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Abstract

Motivated by investigations of the tridiagonal pairs of linear transformations, we
introduce the augmented tridiagonal algebra 7;. This is an infinite-dimensional asso-
ciative C-algebra with 1. We classify the finite-dimensional irreducible representations
of 7,. All such representations are explicitly constructed via embeddings of 7, into the
Uy(slz)-loop algebra. As an application, tridiagonal pairs over C are classified in the
case where ¢ is not a root of unity.
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1 Introduction

The purpose of this paper is to introduce the augmented tridiagonal algebra 7, and classify its
finite-dimensional irreducible representations. We explain our motivations in Sections 1.1, 1.2
and summarize our results in Sections 1.3, 1.4. Throughout this paper, we choose the complex
number field C as the ground field. An algebra means an associative C-algebra with 1.

1.1 Tridiagonal pairs: a background in combinatorics

The standard generators for the subconstituent algebra (Terwilliger algebra) of a P- and
Q-polynomial association scheme [1] give rise to a tridiagonal pair when they are restricted
to an irreducible submodule of the standard module [3, Example 1.4], [9, Lemmas 3.9, 3.12].
This fact motivates our ongoing investigation of the tridiagonal pairs [3], [4], [5], [6], [7], [8].

Let V denote a finite-dimensional nonzero vector space over C. Let End(V) denote the
C-algebra of all C-linear transformations of V. By a tridiagonal pair (TD-pair) on V we
mean an ordered pair A, A* of elements in End(V') that satisfy (i)—(iv) below:
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(i) A and A* are diagonalizable.
(ii) There exists an ordering Vg, V3, ..., V; of the eigenspaces of A such that
AV C Vi + Vi + Vi (0<i<d),
where V_; =0, V311 = 0.
(iii) There exists an ordering V", Vi*, ..., Vi of the eigenspaces of A* such that
AVE SV VTV, (0<i<d),
where V*, =0, Vi, = 0.

(iv) V is irreducible as an (A, A*)-module, where (A, A*) is the subalgebra of End(V)
generated by A, A*.

A TD-pair A, A* € End(V) is isomorphic to a TD-pair B, B* € End(V’) whenever there
exists an isomorphism ¢ : V' — V' of vector spaces such that By = YA and B*i) = ) A*.

In this subsection, we summarize the basic properties of a TD-pair A, A*; they will be
used to introduce the augmented tridiagonal algebra 7, in the next subsection. First we
remark that A and A* have the same number of eigenvalues, i.e. d = d* [2, Lemma 4.5]: we
call this common integer the diameter of the pair. A TD-pair with d = 0 is called trivial.
We usually assume d > 1 to avoid the trivial TD-pairs. Under this assumption, there exist
exactly two orderings of the eigenspaces of A (resp. A*) that satisfy the condition (ii) (resp.
(iii)): if Vo, Va,..., Vg (resp. Vi, Vi¥, ..., V) is one of these, then the other is the reversed
ordering Vg, Va_1,..., Vo (resp. VS,V ... V). We understand that one of such orderings
is chosen and fixed unless otherwise stated.

By [3, Theorem 10.1] there exist scalers 3, v, v*, 0, §* in C such that
[A, A2A* — BAA*A+ A*AY] = y[A, AA*+ A* A+ §[A, AY),
[A*, AA - BA*AA* + AA*?] = ~*[A*, A*A+ AAY] + 6 [A*, A,
where [X,Y] means XY — Y X. The sequence of scalars 3, v, v*,d, 6* is unique if d > 3.
The above relations are called the tridiagonal relations (TD-relations) [8]. We fix a nonzero
q € C such that
B=¢+q"

Let 6; (resp. 67 ) denote the eigenvalue of A for V; (resp. A* for V;*) (0 <1i < d). They are
expressed as follows [3, Theorem 11.2].

Type I (¢* # +1): there exist scalars a, a*,b, b*, ¢, ¢* such that

0, = a+bg* +cqg® (0<i<d),
0F = a+b'¢”+cq* (0 <i<d).

* —1\2 %2 )—22**
0" =(q—q ") a” = (¢ —q?)bc.



Type IT (¢*> = 1): there exist scalars a,a*, b, b*, ¢, ¢* such that

0; = a+bi+ci’ (0<i<d),
0 = a* +0b%i+ i (0<i<d).

In this case, v = 2¢, v =2¢*, § =b0* — % —4dac, 6 =b*? — 2 —4a*c.

Type III (¢ = —1): there exist scalars a,a*, b, b*, ¢, ¢* such that

0; = a+b(=1)+c(=1)" (0 <i<d),

0; = a +b (=)' +c (=)' (0<i<d).

In this case, y =4a, v* =4a*, § = —4a®>+ 2, §* = —4a*? + %

In this paper, we treat TD-pairs of Type I. If a TD-pair of Type I comes from a P- and
Q-polynomial association scheme with sufficiently large diameter, then ¢ is not a root of
unity, i.e., ¢" # 1 for any nonzero integer n [1, Chapter 3, Proposition 7.7]. From now on,
we fix a nonzero scalar ¢ € C and assume that q is not a root of unity. One of the effects
of this assumption is as follows. Let us call the conditions (ii), (iii) for a TD-pair the TD-
structures. Then under the diagonalizability condition (i) and the irreducibility condition
(iv), the TD-relations imply the TD-structures [10, Theorem 3.10]. This allows us to work
with the TD-relations instead of the TD-structures. We first establish the representation
theory of the augmented tridiagonal algebra 7,. The classification of TD-pairs of Type I will
be given as an application of the representation theory.

If A, A* are a TD-pair on V, then NA + pl, \*A* 4+ p*I are also a TD-pair on V' with
the same eigenspaces. Here A\, \*, i, u* € C, A # 0, A\* # 0 and [ is the identity map. The
parameter 3 and hence ¢ are invariant under the affine transformations A — MA+4ul, A* —
N A*+p*1. Also the diameter d is invariant under the affine transformations. For fixed d and
q, consider a TD-pair A, A* of Type I with diameter d and the parameter 5 = ¢> +¢~2. The
TD-pair A, A* can be standardized to have the following eigenvalues by applying appropriate
affine transformations and, if necessary, reversing the ordering of the eigenspaces V; of A or
of the eigenspaces V* of A*:

0@' — bq2i—d+€b—1qd—2i (O S P < d), (1)
9: — €*b*q2i_d T b*flqd—% (0 << d) (2)

for some constants b,b* (b # 0, b* # 0) and €,¢* € {1, 0}. A TD-pair A, A* is called a
standardized TD-pair of Type I, if A, A* have eigenvalues {60;}%,, {0:}%, as in (1), (2)
respectively for some integer d > 1 and nonzero b, b* € C under suitable orderings of the
eigenspaces {V;}&,, {V*}L,.

If d = 1, then 6y, 0; (resp. 6, 07) can be any pair of distinct scalars by applying a
suitable affine transformation to A (resp. A*), in particular for stadardization, (¢,b) and
(e*,0*) can be chosen arbitrarily from {0,1} x C* \ {(1,£1)}, where C* = C\{0}. Assume
d > 2. Then the pair €, * is uniquely determined by A, A* regardless of standardization, but

3



the scalars b, b* are not. If € = 1 (resp. ¢* = 1), then b (resp. b*) is determined up to the +
sign by A (resp. A*) and by the ordering of the eigenspaces of A (resp. A*). In this case, b
(resp. b*) is changed to b~' (resp. b*~') when we reverse the ordering of the eigenspaces of
A (resp. A*). If e = 0 (resp. €* = 0), then b (resp. b*) can be an arbitrary nonzero scalar.
In this case, the ordering of the eigenspaces of A (resp. A*) is uniquely determined when
standardized.

If (¢,e*) = (0,1), we further standardize the TD-pair A, A* by interchanging A, A* and
then reversing the ordering of the eigenspaces V* so that the standardized TD-pair has

7

(g,*) = (1,0). Thus a standardized TD-pair of Type I has
(g,") = (1,1), (1,0) or (0,0)
and is called of the Ist, 2nd, 3rd kind, accordingly.
The TD-relations for a standardized TD-pair A, A* of Type I are

(TD) { [A, A%2A* — BAA*A + A*A%] = e4[A, AY],
[A*) A A — BA*AA* + AAT] = &*[A*, Al
where 8= ¢*+ ¢ % and 0§ = —(¢* — ¢~2)°. Conversely, if a TD-pair A, A* satisfies the above
TD-relations (TD), then we have a = a* = 0, be = ¢, b*c* = £* in the general expression
of the eigenvalues for Type I, and so with suitable orderings of the eigenspaces, A, A* have
eigenvalues in the form of (1), (2) for some integer d > 1 and some nonzero b, b*, i.e., A, A*
are a standardized TD-pair of Type I. Thus given (¢,¢*) € {(1,1), (1,0), (0,0)} and a nonzero
scalar ¢ that is not a root of unity, a TD-pair A, A* is a standardized TD-pair if and only
if it satisfies the above TD-relations (TD). In view of this fact, we call (TD) the stadardized
TD-relations of Type I.
Given TD-pair A, A* € End(V') with eigenspaces {Vi}fzo, {V;-*};izo, the underlying vector
space V' has the split decomposition [3, Theorem 4.6]:

where

U=WVy+--+V)NVi+---+ Vo).

For a TD-pair A, A* € End(V) of Type I with eigenvalues (1), (2), let K € End(V') denote
the diagonalizable transformation for which U; is the eigenspace belonging to the eigenvalue
¢*~% (0 <i < d). We define the raising map R and the lowering map L by

R = A—bK —cb 'K,

L = A~V K—-b'K
Then indeed R (resp. L ) has the raising (resp. lowering) property [3, Theorem 4.6, Corol-
lary 6.3]:

RU;

-
LU; C



where U_; = Uyy1 = 0. By the raising, lowering properties of R, L, we get

, [ KRK™' = ¢R,
(TD)O{ KLK—l — q—2L7

and conversely the relations (7'D); imply the raising, lowering properties of R, L. Writing
(T'D); in terms of A, A*, K, we get the generalized g-Weyl relations:

(TD) (AK —q'KA)/(q—q7) = bK?+eb7 M,
"V (KA = 'A'K) /(g —q7') = b K>+ b7,

where [ is the identity map. Writing the tridiagonal relations (TD) for A, A* in terms of R,
L, K, we get

(py { [ BL=BRLR+ LR} = §/(c's"RAK? — =5 2K 2R?).
[L, L*R— BLRL+ RL?| = 0§ (—e"s?K?L* +es?L°K™?),

where 3 =¢*+¢7% 8 =—(¢g—q ") (* — a7 )@ —q?)¢*, s> =bb".

1.2 The TD-algebra A and the augmented TD-algebra 7

Fix a nonzero scalar ¢ € C which is not a root of unity. We also fix (¢,e*) € {(1,1),(1,0),(0,0)}.
Let A = A((f’s*) denote the associative C-algebra with 1 defined by genarators z, z* subject
to the relations

[z, 2%2* — Bz 2%z + 2*27) ed [z, 2],
(TD){ [Z*, z*zz—ﬁz*zz*—f-zz*Q] — 5*5[2*, Z],

where 8= ¢2+¢ 2 and § = —(¢* — ¢~2)>. When we need to specify (¢,£*), we write (TD);,
(TD)p1, (TD)qyp for the relations (TD) and A;j, Ajp, A for the algebra A according to
(e,*) = (1,1),(1,0),(0,0). The algebra A is called the tridiagonal algebra (TD-algebra) [10]
of the 1st, 2nd, 3rd kind, accordingly. (TD)y is the g-Serre relations and Ay is isomorphic
to the positive part of the quantum affine algebra Uq<;\lg). (TD); can be regarded as a
g-analogue of the Dolan- Grady relations and we call Aj the ¢-Onsager algebra.

Let 7 = 7,57 denote the associative C-algebra with 1 defined by generators z, y, k, k=
subject to the relations

k' =kk=1,
(TD)y R kxk ' = ¢z,
kyk™ =q7%y,
and
(TD)/ [ZB7 ny —fryr+ ny] = 5/(5*1'2]{2 — € k’_2$2),
ly, v’z — Byzy+2y’] = &'(—e"ky* + e y’k™?),
where 3 =¢*+¢ % 8 = —(¢— ¢ ")(¢* —q¢7*)(¢* — ¢ *)¢". When we need to specify (e,*),
we write (TD)f, (TD)f, (TD)jy for the relations (TD)" and 77, 7qr, 7 for the algebra T
according to (g,e*) = (1,1),(1,0), (0,0). The algebra 7 is called the augmented tridiagonal
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algebra (augmented TD-algebra) of the 1st, 2nd, 3rd, kind, accordingly. 7Zyyy is isomorphic to
the Borel subalgebra of the quantum affine algebra U, (sls).

The augmented TD-algebra 7 has another presentation. Fix a nonzero scalar t € C.
Define the elements z;, 2 € 7 to be

y=x+tk+et 'k (3)
=yttt Uk tkh (4)

Then 7 is generated by z, 27, k, k~! and the following relations hold :

kkt=k1k=1
(TD)oq (qzk—q'kz)/(q—q ") = tk*+et™!,
(gkzy —q7'zk) /(g —q7Y) = et i+,
and
(21, 2227 — Baziz+ 2728 = e8|z, 27,

(25, 2522 — Bt mz + 2277 = €62, ),

(10) {

where 8 = ¢+ ¢2, 6 = —(¢* — ¢"2)>. One routinely verifies that 7 is isomorphic to the
algebra generated by symbols z;, zf, k, k=! with (T'D)g, (T'D) the defining relations.

Proposition 1.1 There exists an algebra homomorphism v, from A to T that sends z, z*
to z, z;, respectively :
w:A— 1T (2, 2% ¥ 2z, 2)).

Moreover iy s injective.

It is obvious that the correspondence z, z* — 2z, 2 can be extended to an algebra
homomorphism from A to 7. The injectivity of ¢; will be proved in Section 2.

Lemma 1.2 Let p: 7 — End(V) be a finite-dimensional irreducible representation of T .
Then p(k) is diagonalizable with eigenvalues {sq*~% | 0 < i < d} for some nonzero s € C
and an integer d > 0. Let V = @?:0 U; denote the eigenspace decomposition of p(k), where
U; is the eigenspace belonging to s¢*~?. Then regarding V as an irreducible T -module via

p, we have
zU; C U1, yU; CU (Oﬁiﬁd)7

where U_1 = Ugy1 = 0. In particular p(x), p(y) are nilpotent.

The scalar s (resp. the integer d) is called the type (resp. diameter) of the representation
p and the 7-module V. We call the direct sum V = @?:0 U; the weight-space decomposition
and Uy the highest weight space.

Proof. For 0 € C, set U(0) = {v € V | kv = 0v}. Note that 6 is an eigenvalue of p(k) if and
only if U(0) # 0, and in this case U(0) is the corresponding eigenspace. Using the relations
kr = ¢®xk and ky = ¢ 2yk , we find x U(#) C U(¢*0) and yU(0) C U(q20). Now assume
that 6 is an eigenvalue of p(k). Observe that 6 # 0 since k™' exists, and that >, _, U(¢*0) is
invariant under each of z, y, k*! and the sum is a finite sum by dim V < oo. These elements
, y, k* generate 7 and the 7-module V' is irreducible, so we have V =3, , U(¢*6). This
yields the lemma. 0



Proposition 1.3 Let p : T — End(V) be a finite-dimensional irreducible representation
of T with type s, diameter d, and V = @?:0 U; the weight-space decomposition. Let z;, z;
be as in (3), (4).

(1) p(z) is diagonalizable if and only if the scalars
0; = st* T+ es g (0<i<d)

are mutually distinct. In this case, {0;}%, is the set of eigenvalues of p(z;) and it holds
that
Vit Vipr+- -+ Va=Ui+ U1 +---+ Uy (0<i<d),

where V; is the eigenspace of p(z;) belonging to 6;.
(17) p(zf) is diagonalizable if and only if the scalars
Q;k — g*st—IQQi—d _|_ S—ltqd—Qi (0 S Z S d)

are mutually distinct. In this case, {0;}L, is the set of eigenvalues of p(z;) and it
holds that
VotV t Vi =Up+ Ui+ -+ U (05 <d),

where V.* is the eigenspace of p(z}) belonging to 0.

Proposition 1.3 will be proved in Section 2.

Recall we are given in advance (g,¢*) € {(1,1), (1,0), (0,0)} and a nonzero scalar g that is
not a root of unity. Let p: A — End(V') be a finite-dimensional irreducible representation

of the TD-algebra A = .A((f’s*). We assume that p satisfies the following property (C;):
(Cy): p(2), p(z*) are both diagonalizable.

Set A = p(z), A* = p(2*). Then A, A* satisfy the TD-relations. The TD-relations for A, A*
imply the TD-structures, i.e., the conditions (ii), (iii) for a TD-pair hold for A, A*, while
the conditions (i), (iv) hold for A, A* by the property (C;) and the irreducibility of p. So
A, A* € End(V) are a TD-pair on V. Moreover since the TD-relations (TD) for A, A* is
the standardized TD-relations of Type I, the TD-pair A, A* is a standardized TD-pair of
Type I on V.

