algebraic Combin. 2 (1993), 73–103.
- [34] P. Terwilliger. The subconstituent algebra of an association scheme III. J. Algebraic Combin. 2 (1993), 177–210.
- [35] P. Terwilliger. Leonard pairs and the q-Racah polynomials. Linear Algebra Appl. 387 (2004), 235-276. arXiv:math.QA/0306301.
- [36] P. Terwilliger. Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array. Des. Codes Cryptogr. 34 (2005) 307-332. arXiv:math.RA/0306291.
- [37] P. Terwilliger. The displacement and split decompositions for a Q-polynomial distanceregular graph. Graphs Combin. 21 (2005), 263-276. arXiv:math.CO/0306142.
- [38] P. Terwilliger. The equitable presentation for the quantum group $U_q(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra g. J. Algebra 298 (2006), 302–319. arXiv:math.QA/0507478.

Tatsuro Ito Department of Computational Science Faculty of Science Kanazawa University Kakuma-machi Kanazawa 920-1192, Japan email: tatsuro@kenroku.kanazawa-u.ac.jp

Paul Terwilliger Department of Mathematics

University of Wisconsin 480 Lincoln Drive

Madison, WI 53706-1388 USA

email: terwilli@math.wisc.edu