Conversely, let us start with a standardized TD-pair A, A* of Type I on V', where we un-
derstand g and (e,e*) are chosen in advance and fixed. Consider the TD-algebra A = Al
Then by the TD-relations (TD) for A, A*, we obtain a finite-dimensional representation p
of A that sends z, z* to A, A*, respectively:

p: A— End(V) (z,2"— A A").

This representation p is irreducible and satisfies the property (C;) by the conditions (iv), (i)
for the TD-pair A, A*.

We restate what we saw in the previous two paragraphs as a proposition below. We
are given in advance (g,*) € {(1,1),(1,0),(0,0)} and a nonzero scalar ¢ that is not a root
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of unity. Let S7D denote the set of isomorphism classes of standardized TD-pairs A, A*
of Type I together with the trivial TD-pairs: A (resp. A*) has eigenvalues {6;}%, (resp.
{0:}4.,) as in (1) (resp. (2)) for some integer d > 0 and nonzero b (resp. b*) € C with a
suitable ordering of the eigenspaces {V;}%, (resp. {Vi*}¢ ). Set A = A Let Trr(A)
denote the set of isomorphism classes of finite-dimensional irreducible representations of A
that satisfy the property (C;). Then we have

Proposition 1.4 The mapping p — A = p(z), A* = p(2*) gives a bijection from Zrr(A)
to STD. The trivial representations, i.e., 1-dimensional representations, correspond to the
trivial TD-pairs.

Thus the classification of standardized TD-pairs of Type I is reduced to the following
problem.

Problem 1 Classify up to isomorphism the finite-dimensional irreducible representations of
A that satisfy the property (Cy).

Let us start with a finite-dimensional irreducible representation p : 7 — End(V) of
the augmented TD-algebra 7 with type s and diameter d. We assume that p satisfies the
following properties (Cy),, (Cs), for some nonzero ¢t € C:

(C1),: p(z), p(z) are both diagonalizable.
(C2),:  The restriction p|, .+ : (2, 27) — End(V) is irreducible,
where (z;, z;) is the subalgebra of 7 generated by z, z;.

Set A = p(z), A* = p(2f). Then A, A* satisfy the TD-relations. Since the TD-relations for
A, A* imply the TD-structures for A, A*, we find A, A* are a TD-pair on V. By Propo-
sition 1.3, the TD-pair A, A* has distinct eigenvalues {6;}% ., {0:}%, as in (1), (2) with
b=st,b* =st7!. So A, A* € End(V) are a standardized TD-pair of Type I. By Lemma
1.2 and Proposition 1.3, the eigenspace decomposition for p(k) coincides with the split de-
composition for the TD-pair A, A*. So we have p(z) = R, p(y) = L, p(k) = sK, where
R, L, K are the raising, lowering, diagonalizable maps, respectively, associated with the
split decomposition.

Conversely, let us start with a standardized TD-pair A, A* € End(V) of Type I with
eigenvalues

02’ — bq2i—d+€b—1qd—2i 0 S i S d

9: — €*b*q2i_d + b*flqd—Qi (0 S i S d

—~
~—

9

~—
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respectively as in (1), (2), where we understand ¢ and (e,£*) are chosen in advance and
fixed. We have the raising map R, the lowering map L and the diagonalizable K associated
with the split decomposition for the TD-pair A, A*. Consider the augmented TD-algebra
T = ’Z;(E’E* . Define the nonzero scalars s, t € C by

b= st, bt = st (5)



The scalars s, t are determined by b, b* up to the =+ sign : s* = bb*, t> = bb*~'. We choose
s, t as one of the solutions of (5) and fix them. By the relations (TD)g, (TD)’ for R, L, K,
we obtain a finite-dimensional representation p of 7 with type s and diameter d that sends
x,y, kto R, L, sK, respectively:

p: 7T — End(V) (z,y,k— R, L, sK)

expressed in terms of the 1st presentation of 7 with respect to the generators x, vy, k, k~!.
By (3), (4), it holds that p(z;) = A, p(z;) = A*. So we have

p: T — End(V)  (z, 2/, k— A, A", sK)

expressed in terms of the 2nd presentation of 7" with respect to the generators 2, 2}, k, k=1
By the conditions (iv), (i) for the TD-pair A, A*, p is irreducible and satisfies the properties

(C)e, (Ca)s-

We restate what we saw in the previous two paragraphs as a proposition below. We are
given in advance (e,e*) € {(1,1),(1,0),(0,0)} and a nonzero scalar ¢ that is not a root of
unity. Suppose that we are further given a positive integer d and nonzero b, b* € C such
that the scalars 6; = bg* % + eb~1¢?"% (0 < i < d) in (1) are mutually distinct and the
scalars 0F = £*b*¢¥ 4 + b*'q¥% (0 < i < d) in (2) are mutually distinct. By STD((ib’b*)
we denote the set of isomorphism classes of standardized TD-pairs A, A* of Type I with
eigenvalues {0;}%_,, {0719, respectively. Note that if a standardized TD-pair A, A* of Type I
belongs to S’TDg”b*), then the ordering of the eigenspaces {Vi}&, of A (resp. {V}L, of
A*) is uniquely determined by the corresponding eigenvalues 6; = bg*~¢ + eb=1q?~% (resp.
0F = e*b*q*? + b*'q?%). Recall that if e = 1 (vesp. £* = 1), then b (resp. b*) is changed
to b= (resp. b*~') when we reverse the ordering of the eigenspaces of A (resp. A*). Thus
if ¢ = 1 (resp. € = 1), then STDL(ib’b*) = STDfib_l’b*) (resp. STDglb’b*) = STD&b’b*il)):
ST D((ibfl’b*) (resp. S’TDS)’Z)*_I)) coincides with STD((ib’b*) as sets of isomorphism classes of
standardized TD-pairs A, A* of Type I but has the ordering of the eigenspaces of A (resp.
A*) reversed. Set b = st, b* = st™! as in (5). Such scalars s, t are determined by b, b*
uniquely up to the £ sign. We choose one of them and fix it. Note that if (s,?) is a solution
of b= st, b* = st™!, then

('t =t s, (t,8), (s7H,t7h) (6)
are a solution of ¢ = s't’, ¢* = s't'~! for
(67 C*) = (b_l7 b*)> (b> b*_l)’ (b_lﬁ b*_l) (7>

respectively. Set 7 = Tq(a’s*). By Irrj’t(T) we denote the set of isomorphism classes of
finite-dimensional irreducible representations p of 7 with type s and diameter d that satisfy
the properties (Cy)y, (Cq); for the scalar t. Then we have

Proposition 1.5 The mapping p — A = p(z), A* = p(z}) gives a bijection from Trr5'(T)
to STDg)’b*), where b = st, b* = st=1.



Thus Problem 1 is reduced to the following problem.

Problem 2

(1) Classify up to isomorphism the finite-dimensional irreducible representations of T with
type s and diameter d.

(i) Determine when a finite-dimensional irreducible representation p of T with type s and
diameter d satisfies the properties (Cy)s, (Co)t -

We solve Problem 2 in this paper. Problem 1 is reduced to Problem 2 via ST D&b’b*)

as follows. The set STD is the disjoint union of the trivial TD-pairs and STDElb’b*) over
d € N and (b,b*) € (C\{0}) x (C\{0})/ ~, where ~ is the equivalence relation defined by
(b,b*) ~ (¢, c*) if and only if

(c,c¢®) € {(0,b%), (b71,0%), (b,b*7Y), (671, 0"} for the case (,¢) = (1,1), (8)
(c,c®) € {(b,b"), (b71,b%)} for the case (g,*) = (1,0), 9)

and (b,0") = (¢,¢*) for the case (g,¢*) = (0,0). For nonzero b, b* € C, let Zrri"")(A)
denote the subset of Zrr(A) that is mapped to the subset STDg)’b*) of STD by the bijection
pr A=p(z), A* = p(z*) from Zrr(A) to STD (see Proposition 1.4). Set b = st, b* = st~ !
as in (5). Such scalars s, t are determined by b, b* uniquely up to the + sign. We choose

one of them and fix it. Then by Proposition 1.5, Zrr*(7) is mapped to STDEIb’b*) by the
bijection p — A = p(z;), A* = p(zf). This means that if a finite-dimensional irreducible
representation p : 7 — End(V) belongs to Zrr5'(7T), then

p=pou: A— End(V)
is a finite-dimensional irreducible representation of A that belongs to I?"r((ib’b*) (A), where
w: A—T (z, 2% ¥ 2, 2])

is the injective algebra homomorphism from Proposition 1.1. Moreover every finite-dimensional
irreducible representation of A that belongs to I?"r((ib’b*) (A) arises in this way. In other words,
a finite-dimensional irreducible representation p’ : A — End (V') that belongs to Irrflb’b*)(/l)
can be ‘extended’ via ¢; to a finite-dimensional irreducible representation p : 7 — End(V)

that belongs to Zrr' (7). Thus we have

Corollary 1.6 If b = st, b* = st™!, then the mapping p — p o 1; gives a bijection from
ZrrY(T) to Irrflb’b )(.A), where 1, A — T (z, 2% — 2z, z}) is the injective algebra homo-
morphism from Proposition 1.1.

Since Zrr(.A) is the disjoint union of the trivial representations and Irrflb’b*)(A) over d € N
and (b,b*) € (C\{0}) x (C\{0})/ ~, Problem 1 is reduced to Problem 2 by Corollary 1.6.

Namely, Zrr(A) is the disjoint union of the trivial representations and

{pou|peZrry(T)} (10)
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over d € N and (s,t) € (C\{0}) x (C\{0})/ =, where the equivalence relation ~ is defined
by (s,t) = (s',t') if and only if

(s, 1) € {Z£(s,t), (@t 1, s7h), £(t,5), (st 1)} for the case (g,¢*) = (1,1), (11)

(s',t) € {%(s,t), £(t7', s 1} for the case (g,¢*) = (1,0), (12)
and (s',t") = £(s,t) for the case (e,£*) = (0,0).

As we see in the next proposition, the property (C;) for Zrr(.A) is automaically satisfied

when (g,%) = (1,1).
Proposition 1.7 If (e,¢*) = (1,1), then every finite-dimensional irreducible representation
p: A— End(V) satisfies the property (Cy), i.e., p(2), p(z*) are diagonalizable.

Proof. Regard V' as an irreducible A -module via p . For § € C, set V(0) = {v € V|zv = Ov}.
Note that € is an eigenvalue of p(z) if and only if V(f) # 0, and in this case V(0) is the
correspording eigenspace. Using the relation [z, 2%2* — Bzz*2 + 2*2%] = [z, 2*] with
B=¢3+q¢20=—(*—q?),wefind (z—07)(z—0)(z—0T)z*v = 0 for all v € V(6), where
0=C+C L0 =C+q L0 =g+ e,

ZV(O) CV(O)+V(0) + V(6.

Set 00 = ¢*( + ¢ %¢~'. Then Y_,., V(6), which is a finite sum by dim V < oo, is

invariant under z, z*. Since z, z* generate A and V is irreducible as an A -module, we have

V =3, V(0Y). This implies that p(z) is diagonalizable. Similarly, p(z*) is shown to be

diagonalizable. a
So for the case (g,£*) = (1, 1), Problem 1 is equivalent to

Problem 3 Classify up to isomorphism the finite-dimensional irreducible representations of
the q-Onsager algebra Aj.

Thus the classification of standardized TD-pairs of Type I that are the 1st kind is equivalent
to that of finite-dimensional irreducible representations of the ¢-Onsager algebra Aj.

1.3 Finite-dimensional irreducible 7-modules

Let p : 7 — End(V) be a finite-dimensional irreducible representation of the augmented
TD-algebra 7. We regard V' as an irreducible 7-module via p. Let us recall Lemma 1.2 in
Section 1.2. The action of k on V is diagonalizable with eigenvalues {s¢*~?|0 < i < d} for
some nonzero s € C and an integer d > 0. The scalar s and the integer d are called the
type and the diameter, respectively. Let V' = @?:o U, denote the eigenspace decomposition
of the action of k on V, where U; is the eigenspace belonging to s¢*~?¢. It holds that
2U; € Uiy, yU; C U1 (0 < i < d), where Uy = Ugyy = 0. We call the direct sum
V= @?:0 U; the weight space decomposition and U, the highest weight space.

Theorem 1.8 Let V' be a finite-dimensional irreducible T -module and V = @?:0 Ui the

weight space decomposition. Then

dim U; < <d> (0<i<d).

]

In particular Uy has dimension 1.
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Theorem 1.8 will be proved in Section 3. Since zU; C Ujyq, yU; C Uj—y (0 < j < d)
by Lemma 1.2, the highest weight space Uy is invariant under y‘z® for every integer i > 0.
Since dim Uy = 1 by Theorem 1.8, there exists o; = 0;(V') € C such that

y'z'v=onw  (veUp)

for every integer i > 0. Observe o9 = 1 and o; = 0 if ¢ > d, where d is the diameter of
the 7-module V. It is shown later that o4 # 0. Let M$(7") denote the set of isomorphism
classes of finite-dimensional irreducible 7-modules with type s, diameter d, and Y, the set
of sequences {ai}?zo of scalars o; € C with 09 = 1, 04 # 0. Then we have a mapping o
from M3(T) to X4 that sends V to {o4(V)}L,, where 0;(V) is the eigenvalue of y'z* on the
highest weight space of V.

Theorem 1.9 For each nonzero s € C, the mapping
o MYT) —Ea (V— {a:i(V)}L)
s a bijection.

The fact 04(V) # 0 and the injectiveness of ¢ will be proved in Section 3. The surjec-
tiveness of o will be proved in Section 5.

For a finite-dimensional irreducible 7-module V of type s and diameter d, we define a
monic polynomial Py (\) of degree d in A as follows:

d d
oi(V) T (@@ = q77) (es 224 + e"s2q724=0) — \),
i—0 j=it1

Py(X)=Q7"

where o;(V) is the eigenvalue of y’z® on the highest weight space of V' and
_ _ a2
Q=Qu=(-D)"—a¢")V(@—a?) (" —a

The polynomial Py () is called the Drinfel’d polynomial of the T-module V. Note that the
parameters ¢ and (e, e*) in the definition of P, (\) are independent of the 7-module V', since
they are chosen and fixed in advance for the augmented TD-algebra 7.

Remark 1.10 The following identities directly follow from the definition of Py ().
(i) For A =es™2 +¢*s?
Py(A\) =Q loa(V).

(ii) For A =t + ee*t~2 with ¢ an arbitrary nonzero scalar,

d
Py(\) = Q") 0i(V)(o — bix1) -+ (60 — 0a) (65 — 0;,y) -+ (65 — 63),

=0

where 9@ — Stqu—d + ES_lt_lqd_Qi, 0:< — €*St_1q2i_d + 8_1tqd_2i.
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Let P5 denote the set of monic polynomials P(\) of degree d in A such that
P(\) #0 for A =es?+¢e*s%

Then the mapping that sends {ai}?zo to

d d
PO =Q Y o [T (@ —a7)(es 2?9 7?29 — )
=0  j=i+l

gives a bijection from ¥; to Pj. So we can restate Theorem 1.9 as follows.
Theorem 1.9" The mapping V — Py () gives a bijection from M3(T) to P5.
This gives a parametrization of the set M5(7) in question in Problem 2 (i).

Theorem 1.11 Let V be a finite-dimensional irreducible T -module of type s and diameter
d. Assume that the property (Cy), holds for some t € C, i.e., the actions of z, zf on V are
both diagonalizable. Then V' is irreducible as a (zy, z})-module if and only if Py(X) # 0 for
A\ =12 +ee*t™2. Here Py()\) is the Drinfel’d polynomial of the T -module V.

Theorem 1.11 will be proved in Section 4. Theorem 1.11 together with Proposition 1.3
gives a parametrization of the representations of 7 in question in Problem 2 (ii). For an
integer d > 1 and nonzero s, t € C, define the sets M5'(7) and P3* as follows. M5 (T)
denotes the set of isomorphism classes of finite-dimensional irreducible 7-modules V' with
type s, diameter d that satisfy the properties (C;)i, (Ca)t, i.e., the actions of z;, zf on V
are both diagonalizable and V is irreducible as a (z;, z)-module. P5* denotes the set of
monic polynomials P()\) of degree d in A such that P(\) # 0 for A = 572 + &*s* and
A = 12 + ee*t=2. Note that M5 (T) (resp. P;'(T)) is a subset of M%(T) (resp. P3(T))
and M3(7) is bijectively mapped to P5 by V +— Py (A) by Theorem 1.9. Let V be a
finite-dimensional irreducible 7-module that belongs to M?5(7). Then by Proposition 1.3,
the property (C;); holds for the 7-module V' if and only if

st # deq" for any integer i (1 —d <i<d—1), (13)
st™! £ +e*q" for any integer i (1—d <i<d—1). (14)

Thus if one of the conditions (13), (14) fails, then M?"(T) is empty. Suppose each of (13),
(14) holds. Then by Theorem 1.11, the property (Cs); holds for the 7-module V" if and only
if Py(\) #0for A =12 +ee*t2. So M5'(T) is precisely mapped onto P by the bijection
V +— Py(A) from M5(T) to P;. Thus we have

Corollary 1.12 If one of the conditions (13), (14) fails, then M5(T) is empty. Suppose
each of (13), (14) holds. Then the mapping V +—— Py ()\) gives a bijection from M5 (T) to
Pt

This gives a parametrization of the set MZ'(7) in question in Problem 2 (ii). Since
MY (T) can be natually identified with Zrr5*(7), Corollary 1.12 gives a parametrization of

STD((ib’b*) through Proposition 1.5, where b = st, b* = st~ 1.
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1.4 Construction of finite-dimensional irreducible 7-modules

Given (g,¢*) € {(1,1),(1,0),(0,0)} and a nonzero scalar ¢ that is not a root of unity, let
T = T,°°) denote the augmented TD-algebra. 7 is generated by z,vy, k*! subject to the
relations (TD)j, (TD)’ in Section 1.2. In the next proposition, we give an injective algebra-
homomorphism ¢, of 7 into the U,(sl3)-loop algebra £ = U,(L(sly)) for each nonzero scalar
s € C. L is the associative C-algebra with 1 defined by generators e}, e;, ki, k; ' (i = 0,1)
subject to the relations

]{50]{?1 - ]{31]{30:1,
klkl_l — k-_lk’i — 1,

(2

kiegtk:i_l = qﬁefc,

kieykt = qTef (i1 #7),

e 6] = %
q—dq

[efﬁﬂ =0 (Z?é]),

i, (e5)%e5 — (¢ + a7 eieyer +e5(e)] =0 (i # ).

Note that if we replace kok; = kiko = 1 in_the defining relations for £ by kok; = kiko,
then we have the quantum affine algebra U,(sly): £ is isomorphic to the quotient algebra of
U,(slz) by the two-sided ideal generated by kok; — 1.

Proposition 1.13 For each nonzero s € C, there exists an algebra homomorphism s from
T to L that sends x, y, k to x(s), y(s), k(s), respectively, where

2(s) = a(sef +eslerky) witha=—q¢ '(¢g—q¢ ")
y(s) = e*seqko+s e,

k(s) = sko.
Moreover s s injective.

The existence of ¢ follows from the fact that the relations (TD);, (TD)" hold for z(s),
y(s), k(s), k(s)~'. We leave the tedious calculations of checking it to the reader. The
injectivity of ¢ will be proved in Section 2.

Let £’ denote the subalgebra of £ generated by ef, ef, k' (i = 0,1): e; is missing
from the set of generators for £'. Let B denote the subalgebra of £ generated by ef, el k!
(¢ =0, 1), the Borel subalgebra of L. Observe B C L’. Note that the image of ¢, is contained
in £"if (e,e") = (1,0) and it coincides with B if (e,*) = (0,0). If (e,e*) = (1,1) (resp.
(1,0), (0,0)), each finite-dimensional irreducible £-module (resp. £'-module, B-module) can
be regarded as a 7-module via the injective algebra homomorphism ¢, : 7 — L. Such a
T-module is called a 7-module via ps. We determine when a finite-dimensional irreducible
L-module (resp. £'-module, B-module) remains irreducible as a 7-module via ¢,, and by
finding an explicit formula for the Drinfel’d polynomial Py ()), we show that every finite-
dimensional irreducible 7-module with type s arises in this way via g (see Theorem 1.9').
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We give an overview of finite-dimensional representations of £ that we need to state our
explicit construction of irreducible 7-modules via ¢,. For a € C (a # 0) and ¢ € Z (¢ > 0),
V (¢, a) denotes the evaluation module of L, i.e., V(¢,a) is an (¢+1)-dimensional vector space
over C with a basis vy, v1,...,v, on which £ acts as follows:

kovi = ¢ v,

kioi = ¢,

eavi = aqli+ v,

eovi = a g 0 —i+ vy,
efv; = [0 —i+1]vq,

ey v; [i + 1] vig1,

where v_1 = v, = 0and [j] = [j], = (¢ —q¢7)/(¢g—¢"). V(£,a) is an irreducible £-module.

We call vy, vy, ..
Let A denote the coproduct of L:

by
Ak
Alef)
Ale; ki)

., g & standard basis.

the algebra homomorphism from £ to £ ® £ defined

kT @k
kioel +ef ®1,

Given L-modules Vi, V5, the tensor product V; ® V5 becomes an £-module via A. Given a
set of evaluation modules V'(¢;,a;) (1 < i < n) of L, the tensor product

V(l,a1) @+ @V (ly,an)

makes sense as an L-module without being affected by the parentheses for the tensor product
because of the coassociativity of A.

With an evaluation module V (¢, a) of £, we associate the set S(¢,a) of scalars a g~ !,
aqg 3, . agtl:

S(la)={ag® " |0<i<l—1}).

The set S(¢,a) is called a g-string of length ¢. Two g-strings S(¢,a), S(¢',a’) are said to be
adjacent if S(¢,a) U S(¢',a’) is a longer g-string, i.e., S(¢,a) U S(¢',a") = S(¢",a") for some
0", a” with ¢” > max{f, ¢'}. It can be easily checked that S(¢,a), S(¢',a’) are adjacent if
and only if a~'a’ = ¢** for some

ie{[l =0 +2, (=0 +4,-- L+ L}

Two g¢-strings S(¢,a), S(¢',a’) are defined to be in general position if they are not adjacent,
i.e., if either

(4)

(1) S(l,a) C S, a") or S(l,a) D S, d).

S(l,a)US(¢,d) is not a g-string,
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A multi-set {S(¢;, a;)};_, of g-strings is said to be in general position if S(¢;, a;) and S(¢;, a;)
are in general position for any i, j (i # j, 1 < i < n,1 < j < n). The following fact is
well-known and easy to prove. Let ) be a finite multi-set of nonzero scalars from C. Then
there exists a multi-set {S(¢;, a;)}?_, of ¢-strings in general position such that

Q= O S(;, a;)
=1

as multi-sets of nonzero scalars. Moreover such a multi-set of ¢-strings is uniquely determined
by €.

With a tensor product V({1,a1) ® -+ @ V(y,a,) of evaluation modules V' (¢;,a;) (1 <
i <n), we associate the multi-set {S(¢;, a;)};_, of g-strings. The following (i), (ii), (iii) are
well-known [2]:

(i) A tensor product V(¢1,a1) ® -+ ® V(£,,a,) of evaluation modules is irre-
ducible as an £ -module if and only if the multi-set {S(¢;, a;)};_, of g-strings is
in geneal position.

(ii) Set V. =V({l1,01) @ -+ @ V(lp,ay), V' =V(l},d))®@---@V(l, a,) and
assume that V', V’ are both irreducible as an £-module. Then V, V' are iso-

n/

morphic as £-modules if and only if the multi-sets {S(¢;, a;)}iq, {S( an) b
coincide, i.e., n = n’ and ¢; = ¢}, a; = a} for all ¢ (1 < i < n) with a suitable

reordering of S( 1,a1) -8, al).

(iii) Every nontrivial finite-dimensional irreducible £-module of type (1,1) is iso-
morphic to some V({1,a1) @ -+ - @ V (£, ay,).

Two multi-sets {S(¢;, a;)}iy, {S(4, 1)}?,1 of ¢-strings are defined to be equivalent if
there exists ¢; € {jzl} (1 <i< n) such that {S(¢;,a;")};_, and {S(¢, z)};il coincide,

ie, n = n' and ¢; = 0, _' = a; for all i (1 < i < n) with a suitable reordering of
S(f’l,a’l), 8, n) A multi—set {S(;,a;)};_, of g-strings is defined to be strongly in
general posz’tzon if any multi-set of ¢-strings equivalent to {S(¢;, a;)},_, is in general position,

i.e., the multi-set {S(¢;, a;*)}._, is in general position for any choice of ¢; € {£1} (1 < i < n).
Lemma 1.14 Let Q be a finite multi-set of nonzero scalars from C such that ¢ and ¢
appear in Q in pairs, i.e., ¢ and ¢~ have the same multiplicity in Q for each ¢ € S, where

we understand that iof 1 or -1 appears in €2, it has even multiplicity. Then there exists a
multi-set {S(l;, a;)}i_, of g-strings strongly in general position such that

U S(ti, a;) U S(l, a7 "))

as multi-sets of nonzero scalars. Such a multi-set of q-strings is uniquely determined by 2
up to equivalence.
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Lemma 1.14 will be proved in Section 7.

Theorem 1.15 (Case (e,&*) = (1,1)) LetT = 7.5 denote the augmented TD-algebra of
the 1st kind. The following (i), (it), (iii) hold.

(1) A tensor product V(l1,a1) ® -+ @ V (€, ay) of evaluation modules is irreducible as a
T -module via o, if and only if —s* ¢ S(l;, a;) US(ls,a; ") for alli (1 <i<n) and the
multi-set {S(0;, a;) Y, of g-strings is strongly in general position. In this case, the T -
module V =V (l1,a1) Q- @V ({,,a,) via s has type s and diameter d =l +---+ £,
and the Drinfel’d polynomial Py () of the T -module V via g is

n

PV()‘> = H PV(£1’7“1’)<>\)7

i=1

where

PraayN) = [ O +ct+e™).
CGS(@i,ai)

(i1) Set V. = V(l1,a1) @ -+ @ V(ly,a,), V' = V({l,d) @@ V(l,a,) and assume
that V', V' are both irreducible as a T -module via v,. Then V, V' are isomorphic as
T -modules via s if and only if the multi-sets {S(C;, a;) Yoy, {S(4, a;)};il of q-strings
are equivalent.

(1ii) Every nontrivial finite-dimensional irreducible T-module of type s is isomorphic to
some T -module V(l1,a1) ®@ -+ @ V(ly, ay) via @s .

Theorem 1.15 will be proved in Section 7. Note that the Drinfel’d polynomial of an
irreducible 7-module V({1,a1) ® -+ ® V({,,a,) via @, is determined by the multi-set
{S(4;,a;)}_, of g-strings and independent of ¢,. Problem 2, which is to determine M3(7T)
and M5%(T), is solved by Theorem 1.15 as follows in the case of (g,¢*) = (1,1). Assume
(e,e*) = (1,1). The set M5(7) is determined in terms of tensor products of evaluation
modules by Theorem 1.15 (i), (ii), (iii). Recall the bijection V' — Py (\) from M$(7T) to P
in Theorem 1.9'. The subset M35*(T) of M¥(T) is nonempty if and only if the conditions
(13), (14) hold, i.e.,

+st, +st ¢ {¢ | i=—d+1, —d+2,---,d—1}, (15)

and in this case M5'(7) is mapped onto P3" by the bijection V +— Py-(\) (see Corollary 1.12).
For an irreducible 7-module V' ({1,a1) ® - - ®@ V({,,, a,,) via @5, we find by Theorem 1.15 (i)
that Py ()\) does not vanish at A\ = ¢? +¢~2 if and only if —t2 ¢ S(;,a;) U S(4;,a; ") for all
i (1 <4 <n). Thus we have

Corollary 1.16 Assume (¢,¢*) = (1,1). Then M3(T) and M (T) are determined as
follows.

(i) M3(T) consists of the isomorphism classes of T-modules V ({1,a1) @ -+ @ V(ly, ay)
via s with the properties that
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(i)

(i.1) the multi-set {S(¢;,a;)};—, of q-strings is strongly in general position,
(1.2) —s* ¢ S(l;,a;) US(U,a;t) for alli (1 <i<n),
(2.3) d=1l1 + -+ Ly,

The isomorphism classes of such T -modules V({1,a1) @ -+ ®@ V (L, a,) via @5 are in

one-to-one correspondence with the equivalence classes of the multi-sets {S(€;, a;)}i_,
of q-strings that have the properties (i.1), (i.2), (i.3) above.

MNT) is monempty if and only if the condition (15) holds. Suppose the condition
(15) holds. Then M (T) consists of the isomorphism classes of T-modules V ({1, a;)®
@V (U, ay) via @5 with the properties (i.1), (i.2), (i.3) above and

(13.1) —t* ¢ S(l;,a;) US(Li,a; ") for alli (1 <i<n).

The next theorem follows from Corollary 1.16 and [8, Proposition 7.15]. It solves Prob-
lem 3, which is to determine the finite-dimensional irreducible representations of the ¢-
Onsager algebra up to isomorphism. For an L£-module V', let py denote the representation
of L afforded by the £-module V. Then py o ¢, is the representation of 7 afforded by the
T-module V via ¢, and py o ¢, o 1; is a representation of A, where

v A—T (z, 2% ¥ 2z, 2))

is the injective algebra homomorphism from Proposition 1.1.

Theorem 1.17 Assume (e,e*) = (1,1). Let A = AS}’“ denote the q-Onsager algebra. The
following (1), (i7), (i) hold.

(7)

(i)

(iid)

For an L-module V =V ({1,a1) ® --- @ V({y,a,) and nonzero s, t € C, the represen-
taiton py o s o1y of A is irreducible if and only if

(i.1) the multi-set {S(¢;, a;)};—, of g-strings is strongly in general position,
(i.2) none of —s%, —t* belongs to S({;, a;) US(l;,a; ") for anyi (1 <i < n),

(i.3) mone of the four scalars +st, st equals ' for anyi € Z (—d+1<i<d-—1),
where d =41+ -+ {,,.

For L-modules V =V ({1,a01) @ -+ @V (ly,ay,), V' =V (l},d) @ ---@V(, a,) and
(s,1), (s',t') € (C\{0}) x (C\{0}), set p=py ows o and p' = pyr o py o 1y. Assume
that the representations p, p' of A are both irreducible. Then they are isomorphic
as representations of A if and only if the multi-sets {S(¢;,a;)};,, {S(ﬁ;,a;)}?’;l are
equivalent and (s,t) =~ (s',t') in the sense of (11) i.e.,

(s 1) € {F(s,t), £(t71, 571, £(t,5), £(s7, 71}
Every nontrivial finite-dimensional irreducible representation of A is isomorphic to
pv © s o i for some L-module V =V ({1,a1) @ -+ @ V(lyn,a,) and (s,t) € (C\{0}) x
(C\{0}).

18



Proof. The assertions (i), (iii) follow from Corollary 1.6 and Corollary 1.16, since Zrr5"(7)
is naturally identified with MZ*(7"). To prove the assertion (ii), suppose that the irreducible
representations p = py o s 01 and p' = pyr o g 0 1y of A are isomorphic, where V =
V(l,a1) @ --- @ V(ly,a,), V' = V({,d) @ ---@V(l,a,). Set A= p(z), A* = p(z*)
and B = p'(z), B* = p/(2*). Then A, A* are a TD-pair belonging to STDEIb’b*), where
b=st,b*=st"t, d=1{,+---+{,, and B, B* are a TD-pair belonging to STD((;’C*), where
c=st, =511 d =10 +--+1{, (see Proposition 1.5). Since p, p' are isomorphic,
the TD-pair A, A* is isomorphic to the TD-pair B, B*, so we have (b,0*) ~ (¢, c*) in the
sense of (8), i.e., (s,t) =~ (¢/,t') in the sense of (11). Moreover by [8, Proposition 7.15], the
Drinfel’d polynomial Py () of the 7-module V' via ¢, coincides with the Drinfel’d polynomial
Py (A) of the T-module V' via ¢y. By Theorem 1.15 (i) and Lemma 1.14, the multi-sets

{S(li, ai)}iy, {54, z)}?;l of g-strings are equivalent.

Conversely for the irrreducible representations p = py o v, 01 and p = pyr 0 Yy O Ly
of Awith V =V (l1,a1) ®@--- @V (lp,a,), VI =V(l},a) ®---@V(L,, al,), suppose that
(s,t) = (¢',t") and the multi-sets {S(¢;, a;)};_,, {S(4, Z)}Zil of g-strings are equivalent. Set
b=st,b*=stc=¢5t,cc=st"Yandd=0+ -+, d =0 +--+/{, Then
(b,b*) ~ (¢,¢*) and d = d, so 571)3“’” = STDY). Set A = p(z), A* = p(z*). Then
A, A* is a TD-pair belonging to ST ng’b*), so it belongs to STDS;’C*): the difference is the
orderings of the eigenspaces of A, A*. Apply Proposition 1.5 to STDE;’C*). Then there exists

a unique representation p” of 7 up to isomorphism belonging to Irrfli’t/ (7)) such that the
TD-pair B = p" o 1y(2), B* = p” o 1p(2*) is isomorphic to A, A*. By Theorem 1.15 (iii),
we may assume p” = pyr o pg for some V' = V({],a]) @ --- @ V (!, al,). Apparently,
P’ oLy = pyn o @y oLy is isomorphic to p = py o ps 01 as representatlons of A, since the
TD-pair B = p"owy(z), B* = p"owy(2*) is isomophic to A = p(z), A* = p(z*). Then by what
we have already proved in the 1st half of the proof, the multi-set {S (62’ ,a; )};il of g-strings
is equivalent to {S(¢;,a;)}., and hence to {S(¢, z)}:il This means p” oty = pyr 0 Py O Ly
is isomorphic to p/ = pys o 9y o 1y as representations of A. So p, p’ are isomophic as
representations of A. This completes the proof of the theorem. O

Next we consider the case (g,¢*) = (1,0). Then p4(7) C L. Note that the subalgebra
L' of L is, by the triangular decomposition of £, isomorphic to the algebra generated by the
symbols ef, e, k¥ (i = 0,1) subject to the defining relations

koky = kiko =1,
kikit = ki'ki=1,

koegkfl = qzeaL,
kiefkyt = ¢™et,
[6(—)’—,61] = 0,
ki — kit
ef,er] = —1
q—q

e, (1)’ — (@ +q Defelef +ef(e)]=0 (i # ).
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So the evaluation module V' (¢, a) makes sense as an £'-modle even for a = 0: for the standard
basis vg, vy, -+ ,vq of V(£ a),

kovi = ¢ v

ki = ¢,

eqv; = aqli+ 1] v,
efv; = [0—i+1]viy,
ervi = [i+1]viq.

For a positive integer ¢ and a scalar a € C, allowing a = 0, V({,a) is irreducible as an
L'-module and called an evaluation module for L£'. Since the coproduct A of L is closed for
L' ie, A(L) C L ®L the tensor product V(¢1,a;) ®- - @V (£,,a,) of evaluation modules
for £" becomes an £’ -module. We denote by V'(¢) the evaluaion module V' (¢,0). We allow
¢ = 0 for V(¢) and understand that V(0) is the trivial £-module, i.e., the 1-dimensional
space on which k;ﬂ = 1, the identity map, ef = eli = 0, the zero map. Thus V (¢, a) means
the evaluation module for £ with ¢ > 1,a # 0 and V(¢) the evaluation module V' (¢,0) for
L' with ¢ > 0.

Theorem 1.18 (Case (g,¢*) = (1,0)) Let T = T, denote the augmented TD-algebra of
the 2nd kind. The following (i), (ii), (iii) hold.

(i) A tensor product V(£) @ V(l1,a1) ® -+ @ V(L a,) of evaluation modules for L' is
irreducible as a T-module via @4 if and only if —s2 & S(€;,a;) for alli (1 < i < n)
and the multi-set {S(¢;,a;)};_, of g-strings is in general position. In this case, the
T-module V.= V() @ V({1,a1) @ --- @ V({y,a,) via ps has type s and diameter
d=10+ 1l + -+ £, and the Drinfel’d polynomial Py (\) of the T -module V via ps is

n

Py(A) = PV(Z)()‘) H PV(fi,ai)()‘)v

i=1
where
Priy(A) = X,
Praay™ = J[ (A +o.
ceS(4;,a;)

(i7) Set V=V{)@V({l1,a1) @ - @V (ly,a,), V' =V V({l,d)® - V(l,ad,)
and assume that V', V' are both irreducible as a T-module via ps. Then V, V' are
isomorphic as T -modules via @, if and only if ¢ = (' and the multi-sets {S(¢;, a;)}iy,
{S(é;,a;)};il of q-strings coincide, i.e., n =n', {; =Ll a; = a; for alli (0 <1i < n)

with a suitable reordering of S(¢},ay),---,S(l,, al,).

(1i1) Fvery nontrivial finite-dimensional irreducible T -module of type s is isomorphic to
some T-module V() @ V(l1,a1) @ -+ @ V(ly, an) via @s .
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Theorem 1.18 will be proved in Section 7. Note that the Drinfel’d polynomial of an
irreducible 7-module V (£)@V ({1, a1)®- - -QV ({n, ay) via g, is determined by ¢ and the multi-
set {S(4;,a;)};_, of g-strings, independent of ¢,. Problem 2, which is to determine M5(7)
and M5%(T), is solved by Theorem 1.18 as follows in the case of (g,£*) = (1,0). Assume
(e,€*) = (1,0). The set M5(7) is determined in terms of tensor products of evaluation
modules by Theorem 1.18 (i), (ii), (iii). Recall the bijection V +— Py () from M3(7T) to P;
in Theorem 1.9’. The subset M5*(T) of M¥(T) is nonempty if and only if the conditions
(13), (14) hold, i.e.,

+stg¢{¢ |i=—d+1, —d+2,--,d—1}, (16)

and in this case M5"(7) is mapped onto P35 by the bijection V + Py-(\) (see Corollary 1.12).
For an irreducible T-module V' = V() ® V({1,a1) ® --- @ V(ly,a,) via gs, we find by
Theorem 1.18 (i) that Py(\) does not vanish at A = ¢? if and only if —t* ¢ S(¢;,a;) for all
i (1 <i<mn). Thus we have

Corollary 1.19 Assume (g,e*) = (1,0). Then M3(T) and M5 (T) are determined as
follows.

(i) M3(T) consists of the isomorphism classes of T-modules V({) @ V({1,a1) ® +-+ &
V(ln,an) via @s with the properties that

(i.1) the multi-set {S(¢;,a;)};_, of q-strings is in general position,
(1.2) —s72 ¢ S(li,a;) for alli (1 <i<n),
(1.3) d=L+ b+ + Ly

The isomorphism classes of such T-modules V (£) @ V({1,a1) @ -+ @ V(ly,, a,) via @s
are in one-to-one correspondence with the set of pairs of ¢ € NU{0} and the multi-sets
{S(;,a;)}_, of g-strings that have the properties (i.1), (i.2), (i.3) above.

(i1) M'(T) is nonempty if and only if the condition (16) holds. Suppose the condition
(16) holds. Then M3'(T) consists of the isomorphism classes of T-modules V() ®
V(li,a1) @+ @V (ly,a,) via ps with the properties (i.1), (i.2), (i.3) above and

(ii.1) —t* & S(l;,a;) for alli (1 <i < n).

The next theorem follows from Corollary 1.19 and [8, Proposition 7.15]. It solves Prob-
lem 1, which is to determine Zrr(A), the set of isomorphism classes of finite-dimensional
irreducible representations of the TD-algebra A = Aff’o) of the 2nd kind that have the
property (C;). For an £-module V', let py denote the representation of £ afforded by the
L'-module V. Then py o ¢, is the representation of 7 afforded by the 7-module V' via ¢,
and py o g 01, is a representation of A, where ¢, : A — T (z, 2* +— z;, 2z[) is the injective
algebra homomorphism from Proposition 1.1.

Theorem 1.20 Assume (c,e*) = (1,0). Let A = A" denote the TD-algebra of the 2nd
kind. The following (i), (i), (i1i) hold.
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(4)

(i)

(iid)

For an L' -module V=V () @ V(l1,a1) @ --- @ V(lp,a,) and nonzero s, t € C, the

representaiton py o pg o iy of A is irreducible if and only if

(i.1) the multi-set {S(¢;, a;)}i, of g-strings is in general position,

(i.2) none of —s=2, —t* belongs to S({;,a;) for anyi (1 <i <n),

(i.3) mone of +st equals ¢' for anyi € Z (—d+1<i<d—1).

For L'-modules V= V({) @ V(l1,a1) @ --- @ V({y,a,), V' = V(') @ V({},d)) &
- @ V(6 ay) and (s,1), (s',1) € (C\{0}) x (C\{0}), set p = pv o s 01 and
P = pyr o @y oy Assume that the representations p, p' of A are both irreducible.

Then they are isomorphicl as representations of A if and only if £ = ', the multi-sets
{S,a:)}_,, {S(¥,a})}i—, coincide and (s,t) ~ (s',t') in the sense of (12) ,i.e.,

(s',1) € {£(s,1), £t 571},
Every nontrivial finite-dimensional irreducible representation of A with the property

(C4) is isomorphic to pyopsol, for some L' -module V =V (£)QV ({1, a1)®- - - @V (€y, ay,)
and (s,t) € (C\{0}) x (C\{0}).

We do not give a proof of Theorem 1.20, since it can be proved by the same argument
for the case of the ¢-Onsager algebra.

Finally we consider the case (¢,e*) = (0,0). By Proposition 1.13, ¢, gives an isomorphism
between the augmented TD-algebra 7 and the Borel subalgebra B of £. The TD-algebra A
is isomorphic to the positive part of the Borel subalgebra B.

Theorem 1.21 (Case (¢,*) = (0,0)) LetT = ’Z](O’O) denote the augmented TD-algebra of
the 3rd kind. The following (1), (i), (iii) hold.

(7)

(iii)

A tensor product V({y,a1) @ --- @ V (U, ay) of evaluation modules for L is irreducible
as a T -module via s if and only if the multi-set {S(¢;, a;)};—, of q-strings is in general
position. In this case, the T-module V =V ({1,a1) @ - -- @ V({y, a,) via ps has type s
and diameter d = €y + - - -+ £, and the Drinfel’d polynomial Py (X)) of the T -module V'
via ps is

PV()‘> = H PV(fi,ai)()‘)y
=1

where

PV(ZMM)(/\) = H ()\ + C).

ceS(4i,a;)

Set V. =V({l,a1) @ -+ @ V(ln,a,), V' = V({,d) @ --- @ V(l,a,) and assume
that V', V' are both irreducible as a T -module via ps. Then V', V' are isomorphic as
T -modules via s if and only if the multi-sets {S(¢;, a;) Yoy, {S(4, ag)};il of q-strings
coincide.

Every nontrivial finite-dimensional irreducible T -module of type s is isomorphic to
some T-module V({1,a1) ® - @ V(ly, ay) via @ .
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Theorem 1.21 is well-known but a brief proof will be given in Section 7. The polynomial
MNPy(AY (d= 4t + -+ £,) for the case (¢,e*) = (0,0) is known as the original Drinfel’d

polynomial:
NP, =TT II a+en.
i=1 ceS(tiai)
Corollary 1.22 and Theorem 1.23 below, which are the main results of [7, Theorem 1.6,

Theorem 1.7], follow immediately from Theorem 1.21 through Theorem1.9" and Corollary
1.12, solving Problem 1 and Problem 2 in the case of (g,*) = (0,0).

Corollary 1.22 Assume (g,¢*) = (0,0). Then M3(T) and M5 (T) are determined as
follows.

(i) M3(T) consists of the isomorphism classes of T-modules V ({1,a1) @ -+ @ V (€, ay)
via s with the properties that

(i.1) the multi-set {S(¢;, a;)};—, of g-strings is in general position,
(1.2) d=ly + -+ Ly,

The isomorphism classes of such T-modules V ({1,a1) @ -+ ®@ V (€, a,) via ps are in
one-to-one correspondence with the set of the multi-sets {S(¢;, a;)};—_, of q-strings that
have the properties (i.1), (i.2) above.

(i1) M (T) is nonempty for any nonzero s, t € C. M5'(T) consists of the isomorphism
classes of T-modules V(l1,a1) @ -+ @ V(Ly,a,) via @5 with the properties (i.1), (i.2)
above and

(2.1) —t* ¢ S(l;,a;) for alli (1 <i<n).

Theorem 1.23 Assume (c,e*) = (0,0). Let A = A" denote the TD-algebra of the Srd
kind. The following (i), (i), (iii) hold.

(1) For an L-module V =V (l1,a1) ® --- @ V({y,a,) and nonzero s, t € C, the represen-
taiton py o ws oy of A is irreducible if and only if

(¢.1) the multi-set {S(l;, a;)};—, of q-strings is in general position,
(i.2) —t* ¢ S(;,a;) for anyi (0 <i<mn).

(i1) For L-modules V =V (l1,01) @ - @V (ly,ay), VI =V ({l,d) @ ---@V(l, a,) and
(s,t), (¢,t') € (C\{0}) x ((C\{O}), set p=pyopsot and p' = pyr o @y oy, Assume
that the representations p, p' of A are both irreducible. Then they are isomorphic as
representations of A if and only if the multi-sets {S(;,a;)}_,, {S(€, Z)}Zil coincide
and (s,t) = £(s', ).

(1i1) Fvery nontrivial finite-dimensional irreducible representation of A with the property
(Cy) is isomorphic to py o @s ot for some L-module V =V ({1,a1) ® - @ V (L, ay)
and (s,) € (C\{0}) x (C\{0}).
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Let A, A* € End(V) be a TD-pair of Type I with eigenspaces {Vi}fzo, {Vi*}fzo respec-
tively. Then we have the split decomposition (see Section 1.1):

where
U=+ +V)N(Vi+---+ Vo).

By [3, Corollary 5.7 ], it holds that
dimU; =dimV; =dim V" (0 <i<d),

and

Note that dim U; is invariant under standardization of A, A*. We want to find the generating

function for dim U;:
d

g(N) =) (dimU;) N

i=0
We may assume that A, A* are standardized. Then by Theorem 1.17, Theorem 1.20, Theorem
1.23, the TD-pair A, A* is afforded via ¢, o ¢; by an L-module

V=Vh,a)® 2V, a,)
for the cases (¢,¢*) = (1,1), (0,0) and by an £’-module
V= V(g) & V(él, CL1) X ® V(En, an)

for the case (e,¢*) = (1,0). The split decomposition of V' for A, A* coincides with the
eigenspace decomposition of the element ky of £ acting on V. Thus we have

Proposition 1.24 ([3, Conjecture 13.7 ])

(LHA+ A2+ 20 if (5,6%) = (1,1), (0,0),

Q
>
||
—.

s
Il
—

(T+ X+ X4 2\ with 6o =€ if (g,¢%) = (1,0).

Q
>
I
—.

@
Il
o

A TD-pair A, A* is called a Leonard pair if dim U; = 1 for all ¢ (0 < i < d). A
standardized TD-pair A, A* of Type I is a Leonard pair if and only if it is afforded by an
evaluation module. In view of this fact, a standardized TD-pair A, A* of Type I is regarded
as a ‘tensor product of Leonard pairs’.

24



2 Linear bases for A and 7

In this section, we give a linear basis for the TD-algebra A that involves the generators z, z*.
We also give two linear bases for the augmented TD-algebra 7 ; one involves the generators
x, y, k*! and the other involves the generators z;, z;, k*! (see Section 1.2). Using these
bases, we prove Proposition 1.1, Proposition 1.3 and Proposition 1.13.

For an integer r > 0, we denote by A, the set of sequences A = (Ao, A1, -+, A.) of integers
such that \g > 0, \; > 1 (1 <7 <), and define A to be the union of A, (r > 0):

A= D=0, A EZTH A >0, >1(1<i<r)},

A = UAT.

reNU{0}
Call A = (X, A1, -+, \y) € A drreducible if there exists an integer ¢ (0 < i < r) such that
A <A< - <A 2 A 2> 2> A
Note that each X in Ag U A; is irreducible. We denote the set of irreducible A € A by A"
A" = {X € A | \is irreducible}.
Let X, Y denote noncommuting indeterminates. For A = (Ag, Ay, -+, A.) € A, we define the

word wy(X,Y) by

Xryr ... XM if ris even,
wA(X,Y) = { XAy, YA if r is odd,

where we interpret X* = 1 if A\ = 0. By the length of the word wy(X,Y), we mean
Ao+ A1+ -+ A and denote it by |A[:

Al =X+ A1+ + A\
Theorem 2.1 The following set is a basis of the TD-algebra A as a C-vector space:
{wa(z,2%) | A€ A"}

Theorem 2.2 FEach of the following sets is a basis of the augmented TD-algebra T as a
C-vector space:

(i) {k"wa(a,y) | n € Z, Ae A},

(i1) {k"wx(z,2)) | n € Z, X € A"}, where t is a fived nonzero scalar of C and 2z, 2}, k™!
are the second generators of T that are introduced in (3), (4) in Section 1.2.
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We first prove the spanning property for the sets in Theorem 2.1, Theorem 2.2. Our

strategy will be to reduce the essential part to [4, Theorem 2.29]. We start with a description
of the C-algebra generated by symbols &, 0, k, k~! subject to the relations (TD)Z): —

Ktk =1, k€™t = ¢3¢, kmr~! = ¢~ 2. Let ® denote the free algebra over C generated by
symbols &, n. Let C[x, x| denote the algebra over C generated by symbols &, £~ subject
to the relations kx~! = k7'x = 1. Consider the C-vector space C[x, x'|@®, where ® = ®c¢.

This space has the basis
{r" @wi(&n) | neZ, e A}

Define the product of basis elements by
(™ @ wa(&m) (K" @ wu(€,m)) = ™" @ walg™™"E, ¢ "n)wi(§, )

and extend it bilinearly to the product of elements of Clx, k™ !] ® ®. Then Clxk, s ] @ ®
becomes an associative C-algebra. The mapping f®@u — fu (f € C[x,x71], u € ®) induces a
C-algebra isomorphism from C[x, '] @ ® to the C-algebra generated by £, n, k, £~ subject
to the relations (TD)E): k™t = kTl = 1, k€T = ¢3¢, kmrT! = ¢~ 2. We henceforth
identify these two algebras via the isomorphism and denote this algebra by Clx, k'] .

Define the elements vy, v; € ® and ug, u; € C[k, k~1]® by

vo = [& En— BnE + e,
v = [En® = Bnén+ 7, ),
w = § (R - k),
u = 5/ (5*k2n2 o 57’]211'72),

where § = ¢* 4+ ¢ > and ' = —(¢ — ¢~ ")(¢* — ¢*)(¢® — ¢ ?)¢*. Let Z denote the two-sided
ideal of C[x, k™1]® generated by vy — ug, v1 — uy:

T = Clk, k1P (vo — ug)® + Clr, k1| ®(vy — up)P.

Since the relations (TD)’ for the augmented TD-algebra is vy = ug, v1 = uy, the quotient
algebra C|r, k~1]®/Z coincides with 7 and we have the canonical algebra homomorphism

77 :Clr,k 1)@ — T (&,n, K,k x,y, k, k™! respectively).

Let J denote the two-sided ideal of ® generated by v, vy:
j = (I)UQCI) —|— @Ulq).

Write A = ®/J for the quotient algebra (the TD-algebra of the 3rd kind), and let us use
the bar notation for the canonical algebra homomorphism:

Tay : @ — A (&,m— &,7 respectively).
By [4, Theorem 2.29], the set {w\(&,7) | A € A""} is a basis for Ayp. Consequently

®=W+J (direct sum),
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where W is the subspace of ® spanned by
{wal&m) | A€ AT}

For an integer n > 0, we mean by a word of length n in ® a product ajas---a, in
such that a; € {&,n} for 1 <i < n. We interpret the word of length 0 as the identity in ®.
Let ®,, denote the subspace of ® spanned by the words of length n. For example, &, = C 1.
We have the direct sum @ = > . @, and &, &, = @, for all r,s > 0. For an integer
n > 0, difine W, = &, N W and J,, = ®, N J. This yields the direct sum decompositions
W=>  W,and J =), .,Tn. By =W+ J, we have

q)n = Wn + jn
for n > 0. Since vy, v1 € Py,
In = Z D09, + Z D095,

where both sums are over the ordered pairs of nonnegative integers (i, j) such that i + j =
n — 4. In particular, 7, = 0 for n < 3. Since vy = (vg — ug) + ug, v1 = (v1 — uy1) + vy and
ug, u; € C[k, k71]®@,, the above expression for J,, together with the definition of Z implies

Jn CT+Clr, k@, (n>4).

To prove that the set in Theorem 2.2 (i) spans 7, it suffices to show
Clk, k1)@ = Clr,k W+ T.

To this end we show C[x, s '|®, C C[k,x'|W + Z for n > 0 and this will be done by
induction on n. Let n be given. Recall ®, = W, + J,. If n < 3, then J, = 0, and so
®, =W, C W and certainly Clx, k7 '|®, C Clx, s W + T as desired. If n > 4, we argue
by Jn C T+ Clk, 5 1@,

Cls,k 1®, = Clr, & ' W, +Cls, kT,
Clr, s 'IW +Z + Clr, kP2

N

and this is contained in C[x, < 'JW + Z by induction on n. We have now proved that the
set in Theorem 2.2 (i) spans 7 .

To prove the spanning property for the sets in Theorem 2.1 and Theorem 2.2 (ii), let J’
denote the two-sided ideal of ® generated by vy — €d[¢, n] and vy — e*§[€, 7] :

J" = ®(vy — £6[§, )P + P(v1 — £7°0[¢, 1)) P,
where § = —(¢2 — ¢72)%. Since J,, = D09P; + > Pv;P; over (i,j) with i 4+ j =n — 4, we

have
jngj/+q)n—2 (7’L24),
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noting that [£,n] € ®3. We claim that
P=W+JT".

The inclusion D is from the construction. To get the inclusion C, we show &, C W + J’
for n > 0 and this will be done by induction on n. Let n be given. If n < 3, then
TIn=0,P, =W, +T, =W, CWsod, CW+ T as desired. If n > 4, we argue by
jn g j/ + (Dn—Z
(I)n = Wn+jn
C WHT +0,
and this is contained in W + J’ by induction on n. We have now proved the claim. Write

A" = &/J" for the quotient algebra, and let us use the prime notation for the canonical
algebra homomorphism :

T ®— A (&,n— & n respectively).
The above claim implies that A’ is spanned by
{wr(€n) | A e A}

Since the defining relations (TD) for A are vy = d[€,n], vi = £*[€,n], A’ is isomorphic
to the TD-algebra A by the correspandence & — z, n' — 2z*. This proves that the set in
Thereom 2.1 spans A. For a fixed nonzero t € C, let (z,z;) denote the subalgebra of 7
generated by z;, 2. We have a surjective algebra homomorphism

A" — (z,27)  (€,0 v+ 2,2 respectively)

by the relations (TD) for z;,2f. So (z,z}) is spaned by {wx(z,27) | A € A" }. By the
relations (TD), for 7, it holds that 7 = ) _, k"(2, z;). Therefore the spanning property
holds for the set in Theorem 2.2 (ii).

Next we prove the linear independency of the sets in Theorem 2.1 and Theorem 2.2. For
a nonzero s € C, let ¢, be the algebra homomorphism from 7 to the U,(sls)-loop algebra
L = U,(L(sly)) as in Proposition 1.13: ¢y sends z, y, k to z(s), y(s), k(s), respectively,
where

2(s) = a(sef +esterky) witha=—¢ (g — q_1)2,
y(s) = e*segko+s e,
k(s) = sko.

Note that the existence of the algebra homomorphism ¢, has been established already,
although the injectivety of p; is left to be proved. For a nonzero t € C, let ¢; be the algebra
homomorphism from A to 7 as in Proposition 1.1: ¢ sends z, 2* to z; = x+tk+et 'k~ 2 =
y + e*t 'k + tk~!, respectively. Note also that the existence of the algebra homomorphism
¢ has been estabished already, although the injectivity of ¢; is left to be proved. We set
z(s) = s 0 1(2), 2/ (s) = @s 0 1e(27):

z(s) = x(s) 4 th(s) + et k(s) ",

2i(s) = y(s) + et k(s) + th(s) .
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Lemma 2.3 For nonzero scalars s,t € C, each of the following sets is linearly independent

in L.
(1) {k(s)"wr(z(s),y(s)) | n€Z, X € A"}
(ii) {k(s)"wr(2:(5),2/(s)) | n € Z, A € A"}

The linear independency of the sets in Theorem 2.2 (resp. Theorem 2.1) immediately
follows from Lemma 2.3 by applying the algebra homomorphism ¢, (resp. s o ¢;). We
prove Lemma 2.3 by using the triangular decomposition of £ together with the basis of Ay
given in [4]. Let {ed,ef) (resp. (e, e;) ) be the subalgebra of £ genereted by ef, e (resp.
€o, €1 ). Then by [4, Theorem 2.29], (ed,e]) (resp. {eg,e) ) is isomorphic to Ajp and has
the set BT (resp.B™) as a linear basis, where

B* = fun(ef.ef) | A e AT,
B~ = {wn(eg.er) | Ae AT},

By the triangular decomposition of L, the set
B={wkjwt |n€Z v € B ,w" € B"}
is a linear basis of £, and so every element of £ is uniquely expressed as a finite sum of

with ¢,nn € C,n € Z, u, A € A"". The expression for the element k(s)"wy(z(s),y(s)) in
question of Lemma 2.3 (i) is, by the defining relations of L,

ni.n + 1+
s"kywy(ased, s el)

plus some other terms ¢, ywy(ey, e ki wy(eg,el) with [X| < |A]. The highest term
s"kiwy(ased, s tef) is the product of the nonzero scalar s"wy(as,s™!) € C, k' and the
element wy (ed,ef) € BY. Therefore any linear dependency relation among the elements in
Lemma 2.3 (i) is the trivial one by induction on the maximal length |A| of A that appears
in the relation. Similarly the set in (ii) is shown to be linearly independent. This completes
the proof of Lemma 2.3.

Proof of Proposition 1.1 and Proposition 1.13: the injectivity of ;; and ¢,. The
algebra homomorphism ¢ o ¢; is injective by Theorem 2.1 and Lemma 2.3 (ii) and so ¢; is
injective. The injectivity of ¢y follows from Theorem 2.2 (i) and Lemma 2.3 (i). O

Proof of Proposition 1.3. Let V' be a finite-dimensional irreducible 7-module of type
s, diameter d and V = @?:o U; the weight space decomposition from Lemma 1.2. Since
2 = xth+et k7Y K|y, = s¢* 7%, we have z; = z+0; on U;, where 0; = stq* I+es 1t 1q472.
Since xU; C Uy, we have (2 —0g)(z —01) -+ (2¢ —0q) = 0on V. If Oy, - - - , 0, are mutually
distinct, then z; is diagonalizable on V and it holds that

Vit Vil +- -+ Vag=U+ U +---+Us (051 <d),
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where V; is the eigenspace of z; on V' that belongs to the eigenvalue 6;.

Conversely, suppose z; is diagonalizable on V. Let 6,,,60;,,---,60;. denote the distinct
members among 6; (0 < i < d). Then (2 — 6;.)--- (2 — 6;,)(2¢ — 0;,) vanishes on V, in
particular on Uy. We claim

(ze = 0;) -~ (2 — 03,) (2 — 0i) = fi(x) on Up

for some monic polynomial f; of degree j +1 (0 < j <r). The claim holds for j = 0, since
2 — 0;, = x + 0y — 0;, on Uy. If the claim holds for j, then there exit scalars co,ci, -+, cji1
with ¢j41 = 1 such that

j+1
(20— 03) (20— 03) (2 — Oig)u = > _ciz’u (u € Up).

1=0

Since the right-hand side has the i-th term c;z'u € U; and z — 0i,,, = v+ 06; —0;,,, on
Ui, the claim holds for j + 1. Thus the claim is proved by induction on j. Since (z; —
6;.) - (2t — 0:,) (2t — 0;,) vanishes on Up, the monic polynomial f, of degree r + 1 satisfies
fr(x)Uy = 0. This implies 2" Uy = 0, since Uy C U; and V is the direct sum of U/s. On
the other hand, we have V' = T U, by the irreducibility of the 7-module V', so V' is spanned
by wy(z,y)Uy (A € A™) due to Theorem 2.2. For A = (Ao, A, -+, \,) € A", there exists
some i (0 < i < n)such that \g < A\ < -+ <X\ > Nyg = -+ > Ay fwn(z,y)Ug # 0
for such A, then i, n are even and it holds that A\;y; = N0 > -+ > A\,_1 = A,, since
zU; C Ujiq, yU; C Uj—y with U_; = 0. Moreover we have \; < r, otherwise wy(z,y)Uy = 0
by the vanishing property z""'Uy = 0 we just proved. Therefore if wy(z,y)Uy # 0, then
wr(z,y)Up C U;, where j = X\ — A1+ -+ X — A+ X <\ <r. Thus V =TU, C
Up+ Uy + -+ U,. This implies r = d, i.e., 6y, - - , 03 are mutually distinct. We have now
prove the first half (i) of Proposition 1.3. The sencond half (ii) is similarly proved, using
V=TU,. O

3 The subspace of height 0 in 7

Let 7 be the augmented TD-algebra. 7 is the algebra generated by z, y, k¥ subject to
the relations (TD);, (TD)" in Section 1.2. We introduce the notion of height for a word in
z, y, kT and discuss the structure of the subspace of 7 spanned by the words of height 0.
The main result of this section is Theorem 3.1. As applications of Theorem 3.1, we prove
Theorem 1.8 and the injectivity of ¢ in Theorem 1.9. We keep the notations in Section 2.

Consider the free algebra over C generated by &,m, k, k™%, Let 7y denote the automor-

phism of this free algebra that sends &,m, x, k=% to 1, &, k, k™! respectively, and let 7, denote
the anti-automorphism that reverses the word order. Then 7y, 71 commute and the prod-
uct 7 = 19T = T7p is an antiautomorphism that sends a word (;(o---(, to (- C5(]
(¢ € {&n, Kk, k7)), where ¢! = n, & K, k7 for ¢; = &, 1, k, k7! respectively. Note that
78 = 1# = 7% = id, the identity map. Keeping the notations in Section 2, let ® denote the
free algebra generated by &, 7, and C[k, k~!]® the algebra generated by &, 7, , k™! subject
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to the relations (TD)) : k™! = k™' = 1, k€™ = ¢, kmr™' = ¢~ ?n. Since (TD)j is in-
variant under 7 as a set of relations, the map 7 induces an anti-antomorphism of the algebra
Clk, k']®. Recall the elements vy, v; € ® and ug, u; € Clk, k~'|® introduced in Section 2:

vo = [& &n— BEng +né?,

v = [&n* = Bnén+ n*E, 1),
w = SR —en )
Uy — 5/<€*:‘127]2 o 57’]25_2),

where 8 =¢*+q % 0 = —(q—q) (g% = ¢*)(q3 — ¢*)¢*. The augmented TD-algebra 7 is
defined by (TD)’ : vy = ug, v1 = uy together with (TD),. Since v§ = vy, ul = ug, (TD)
is invariant under 7 and the map 7 induces an anti-antomorphism of 7. Also 7 induces an
anti-antomorphism of Ay = ®/7, where J is the two-sided ideal of ® generated by vy, v;.
We use the same notation 7 for these anti-antomorphisms of C[x, x7!|®, T, Anr.

Let W denote the free semi-group generated by &, 7. As a set, W is the collection of all
words in . Let h
h: W—12Z7Z

denote the semi-group homomorphism from W to the additive group Z defined by h(§) =
1, h(n) = —1. For a word w € W, the value h(w) is called the height of w. Thus a word
of height 0 is a word in which &, n appear the same number of times. Denote by ®@ the
subspace of ® linearly spanned by the words of height ¢:

9 = Span{w € W | h(w) = i}.
Then @ is the direct sum of the vector spaces ®@) (i € Z):
o =Hov. (17)
i€z
The above decomposion is an algebra grading, i.e., @@ C ®(+)  Note that ¢ is a
subalgebra of ®. The antiautomorphism 7 changes the sign of the height of a word and so

sends @@ to &9, In particular, 7 induces an antiautomorphism of the subalgebra ®©).
Let ®*¥™ denote the subspace of ®©) consisting of the fixed points of 7:

v = (v € O | v” = v},

A word w € W is called nil if w can be written as w = wyws with wy, we € W and h(ws) < 0.
Let ™ denote the subspace of ®© linearly spanned by the words of height 0 that are nil:

" = Span{w € W | h(w) = 0, w is nil}.

Then ®" is a two-sided ieal of ®(© and invariant under the antiautomorphism 7. Recall ®,,
is the subspase of ® spanned by the words of length n in £, 7. Set &Y = &, N &Y™ and
il = o, N ™. Then we have the direct sum decompositions as vector spaces:

e = Doy, (18)

n>0

ot = et (19)

n>0
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The algebra C[k, x~!]® becomes a graded algebra
Clk,k ]® = @C[KZ, o[-0
i€z

Recall 7 = Clk, k~®/Z, where T is the two-sided ideal of C[k,x"!]® generated by vy —
ug, v — up. Note that vy — ug, v — up belong to Clk, k@@ Clxk, k~1]P(~2) respectively.
Set

79 = I NClk, k0.

Then we have

I=P1v. (20)

i€z
For 7 = C[k, k]®/Z, consider the canonical homomorphism
r=m,: Clr,k J® — T (&n,K5, k" +— x,y,k, k™" respectively). (21)
Set U = 7(®), ¥ = 7(®@). Then by (20), the algebra 7 inherits the algebra grading of
Clk, k1@ = @, Clk, k12O via 7
T =Clk, k' = @ Clk, k1w,
i€z

This enables us to define the height function for 7: a nonzero element of 7 is said to have
height 4 if it belongs to Clk, k=] ¥®,

Note that ¥ = 7(®) is the subalgebra of 7 generated by z,y. ¥ has the grading
U= (22)
1€

U is the subspace of U spanned by the words in z, y of height i. ¥(©) is a subalgebra of
U. The antiautomorphism 7 of 7 sends ¥® to U(-). In particular, 7 induces an antiauto-
morphism of the subalgebra ¥, Set

T = (),

Then ¥¥™ C ¥ and every element of W™ is fixed by 7. Let U™ denote the image of
& ynder 7: A ‘
\I]ml — 7.(_((I)nzl)‘

Then U™ is a two-sided ideal of U and invariant under 7. Note that k, k' commute
with every element of U(®). So C[k, k~1]¥(© is a subalgebra of 7 and C[k, k=1 ]¥¥™ (resp.
Clk, k~1]¥m) is a subspace (resp. two-sided ideal) of C[k, k=] W (),

Theorem 3.1 The following (i), (ii) hold.

(i) Clk, k- JTO© = Clk, k=1 T*¥m + Clk, k=P,
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(ii) The quotient algebra Clk, k=¥ /C[k, k=¥ is commutative and generated by k, k=
and y'x' (1 =0,1,2,...) mod C[k, k=1 wm,

Proof. Our strategy will be to reduce the essential part to [4, Theorem 2.20]. Recall the
canonical homomophism in Section 2

Tay @ ®— Am = ®/T (£,m— & 7 respectively),

where J is the two-sided ideal of ® generated by vp,vi. Apply 7, to PO Psym il
and denote the images by A, A%¥™ A" respectively. Then A™ is a two-sided ideal of
A©® and the quotient A©® /A" is a commutatve algebra generated by 7°¢’ (i = 0,1,2,...)
mod A" (see [4, Lemma 3.1]). So each element of A®/A™ is a linear combination
of (71&n)(72€%2) .- (&™) mod A™!. Apply the antiautomorphism 7 of Ay to w =
(&) (72€%2) - - - (P»€™). Then by the commutativity of A /A™ we have

w—w" = (EN)(RRER) - () — (e - (2R (7€)
= 0 mod A™.

Thus 1
@+wﬂ+§m—erAWWhM%

and hence

A(O) — AV 4 Am‘l'
This means that for a word w in &, n of length n, height 0, there exist elements v € V™ v/ €
dm such that w —v — v € J. Write v (resp. v') in the form of the direct sum (18) (resp.
(19)): v = Y, v, v = Y, v with v; € &, v] € . Observe J = @, J;, where
Ji=J N®&,;. Since w € ®,,, we have w — v, — v/, € J,,. Thus from the beginning, we may
assume v = v,, v' = v/, i.e., for a word w in &, n of length n, height 0, there exist elements

n’

v € d¥m, o € Ml guch that

w—v—0v €T, =T NP, (23)

First we prove Theorem 3.1 (i). Take any word w in z, y of height 0, length n. Choose
a word w in & n of height 0, length n such that @ = w(w), where 7 is the canonical
homomorphism from (21). Then by (23) there exixt elements v € ®%¥™ o € ®" such
that w —v — v € J,. Observe J,, = Y ®,00®; + > ®;v1®;, where the summation is over
1, 7 with ¢ + 7 = n — 4, since vy, v; have length 4. Write the element w — v — v € 7,
as a linear combination of w;vow;, wiv;w} for finitely many words w;, w;, w;, w} in &, such
that ((w;) + l(w;) = £(w;) + £(w;) = n — 4, where the function ¢ stands for the length
of a word. Recall that ® is a graded algebra according to the height as in (17). Since
the element w — v — v’ has height 0 and vy, v; have height 2, —2 respectively, we may
assume that h(w;) + h(w;) = =2, h(w;) + h(w}) = 2, where the function h stands for the
height of a word. Apply the canonical homomorphism 7 from (21) to w — v — ¢’. Then
m(v) € U™, w(v') € U™ Since m(vy) = m(ug), m(v1) = 7(uy), the terms w;vow;, wivyw} in
the linear combination for w — v — v" are mapped to

7(wi) 7 (uo)m(w;) € Clk, k= (TO N T, _,),
m(wi)m(ur)w(w)) € Clk, EN(eO nw, ),

7
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where U, = 7m(®,,). Thus 7(w) — m(v) — 7(v') belongs to C[k, k~(¥© N ¥, _,), while
m(v) + 7(v') belongs to Y™ + Wl The proof of part (i) is completed by induction on n.

Next we prove Theorem 3.1 (ii). By Theorem 2.2, C[k, k=1 ]¥© /C[k, k=] is linearly
spanned by k"wy(z,y) mod C[k, k=1 ]U™ where n runs through Z and A runs through
irreducible sequences such that the word wy(z,y) has height 0. Since A = (Ao, Ar, -+, A\;) is
irreducible and w)(z,y) has height 0, we may assume that r is even and A\g = 0, A\; = Ay >
A3 =M >+ > Ay =\, otherwise wy(z,y) € U™ Therefore Clk, k=10 /C[k, K~ Tnil
is generated by k*! and y'z® (i = 0,1,2,...) mod Clk, k~}]¥"!. Note that k' commutes
with yia?. We want to show y'z’, 4727 commute mod C[k, k=1 ¥, Set w = (y'z?)(yiad).
By part (i) we just proved, there exist f, g € C[k,k7!], u € U™ o € P! such that
w = fu+ gv. Then w™ = fu + gv™, since u™ = u and k, k! commute with every word of
height 0 in z,y. Note that U is invariant under 7, so w — w™ = g(v —v") € C[k, k=] ¥mi.
Since w —w™ = (y'z")(y/27) — (y29) (y'z?), this means y'z’, y/2/ commute mod C|k, k=¥
and the proof of part (ii) is completed. O

Proof of Theorem 1.8. Let V' be a finite-dimensional irreducible module of the augmented
TD-algebra 7. Let V = @?:0 U; denote the weight-space decomposition of the 7-module
V. We want to show dim U; < (f) (0 <i<d).

Recall the algebra grading 7 = €P,., C[k, k~']¥®, where ¥® is the linear span of the
words of height i in z, y. Also recall zU; C U1, yU; € U;_;. The subalgebra Clk, k='W
acts on Uy and Clk, k=1 belongs to the kernel of the action. By Theorem 3.1 (ii),
there exists a common eigenvector v € Uy of y'z' (0 < i < d). Since y/2’ vanishes on
Uy for j > d + 1, each element of Clk, k~']¥® fixes the 1-dimensional subspace Cv by
Theorem 3.1 (ii). Since V is irreducible and 7 = @,, Clk, k=], we have V = Tv =
Z?:o U@y, Then U; = Uy, since ¥y C U; and the sum V = Z?:o U; is direct. In
particular, Uy = (®y = Cv. By Theorem 2.2,

Uy =0y = Z Cwx(z,y)v, (24)

AEA®)

where A denotes the set of A\ = (Ao, A1, -+, \.) € A" such that r is even and

D (=1YN =i, A<M <--<A <d

5=0
Since A® contains exactly (f) members, the proof of Theorem 1.8 is completed. a

Proof of Theorem 1.9: the injectivity of o. Let V be a finite-dimensional irreducible
module of the augmented TD-algebra 7. Let V = EB?ZO U; denote the weight-space decom-
position of the 7-module V. Recall kv = s¢*~% for v € U;, 2U; C Uj,1, yU; C U;_,. By
Theorem 1.8 we just proved, dim Uy = 1. Let o; = 04(V) denote the eigenvalue of 3'z* on
the heighest weight space Uy. Apparently g = 1,0, =0 for i > d + 1.

We want to show o4 # 0. By (24) in the proof of Theorem 1.8, it holds that U; =
> sen@ wa(,y)Up. Since AW = {X = (Xg) | Ao = d}, we have Uy = 2%Uj. In the proof of
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Theorem 1.8, the formula (24) follows from V = @?:o UOU,. Apply the same argument
starting with V' = @?:o UU,. Then we end up with Uy = Y, p@ wa(y, 2)Uys. Thus we
have Uy = y?U,. So Uy = y?U,; = y?2U, and the eigenvalue o, of y?x? on Uy is nonzero. Thus
the diameter d of the 7-module V' is determined by the property o4 # 0,0, =0 (i > d + 1)
of the sequence {o;}.-,.

Next we want to show that the isomorphism class of the 7-module V' is determined by
the type s and the sequence {O'i};izo. Let AV denote the set of elements of 7 that vanish on
U()Z

N={veT|vU,=0}.
Then N is a maximal left ideal of 7 and V' is isomorphic to 7 /N as 7-modules. Hence it is
enough to show that A/ is determined by s and {o;}¢_,. With respect to the algebra grading
T = @, Clk, k710, write v € N as v = > v; (v; € Clk, k=" ]U®). Then U, C U;.
Since V = @?:o U; and vUy = 0, we have v;Uy = 0, i.e., v; € N. Therefore
V=@
i€z

where N'@ = "N C[k, k=1 ]¥®. Note that N = C[x, k }]¥® for i < 0. Thus it is enough
to show that A is determined by s and {Uj}?:o fori=0,1,2,---

For i = 0, N is the kennel of the action of C[x, s '|¥( on Uy. By Theorem 3.1 (ii),
Clk, k= W©® /C[k, k=] is generated by k*! and y'z’ (i = 0,1,2,...) mod C[k, k=¥,
Apparently C[k, k~']U™ belongs to N and the action of y’a’ on Uy is determined by o;.
Also, using the fact that the 7-module V is type s, the action of k** on Uy is determined by
s and d. Therefore the action of C[k,k™']¥©) on Uy is determined by s and {o;}9_. Since
N© = NN Clk, k7] is the kernel of the action, N'® is determined by s and {o;}9_,.

For ¢ > 1, we claim

= {v e Clk, k@ | ¥-9, c N OV,
For v € N = NN C[k, k7 ¥® | we have vUy = 0 and so ¥ =vly = 0, ie.,, ¥-v C NN
Clk, k=10©® = N Conversely, choose v € C[k, k~']¥® such that ¥~ iy C ./\/ O, If vU, #
0, then TvUy = V' by the irreducibility of the 7-module V. Since Tv = P, Clk, k™ Nwbly
and WWply C Ujyi, we have TvlUy = @;l;il VU, in particular U9pU, = Uy, which
contradicts the assumption U9y C N, Thus vl = 0, i.e., v € NNC[k, k= |T® = N0,
and the claim is proved. This means N'® is determined by N (®. Since A is determined

by s and {o; }?:0, so is N, This completes the proof of the injectivity of o in Theorem 1.9.
O

4 Finite-dimensional irreducible A-modules via ¢:
Proof of Theorem 1.11

The TD-algebra A = A((f’g*) is by Proposition 1.1 embedded into the augmented TD-algebra
T = T.%°7 via the injective algebra-homomorphism

w:A—T (2 2z, 2" — 2])
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for each fixed t € C (¢ # 0), where

2 = xH+thk+et kT
zt = y+eth+thTh

Let V be a fintite-dimensional irreducible 7-module of type s and diameter d. As we
discussed in Section 1.2, the pair A = z|y, A* = 2,*|y of linear transformations of V' gives
rise to a TD-pair if and only if

(Cy1),: the actions of z;, z; on V are both diagonalizable,
(Cq),: V is irreducivble as a (z;, z;')-module,
where (z;, z;') is the subalgebra of 7 genarated by z;, z;.

By Proposition 1.3, the condition (C;); holds if and only if 6; # 6; and 6} # 6, for i # j
(0 <i, j <d), where

9@'* _ g*st—lq%—d + S_lt qd—Qi'

In this section, we prove Theorem 1.11, a criterion for (Cs);. Namely assume (C;);. Then
the condition (Cy); holds if and only if Py (t* + ce*t2) # 0, where Py/()\) is the Drinfel’d
polynomial of the 7-module V.

We proceed parallel to [7]. Let V = @?:0 U; denote the weight-space decomposition of
the 7-module V| and F; the projection of V = @?:o U; onto U;. Note that k acts on V' as
Zj:o sq*~F;. Identifying z, z* with 2, 27 via 1, we write z = 2;, 2* = z* for short. Since
(Cy); is assumed, the action of z (resp.z*) on V has d + 1 distinct eigenvalues 6, - - , 6,
(resp. 65,---,05) on V by Proposition 1.3. Let V; (resp. V;*) denote the eigenspace of z
(resp. z*) on V belonging to 6; (resp. ¢;). Then we have

Vit Vip+--+Vyg = Ui+ Uipn +---+ U,
Vo +Vi+-+ VS = U+ U+ -+ U

for 0 < i < d. In particular, Uy =V, Us = V4. Let E; (resp. E}) denote the projection of
V= @?:0 Vi (resp. V = 69?:0 V:*) onto V; (resp.V;*). Then the mappings

Elv,: Vi — Ui,
Eiv,: Ui —V;

are both bijections and inverses each other. Also the mappings

Fi ‘/7,* . ‘/Z* —>UZ',
Efly,: Ui — V!

are both bijections and inverses each other. In particular, by Theorem 1.8
dimVy =1, dimV) =1.
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By the argument in the proof of Proposition 1.7, the TD-relations (TD) for z, z* imply

*
2V

Vier + Vi + Vi,

C
C Vi VIV,

for 0 <i<d, where V_y =V, =V* =V, =0.
Regard V' as an A-module via ;. Let W be an irreducible A-submodule of V. Set
W, =WnV, W=WnV* Then

(2

Wii + Wi 4+ Wig,

-
C Wi, +Wi+ Wi,

for 0 < i < d. Since W is irreducible as an A-module and since z, z* are diagonalizable on
W, the pair z|w, z*|w is a TD-pair on W. This implies that the eigenspace decompositions
of z|w, z|w~ are

r+d’
W= W

i=r

r+d’

wo= P,

for some integers r, r’, where d' is the diameter of the TD-pair z|w, z*|w € End(W). As
we discussed in Section 1.2, the A-module structure on W can be extended to a 7-module
structure on W by using the split decomposition of the TD-pair z|w, z*|w. (Note that the
weight-space decomposition of the 7-module W may be totally different from that of the
7-module V.) By applying Theorem 1.8 to the irreducible 7-module W, we have

First we want to show r =0, 7" +d' =d, i.e, WD Vy, W D V.

Since dim W, = 1, we have W, = Cv for some nonzero element v € W,. Since W C
Vi+---+Vy=U,+---+ Uy, we can express v as

U= Uyt U,
where u; = Fyv € U;. Then u, # 0, since v € W, C V,. and F,|y, : V, — U, is a bijection.
Lemma 4.1 The action of T on V satisfies the following (i), (it), (iii).
(1) 2wy = (0 — Opr) -+ (0 — Orpj)upyy; (L<j<d—r).
(17) yu, = 0.

(i) Yury; € Cu, (1<j<d—r).
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Proof. Recall z = z; and so z|y = x|y + Z?:o 0, F;. Since u; € U;, we have zu; = xu; + 6;u;,
so 2v = Opu, + (T u, + O p1ury1) + - + (vug_q + O4ug). Note xu; € Uprq. On the other
hand, since v € W, C V,., we have zv = 0,v = 0,u, + 6,u, 1 + - - - + 6,uy. Therefore we have
xui_1 + Oiu; = O,uy, ie., xu;— = (0, — 0;)u; and we obtain (i) recurswely

Recall z* = 2} and so z*|y = y|v + Zl o 07 F;. Since u; € U;, we have z*u; = yu,; + 05 u,,
s0 20 = yu, + (Yurp1 + OFuy) + -+ (yug + 05_ug—1) + (O5uq). Note yu; € U;—1. On
the other hand, since z*v € W and F,_4W = 0, we have yu, = 0, i.e., (ii) holds. Since
z*v € W and F,W = F,W, = Cu,, we have yu,,1 + 0u, € Cu,, i.e., (iii) holds for j = 1.
By z*|y = ylv + Zz 007 F and yU; C U;_y, we can write z%u; as a hnear combination of
Wiy Y Ui, Y2Us, . ..,y u,;, in which the coefficient of y/u,; is 1 if i — 5 > r. In particular for
v = U, + - - + ug, the projection of z*7v onto U, by F, can be written as

i ) 1
F.z T = yJuTJrj + Cly] Up4j—1 + -+ Cj—1Y Ur41 + CjlUy

for some ¢y, -++ ,¢j_1, ¢; € C. Since F,z¥v € F,W = F,W, = Cu,, (iii) holds by induction
on j. O

Proposition 4.2 It holds that W 2 Vi and W 2D V.

Proof. We only show W 2 V4, i.e., r = 0; W 2 V; is proved similarly, using W , in place
of W,. By Lemma 4.1, the action of 7 on V satisfies

Yyur = 07
yalu, € Cu, (j=0,1,2,---).

This implies Tu, C U, + - - -+ Uy, since 7T is linealy spanned by k"wy(z,y) (n € Z,\ € A"")
by Theorem 2.2. Since V is irreducible as a 7-module, we have V' = 7w, and hence r = 0.
O

Thus for a finite-dimensional irreducible 7-module V of type s, diameter d and an irre-
ducible A-module W C V via ¢;, we have Wy =V, W = V. In particuler, W = AVj.

Next we calculate how the eigenspace V; of z|y is mapped to V° by the projection
Ef:V =",V — Vy. It holds that on V

since the right-hand side vanishes on Vj*(l < j < d) and is the identity map on V. Write
Vo as Vy = Cu for some nonzero element v € V and express v as v = ug + uy + - - - + ug,
where u; = Fyv € U;. Then we obtain

Egu; =0 'y'u;, O =[] (65 - 07).

Jj=1
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This is because (H§:1(2* —0%)) u; = y'u; € Uy = Vi by (2" —00)|u, = ylu,, yU; € Uj—1 and
because (z* — 07|y, = 05 — 05 for i +1 < j < d. By Lemma 4.1 with r = 0,

U; = @;IJZiUO, 61 = H(Qo - 93)

=1

Since y'z'ug = o;ug, we have
1 -1
ESUZ = @z 1@:( ;U

and so

d
E* o @—1@*71 )
=0

Note that ug = Fov # 0, since Fyly, : Vo — Up is a bijection. Thus by Remark 1.10 in
Section 1.3, we have

Proposition 4.3 For a finite-dimensional irreducible T -module V' of type s and diameter
d, assume the condition (Cy); for a nonzerot € C. Then for v € Vy, it holds that

Eiv =071Q Py (t* + ec*t?) o,
where uy = Fyv,

© = (6o—01) (6o —04)(05 — 07) -~ (65 — 03),
_ _ a2
Q = (- Va—a (@ —a ¢~ a7,
and Py () is the Drinfel’d polynomial of the T -module V' defined in Section 1.3:

d d
Pr(\) =Q7 > oi(V) [ (¢ — ¢7) (es72% ) + 7527200 — ).

i=0 j=it1

Proof of Theorem 1.11. Suppose Py (t> + ee*t~2) # 0. Then by Proposition 4.3, we have
EiVy # 0. Then EgVy = Vi, since EjVy C Vi and dim Vi = 1. Let W be an irreducible
A-submodule of V' via ;. Then W D Vj by Proposition 4.2. Since Ej is a polynomial of
2*|ly, W is Ej-invariant and so W 2 E{W 2D E{Vy = Vi, i.e., W D Uy by Uy = V. We
want to prove W = V. To do so, it is enough to show wlU, C W for every word w in z, v,
since V' = TU, and TU, is linearly spanned by such wU]s. Now wU, belongs to some U; and
x, y coincide with z — 0;, 2* — 0} on U, respectively. Therefore wUy C W implies zwlU, C W
and ywU, C W, since W is invariant under z — 6;,2* — 67. This means induction works
on the word length. Thus wU, C W holds for every word w in z, y and it is shown that
Py (t? + ec*t™2) # 0 implies W =V, i.e., V is irreducible as an A-module.

Suppose Py (t* + ec*t2?) = 0. Then by Proposition 4.3, we have E;Vy = 0. This means
Vo C Vi + - 4+ VJ . Set

Viemr = Vo+ -+ V)N (Vi +--- + V)
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for 0 < < d—1. Note Vj = V1. Then by sz* C vjt1+vj*+vj11 and 2*V; C V,_1+V;+ V)4,
we have

(Z - ei)Vi,iH

(2" = 071 Vi

where V_19 = Vg1 = 0. Set V' = Vo1 +Via+ -+ Vy_14. Then V' is (z, z*)-invariant.
Since Vo C V' C V" +--- 4+ V7, the (z, z*)-invariant subspace V' is a proper subspace of V.

Thus it is shown that if Py (t? + ee*t™2) = 0, then V is not irreducible as an A -module.
This comletes the proof of Theorem 1.11. O

‘/i—l,h

C
C Vitrivo,

5 The product formula for the Drinfel’d polynomial
Py()\) of a T-module V via ¢,: Proof of the surjectiv-
ity of 0 in Theorem 1.9

The augmented TD-algebra 7 = 7;5,5* is by Proposition 1.13 embedded into the U,(slz)-loop
algebra £ = U,(L(sly)) via the injective algebra-homomorphism

os: T — L (x,y, k— x(s), y(s), sko respectively)

for each fixed nonzero s € C, where

_ _ _ _ 1.2
2(s) = a(sef +esterki), a=—-q¢'qg—q "),

y(s) = e*segko+ s tef.

For (¢,¢%) = (1,1), (0,0), let
V=V(l,a1)® - ®V(ly ay)

be the tensor product of evaluation modules V' (¢;, a;) for £ (1 < ¢;, a; € C\{0}, 1 < i <n)
(see Section 1.4). We regard V as a 7-module via the embedding ¢s. We call such a
T-module V' a tensor product of evaluation modules via ;.

For (g,e*) = (1,0), let £ denote the subalgebra of £ generated by ef, ef, ey, k' (i =
0,1)and V=V ({1,a1) ® --- @ V({,,a,) the tensor product of evaluation modules V (¢;, a;)
for £ (1 < ¥;, a; € C, 1 <i<n): note that e, is missing from the set of generators for £’
and a; = 0 is allowed for the evaluation module V' (¢;,a;) of £ (see Section 1.4). We regard
V as a T-module via the embedding ¢,, since the image of 7 by ¢ is contained in £ in the
case of (¢,e*) = (1,0). We call such a 7-module V' a tensor product of evaluation modules
via Q.

We treat such a 7-module V' = V({1,a1) ® -+ ® V({,,,a,) via ¢4 in one argument,
regardless of (g,¢*), and use the same notation £ for £ in the case of (¢,¢*) = (1,0). So in
this section, we understand in the case of (¢,e*) = (1,0) that £ denotes the subalgebra of
the U, (sly)-loop algebra U,(L(sly)) generated by e, ef, ey, k' (i = 0, 1) with e; missing
from the set of generators, and that a; = 0 is allowed for the evaluation module V' (¢;, a;).
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For a 7T-module V =V ({1,a;) ®--- @V (¢, a,) via @, let ?Joi RN f) denote a standard
basis of V' (¢;,a;): we write vg = v(()i), vy = vgi), RIS Ue ) for short. The action of 7 on
v<£zu a'i) = <U07 U1, 7Ufi> is

2j—¢;

kov; = ¢ vj,
vy = aiq[j+ v,
efegv; = a7 q Ml — 7+ v,
efv; = [6;i—j+1]v1,
erv; = [j+ v,

where v(f)l = vgzﬂ = 0, and we understand ¢*a; " = 0 if (¢,¢*) = (1,0) and a; = 0. Let
U; denote the subspace of V spanned by v;, ® --- ® v;,, where (ji,---,j,) runs through

OSJI Sfly Ty OS]n an SUChthatjl_’_"'—'—jn:i:
Ui: @ C’Ujl®"'®’l)jn.

Then k|y, = s¢* 4, so
d
Vv=EPpu  d=t+-+10)

is the eigenspace decomposition of (k). We call V' = @?:0 U; the weight space decomposi-
tion of the 7-module V via ¢, and Uy the highest weight space. Observe that

dim UO = 1,
2U; CUiyr, yU, CU

for 0 <4 < d, where U_; = Ugyq = 0. So the 1-dimensional space Uy is invariant under y‘z".
Define the sequence {c;};-, of scalars o; = 0;(V) by
y'at|y, = o

Then o9 = 1,0, = 0 (d+ 1 < i). Note that the 7-module V' via ¢ is not necessarily
irreducible and o4 = 0 is possible. Define the Drinfel’d polynomial Py () of the 7-module
V via ¢, by

d d
Prd) = @Y ou(V) [[ (@ — a7 (es2? @ + 75272 —8), (25)

=0 Jj=i+1
2

Q = Qu=0D"—-g)(@—a¢? - ("—q"
Since op = 1, Py(\) is a monic polynomial of degree d. Observe

oa(V)=Q  Py(es™? +¢&*s%).

(26)

More generally the Drinfel’d polynomial Py (A) is defined in the same way for a finite-
dimensional 7-module V' that has the following properties:
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(D)o: k is diagonalizable on V with V = @, U, k
for some nonzero constant s.

(D)ll dim UO =1.

v, =s¢ 4 (0<i<d)

By the relations (TD)y : kk™' = k™'k = 1, kak™' = ¢z, kyk™' = ¢~ 2y, it holds that
xU; CUiq, yU; CU;—q (0 <i<d), where Uy = Uygy1 = 0. Thus o0;(V)’s are defined as
before and hence Py (\) by (25), (26). The eigenspace decomposition and the subspace Uy in
(D)o are called the weight-space decomposition and the highest weight space of the T-module
V respectively. The nonzero scalar s and the nonnegative integer d in (D)g are called the
type and the diameter of the 7-module V respectively. We further consider the following
property for a 7-module V' that satisfies (D)g, (D); with diameter d:

(D)a: a4(V) # 0.

Lemma 5.1 LetV be a finite-dimensional T -module that satisfies the properties (D)o, (D);.
Consider the T -submodule W = T U,, where Uy is the highest weight space of the T -module
V. Let M be a mazimal T -submodule of W. Set W = W/M. Then the T -submodule W and
the quotient T-module W satisfy (D)o, (D)1 as well. Furthermore if V satisfies (D) with
diameter d, then so do the T-modules W and W and it holds that

(i) oi(V) = os(W) = ao(W) (0<i<d),
(ii) Py(A) = Pw(A) = Py(X).

Lemma 5.1 follows from Lemma 1.2, since W is irreducible as a 7-module.

In what follows, we fix a nonzero scalar s € C arbitrarily and we only treat finite-
dimensional 7-modules via ¢, that satisfy the above properties (D)o, (D);. In this case,
the weight space decomposition of a 7-module V' coincides with that of the £-module V,
since (k) = s ko. Note that the tensor product of evaluation modules V' (¢;,a;) (1 <1i < n)
satisfies (D)o, (D); and has type s, diameter d = ¢1+---+£,,. If V, V" are T-modules via ¢y,
then the tensor product V ® V'’ becomes a 7-module via A o g, where A : L — L ® L is
the coproduct. Furthermore, if the 7-modules V, V' via @, satisfy the properties (D)o, (D)1,
so does the tensor product V ® V' as a 7-module via ¢, and so the Drinfel’d polynomial
Pygyi(N) is defined. We have the following product formula.

Theorem 5.2 Let V, V' be finite-dimensional T -modules via @, that satisfy the properties
(D)o, (D)1. Assume that V' is afforded by a tensor product of evaluation modules via ps.
Then the following (i), (i) holds.

(i) The Drinfel’d polynomial Pygy: () of the T-module V@ V' via @y is
Pyeyi(A) = Py (AN Py (N).
(it) The Drinfel’d polynomial Py (sq)(X) of the T-module V (¢, a) via ¢, is

ProwN) = ] A +ctesc™),
ceS(4,a)
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where .
S(lya) ={ag® | 0<i<l—1}.

We understand that if (¢,e*) = (1,0) and a = 0, S(¢, a) is the multiset with 0 appearing
¢ times and Py ) = M.

To prove Theorem 5.2, we prepare two lemmas and a proposition. Let V, V' be 7-modules
via @4 as in Theorem 5.2 and have weight-space decompositions

d
v = pu.
ZZ/O
vV = U,
=0

respectively. Then the 7-module V' ® V' via ¢, has weight-space decomposition

d+d’
VeV =@,
=0

where B
U= @ U,oU, ((O0<i<d+d).

i1+io=1

Lemma 5.3 Set 2(s) = ps(x), y(s) = ¢s(y). Then the actions of z(s), y(s) on U; @ V' are

z(s)

y(s)
N

Proof. These identities follow directly from z(s) = a(sed +es el k1), y(s) = e*seq ko+s e}
and the coproduct A that sends e, e; k;, ki to ef @ 1+k;@el, e; ki@ 1+k;@e; ki, ki @ k;

7 )

respectively. a

viev: = 2(s)|y, ® Iy + 1y, ® 2(q*%s)|vr,
vev: = Y(8)|u, ® v+ 1y, @ y(¢* )|y

Lemma 5.4 Assume V' = V(1,a), an evaluation module of diameter 1, and let V(1,a) =
(vo, v1) be a standard basis. For u € Uy, (0 <m <d) and 1 < i, we have

(i) P'(u®uvy) = (x’u) @ vy + aqli]c(m)(z™ u) @ v,

r(u®uv) = (z'u) @,

wh@’r@ C; (m) =as qi+2m*d*1 + 88*1q7i72m+d+1’

(ii) y'(u@wo) = (y'u)® o, |
yu@uv) = (yu)@uv +[i](m)(y" u) @ v,

where cj(m) = g*a—lsq—i+2m—d+1 + S—lqi—Qm—&-d—l'
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Proof. Recall ejvg = qavi, ejvg = v1, egvy = ejv; = 0, e'eguy = e*a g vy, efvy =
Vo, €¥eg vy = € vy = 0, kovg = ¢ vy, kgvy = qui. We proceed by induction on i. For i =1,

we have by Lemma 5.3

ru®uvy) = (z(s)u) ®vg+u® (2(¢*"%s) vo)
(zu) @ vo + a (¢*" Tsqa+eq ™5 ) u vy
(20) ® o + @ g s (m) u ® v,
(z(s)u) @ v1 +u® (z(g” %s)v1)
= (zu) ® vy,

x(u® vy)

and

yu®vy) = (y(s)u) ® vy +u® (y(¢*™ s)vy)
(yu) ® vo,
Juem) = () B +u (e )

(yu) @ vy + (¢ %sa™ + ¢ sT) u @ vy
= (yu) @ v1 + ¢ (m) u ® v.

For ¢ > 2, we have by Lemma 5.3 and induction on ¢

ru®uv) = 2t ((mu) ®uo+age(m)u® v1>
= (z'u) ® vy + agli = 1]cia(m+1) (¢ ) @ vy
tage (m) (' ') ® vy |
= (2'v) @ vy + aqli]e(m) (2" 'u) @ vy,

since [i — 1]¢;_1(m 4+ 1) + ¢1(m) = [i] ¢;(m) , and

yi(u®vl) = Z1<yu ® v + ¢ (m )u®vo>

= (’u>®v1+[z—1] {(m=1) (¥ 'u) @ vy
+ei(m) (Y w) @ v
= (Y'u) @v1 + [i] ¢ (m) (¥ 'u) @ o,

since [i — 1] ¢j_y(m — 1) + cl( )= [i]ci(m). Also we have z'(u @ v1) = 27 ((2u) ® vy) =
(r'u) @ vy, ¥'(u®vy) =y H(yu) @ vy) = (y'u) @ vy by induction on i. O

Proposition 5.5 Assume V' = V(1,a), an evaluation module of diameter 1. For the T -
modules V. and V @ V' via ¢, set o; = 04(V) and 0; = 0;(V @ V'). Then for i > 1, we
have

2(d+1—1) * 2 —2(d+1—i)>

&;:ai—(qi—q_i)z(a+65*a_1+5s_2q +e's%q

where d is the diameter of the T -module V. We understand that e*a™ = 0 if (e,&*) = (1,0)
and a = 0.

0i—1,
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Proof. Let V = @fzo U; denote the weight-space decomposition of the 7-module V' and
V(1,a) = (v, v1) a standard basis of V’'. Choose a nonzero vector ug € Uy. Then uy ® vy
spans the highest weight space of V ® V’'. We have by Lemma 5.4

yrt(ug ®vy) = o ((xiuo) ®vo+aqi]c(0) (2 tuy) ® U1>
= (y'z'up) ® vy
taq[i]ei(0) (e uo) @ v+ [i] 65 = 1) (5o o) @ o)
= oUuy ® vy + aq [z’]Qci(O) ci(i— 1) oi_1up ® v,
since ¥’z tug = 0. So it holds that
0; = o0;it+agq [i]QCi(O) c(t—1) o
- o, — (qi . q—i)Q(a + ce*a ! + 68—2q2(d+1—i) + g*SQq—Q(d—H—i))O_i_l.

|

Proof of Theorem 5.2. We first treat the case of V' = V(1,a), an evaluation module of
diameter 1. By Proposition 5.5,

Gi=0, — (qz’ _ q—i)Qai_l((€S—2q2(d+l—i) + g*szq—2(d+1—i) ~ AN+ A+a+ 55*@‘1)>,

and we have, with Q = (—=1)" (¢ — ¢ (¢ — ¢72)°--- (¢* — ¢4 1)%,

d+1 d+1
PV®V(1,a)()\> _ Q—l Z 5 (qj _ q—j)2 (55‘2q2(d+1_j) + g*SQq—Q(d+1—j) _ )\)
i=0  j=i+1
d+1 d+1
= Q') o [T (@ =g (es 2@ 4 ems’q 21D - ))
i=0  j=it1
d d+1
- é_l Z Oi-1 H(qj - Q_j)2(53_2q2(d+1_j) + 5*32Q_2(d+1_j) - /\>
i—1=0 j=i

d
_ Q—l Z Ui_l()\+a+55*a_1)(qd+1 _q—d—1)2

d
X H (qj—l _ q_j+1)2(63_2q2(d_j+1) +€*82q_2(d_j+1) _ )\)

j—1=

This equals (A + a + ee*a™t) Py(\), since 0441 = 0441(V) = 0 and so the first and second
terms cancel out. This argument is valid even if V' is the trivial module, i.e., dimV = 1,
e, = 0, k'|, = 1. In this case, V ® V(1,a) ~ V(1,a) and it is easily checked that
Pv(/\) =1 and

PV(I,a)<)\) =At+a+e¢ €*CL_1. (27)
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Thus in the case of V' = V/(1.a), we have

Pravia(A) = P (M) Pra(A)- (28)

Next we treat the case V' = V({,a), an evaluation module of diameter ¢. We want to
show

Provea(A) = Pr(A) Pra (M) (29)

for every integer ¢ > 1 by induction on ¢. To do so, we prepare a lemma below that
gives an embedding of V' = V (£, a) into V(¢ — 1,aq™) @ V(1,aq""!) as an L-submodule.
Start with the evaluation modules V(¢ —1,aq™ '), V(1,a¢"?) for L. Let V({ —1,aq7') =
(ug,ut, -+ ,up_1), V(1,a¢"1) = (vo,v1) be standard bases of the evaluation modules. By
direct calculations, we have the following lemma.

Lemma 5.6 Consider the tensor product V({—1,aq )@V (1,a¢"™") of evaluation modules
as an L-module via the coproduct A. Set

wi =q " @vg+ui 1 @v €V(IE—1,ag )@V (1,aq"™)

for 0 <1 < /¥, where u_y = uy = 0. Then Cwy is the highest weight space of the L-module
VIl—1,a¢HY®@V(1,aq" ). Set W = Lwy. Then

W ~V({a)

as L-modules with
W = <’LUO,’IU1, Tt ,'I.Ug>

a standard basis for W.

Consider the £® L-modules V@V (¢,a) and V@ (V({—1,aq¢ )@V (1,a¢"")). Regard
them as L£-modules via the coproduct A : L — £ ® £ and then as 7-modules via ;.
Choose nonzero vectors u, w from the highest weight spaces of V, V({—1,aq¢ 1)@V (1,aq¢"1)
respectively. Then Cu ® w is the highest weight space of V' ® (V(E —l,aqg )@ V(1, aqé_l))
as an L£-module and hence as a 7-module via ;. Set W = Lw. The properties (D)g, (D),
hold for the 7-module V@ (V({—1,a¢ ") ®V(1,aq" ")) and its T-submodule V ® W. The
Drinfel’d polynomials of these 7-modules coincide, since they share the common highest
weight space and have the same diameter. On the other hand, V' ® V (¢, a) is isomophic to
V®@W as L-modules by Lemma 5.6 and so as 7-modules via ¢,. In particular, the Drinfel’d
polynomial of V @ V (¢, a) coincides with that of V @ W as T-modules via ¢s. Therefore
V@V(la) and V@ (V(l — 1,aqg”") ® V(1,a¢"")) have the same Drinfel’d polynomial
as 7-modules via ¢,. The Drinfel’d polynomial of the 7-module V ® (V(f —laqg ') ®
V(1,a¢"™")) is the product of those of the 7-modules V @ V(¢ — 1,a¢q™") and V(1,aq"™")
by (28), since V@ (V({ —1,aq7") @ V(1,aq"™")) is isomorphic to (V@ V(¢ —1,aq7")) ®
V(1,aq""') as T-modules via ¢,. By induction on ¢, the formula (29) holds for £ — 1, so we
have PV@V((,Laq—l) = PVPV(Zfl,aq—ly Therefore PV®V(57Q) = PVPV(Zfl,aq—l) PV(l,aqéfl)- On
the other hand, Pv(g_l’aqfl)Pv(Laqfl) = Pv(g_lﬂqfl)@‘/(l’aqfl) = Py = PV(Z,a) by the same
argument. This proves the formula (29).
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Finally we treat the general case V' = V" ® V({,a), where V" is afforded by a tensor
product of evaluation modules via ¢,. By (29), Pvev: = Praviavee = Pvevr Prea. By
induction on dim V”, P\/@vu = PvPVN. So P\/@\// = Pvpvllpv(g7a) By (29) PV//P\/(g7a) =
Pyrgviea) = Pyr. So Pygyr = Py Py, This completes the proof of Theorem 5.2 (i).

By Lemma 5.6 and Theorem 5.2 (i), we have

Ka) H PVlc

ceS(¢,a)

By (27), Py(1,6(A) = A+ ¢+ ee*e . This completes the proof of Theorem 5.2 (ii). O

Proof of the surjectivity of ¢ in Theorem 1.9. Given an arbitrary monic polynomial
P()) of degree d and an arbitrary nonzero s € C such that P(es™2 + £*s?) # 0, we show
that there exists an irreducible 7-module V' of type s and diameter d that has Drinfel’d
polynomial P()), i.e., Py(\) = P(\). Let A\, Ag,- -+, \g denote the roots of P(\), allowing
repetition. For each i (1 < i < d), choose a; € C such that

)\i+ai+55*a;1 = 0.

If (¢,e*) = (1, 1), the equation \; +a; +a; ' = 0 has nonzero solutions for a; : we choose one
of then and fix it. If (e,*) = (1,0) or (0,0), we understand that the equation is \; + a; =0
and a; = —\;. Observe that if (e,e*) = (0,0), then \; # 0 (1 < i < d) by the condition
P(es™2 +¢e*s%) # 0,50 a; # 0 (1 < i < d). Consider the T-module V via ¢, where
T = 7,5 and

V=V(1a)@V(1,a) @ - @ V(1 ay).

By Theorem 5.2, it holds that Py (\) = P(\). Choose a nonzero vector w from the highest
weight space of V' and set W = Tw. Let M be a maximal 7-submodule of W. Observe
w ¢ M, since M # W. The quotient T-module W = W/M is irreducible. Since Py (e572 +

s%) # 0, we have 04(V) # 0 by Remark 1.10. By Lemma 5.1, Py(\) = Py(\). Thus W is
the desired 7-module. O

6 Irreducibility of a 7-module V =V ® V({,a) via ¢,

For the augmented TD-algebra 7 = 7;5’5*, we have so far established the bijectivity of the
mapping
Irry(T) — Py (V— Py(})),

namely, the set of finite-dimensional irreducible 7-modules of type s and diameter d is
parametrized up to isomorphism by monic polynomials of degree d that do not vanish at
es? + e*s%. Given a polynomial P(\) € P35, we want to construct explicitly a 7-module
via @y that belongs to Irr(7) and has P()) as its Drinfel’d polynomial. In this section, we
prepare a key proposition to the construction of such 7-modules via p,. The construction
itself will be discussed in the next section. We consider 7-modules

Vo= V(l,a1)® @ V(ly,an),

V = VeV(l,a)
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via s, where 1 < n, 1 < ¢; (1 < i < n) and q, a; are allowed to be zero if (e,&*) =
(1,0). The diameters of V, Vared =0+ +10, d+1 respectively. Observe that
oa1(V) =Q Py (es2 +£*s?) for some nonzero scalar Q by Remark 1.10. We have Py(A) =
Py(A)Py,q)(A) by Theorem 5.2. So again by Remark 1.10, oar1(V) # 0 if and only if
04(V) # 0 and 01(V(1,a)) # 0. By Theorem 1.9, observe also that o4(V') # 0 holds if the

7 -module V is irreducible.

Proposition 6.1 Assume that a_T-module V via @ is irreducible and has diameter d.
Assume also that the T-module V- =V ® V(1,a) via s satisfies oqy1(V) # 0. If the T -
module V' wvia o, has a nonzero T-submodule W that does not contain the highest weight

space Uy of V', then the Drinfel’d polynomial Py (X) of the T -module V' via ps vanishes at

A= —aq®—ectalqg?:

Po(-aq’ —ee'a”'q™?) =0,

where we understand e*a™ = 0 if (g,e*) = (1,0) and a = 0.

The remainder of this section is devoted to the proof of Proposition 6.1. Without loss of
generality, we can assume that W is irreducible as a 7-submodule, since we may replace W
by a minimal 7-submodule contained in W. Let

N d+1 _
vV = P
=0
r+d’ _

W= Puw) (W) <)

denote the weight-space decompositions of 17, W respectively, where d’ is the diameter of
W. Since W is irreducible, the highest weight space U, (W) has dimension 1 by Theorem 1.8
and so is spanned by a nonzero vector wy:

Ur(W) = {w).

Since W 2 Uy, we have r > 1. Since 2 U;(W) C U (W) and y U;(W) C U;_1 (W), where
U1 (W) =0, Upyari1(W) = 0, we have

ywy =0, (30)
y'z'wy = o;(W)wy (31)

fori=0,1,2,---. Let
d
V-
=0

denote the weight space decomposition of V' and let

V(1,a) = (vo,v1)
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be a standard basis of V(1,a). Then
U = U; ® (vo) + Ui_1 ® (v1)
for 0 <¢ < d+1, where U_; = Uyyy = 0. In particular
Wy = Uy @ Vg + Up_1 R V1 (32)
for some u, € U,, u,_1 € U,_1.
Lemma 6.2 For i, m € 7, set

i+2m—d—1 +€S_1 —z—2m—i—d-|—17

¢i(m) = asq

q
-1 —i+2m—d+1 -1 _i—2 -1
Cj(m) — *a sq i+2m—d+ +s qz m+d )

Then for 1 <, the following (i) ~ (v) hold.
(1) yu,—1 =0,
yu, =—c;(r—1)u,_1.

(1) o;(W)up—1 = y'a'u,—y + aqli]c(r) y'a' u,.

(i17) (W) u, = y'z'u, + aqi?e;i(r) c,(r — 1)y o, + [ ¢ (r — 1)y tatu, .
(iv) ¥y z'u, = —[i + 1] iy (= 1) oi(W)u,—.

(v) y'a'u,1 = oWy +aqilPe(r) ¢ g (r —1) oia (W) up.
Proof. By Lemma 5.4, we have for wy = u, ® vg + u,_1 ® vy,

Ywo = (yur) & vp + (yur—l) K v + CT(T — 1) Up_1 & Vg.

Since y wy = 0 and yu, € U,_1, we obtain y u, + ¢ (r—1)u,—; = 0, yu,_; = 0 and (i) holds.
Again by Lemma 5.4, we have

Twy = (2'u,) @vo+aqi]c(r) (@ ) ® v+ (2u_y) ® vy,

yr'wy = (y'a'u,) @y

+aqli]e(r) (e u) @o+ [i] ¢ (r+i—1) (2" u) @ vo)

c
+(y'rt ) @ v+ i) (r+i— 1) (v r'u,_y) ® vo.

i—1 .7 i—1

Since y'z'wy = o;(W)wy and y'ztu,, vy ot u,, y
we obtain

'y € Uy, ' up, y'a'u,_y € Up_y,
W) = gt +agliPe () élr+i- )y~
il (r+i— 1)y atu,
W)t = agqlila()y

% z—lur_i_yzxzur_l'

Since ¢f(r+i—1) = ¢*,;(r — 1), (ii) and (iii) hold.
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By (ii) and (iii) we obtain
o(W)yu, —[i]c,(r — 1) o;(W)u,_y =y atu,.

Since yu, = —cj(r — 1) u,—y by (i) and ¢j(r — 1) + [¢]cZ(r = 1) = [i + 1], (r — 1), we
have (iv). Observe y'z' 'u, = —[i] ¢ (i_oy(r = 1) o1 (W) u,—y is valid for ¢ > 1 by (iv), (i)
and put this identity into (ii) to obtain (v). O

Lemma 6.3 [t holds that (i) u,—1 # 0, (i3) u, # 0 and (iii) r = 1.

Proof. Suppose w,_; = 0. Then by Lemma 6.2 (iii),

y'riu, = —aq [z']2cl-(7") L (r—1) y e, (W) u,

for 1 < i, so we have y'z'u, € (u,) for 0 <1 by induction on i. Moreover y u, = 0 by Lemma
6.2 (¢). Since 7 is spanned by k"wy(z,y) (n € Z, A € A"") by Theorem 2.2, it follows from
y'z'u, € (u,) (0 <1)and yu, =0 that

r<i

Since 1 < r,7u, is a proper 7-submodule of V. This contradicts the irreducibility of V.
Thus (i) holds.

Suppose u, = 0. Then by Lemma 6.2 (ii),
Y u._y = o;(W)ue_1.

Since 7 is spanned by k"wy(z,y) (n € Z, A € A""), it follows from y'z'u,_1 € (u,_1) (0 < 1)

and yu,_, = 0 that
Tu,—1 C @ Ui.

r—1<i

So V has a nonzero 7 -submodule contained in @7_1 <; Ui. Since V' is irreducible, we obtain
r—1=0,1ie, wy = u @ v (ug # 0,u; = 0). By Lemma 6.2 (i), yu; = —c}(0)up and
so ¢;(0) = 0. By Lemma 6.2 (iii) with ¢« = 1, ¢*,(0)zuy = 0. Note zuy # 0, otherwise
04(V) = 0, which contradicts the assumption that V' is irreducible as a 7-module. Thus
¢*1(0) = 0. From ¢;(0) = 0 and ¢*,(0) = 0, we have

atlsqg +s71¢? =0,
el g2 4 5112 — ),

This implies ¢* = 1, a = —s%¢ 2% = —52¢*"2? and we have ¢* = 1. This contradicts the

assumption that ¢ is not a root of unity. Hence (ii) holds.

By Lemma 6.2 (i), (v), we have yu, ; = 0 and y'z’u,_1 € (u,_1) (0 < 7). The same
argument of the previous paragraph is valid and V has a nonzero 7-submodule 7u,_;
contained in P, _,; U;. Hence we obtain r — 1 =0, i.e., (iii) holds. O
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Lemma 6.4 For 0 <1,

oi(W) = fioia(W) + oi(V),

where ‘ ‘ A ‘
fz' — (qz _ q—z)2(€s—2q2(d—z) + 8*S2q—2(d—z) + an + 88*0,_1(]_2).

Proof. Since r = 1, we have y'z'u,_1 = 0;(V)u,_;. By Lemma 6.3, u,_; # 0. By Lemma
6.2 (v), we obtain

oi(V) = os(W)+aqlilPe(1) C*—(if2)(0) oi-1(W)
Ui<W) — fi Ji—l(W)'

Lemma 6.5 [t holds that d = d — 1, where d, d' are the diameters of V., W respectively.

Proof. Obviously o;(W) = 0,1 (W) = 0 for ' +2 < i. So we have ¢;(V) = 0 for d'+2 < i by
Lemma 6.4. This implies d < d' + 1, since Jd( V) # 0. On the other hand, the weight-space
decompositions of V, W are V.= Uy + - + Ugpy, W = Up(W) + -+ + Uppa (W) (r = 1)
with U;(W) C U;. Sor+d < d+1, ie., d < d. Therefore either d =d' + 1 or d = d.

Suppose d = d’. Then 0 # Ug1 (W) C Ud+1 Since V is a tensor product of evaluation
modules, we generally have dim Uo = dim Ud+1 = 1. So Ud+1(W) = ﬁdﬂ, in particular
T Uy is contained in . On the other hand, we assumed o441 (V) # 0 for Proposition 6.1.
This implies 7 Ud+1 ) UO Therefore W contains UO, which is a contradiction. O

Proof of Proposition 6.1. Set o; = 0;(V'). Using Lemma 6.4 repeatedly, we have for 0 <1
o(W) = (fificr---fi)oo+(fificr--fo)or+ -+ fioi1 +ou.
By Lemma 6.5, d =d — 1. So o4(W) = 0. Thus

d
Zfdfd—l"'fj—i—l o; =0. (33)
=0

Define the polynomial f;(\) of degree 1 in A by
[ilN) = (¢" =) (es 72 4752720 — )

for 1 <. Then by definition
d
=Q! ZUz' fira(A) -+ fa(N),
i=0

where Q = (=1)(q —¢7")’(¢* = ¢7*)" - (¢ = ¢™*)". Since f; = fi(~agq® — ec*a'q7?), we
have by (33)
Py(—aq* —ec*a'q?) = 0.

This completes the proof of Proposition 6.1. O
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7 Construction of finite-dimensional irreducible
7T -modules via

In this section, we prove Theorem 1.15, Theorem 1.18, Theorem 1.21. Each theorem consists
of three parts (i), (ii), (iii). The second part (ii) immediately follows from the first part (i)
together with Theorem 1.9’ and Lemma 1.14. We only prove (i) and (iii) for each of the the-
orems. The Drinfel’d polynomials Py (\) in the first part (i) are obtained straightforward by
Theorem 5.2. Throughout this section, s stands for a nonzero scalar of C chosen arbitrarily.

For the augmented TD-algebra 7 = ’Z](E’E*), we consider the following 7-module V' via
©s (see Section 1.4): if (e,e*) = (1,1) or (0,0),

V=V,a1) Q- QV(ly,ay),
where 1 <n, 1 </¢;, a; #0 (1 <i <n), and if (g,e*) = (1,0),
V = V(f) & V(fh(h) Q- V(En,an),

where 0 < n,0 < 0,1 < ¥, a; # 0 (1 < i < n). With such a 7-module V via ¢,, we
associate the multi-set {S(¢;,a;)};_, of g-strings, where

S(&» ai) = {aiq_ﬁﬁ_l, aiq_zi+37 . ’aiq&'—l}‘
Consider a 7-module V' via ¢, of the same kind:

Vo= V(glha,l) K- V(giruafm) if (575*) - (1a 1)7 (0,0),
V= V() eVl a) @@V, a,) if (") =(1,0)

For (e,e*) = (1,1), such 7T-modules V, V' via @, are said to be equivalant if the associated
multi-sets of g-strings are equvalent, i.e., m = n and there exist ¢; € {1,—1} (1 <i < n)
such that S(¢,a}) = S(4;,a;") (1 < i < n) with a suitable rearrangement of the ordering

of S(¢},a}),---,S  al). For (e,e*) = (0,0), such 7-modules V, V' via ¢, are said to be

n'n

equivalent if m = n and S(¢;,a}) = S(4;,a;) (1 < i < n) with a suitable rearrangement of

[2Eat)

the ordering of S(¢},a}),---,S(¢,,al). For (,£*) = (1,0), such 7-modules V, V' via ¢, are

said to be equivalent if £ = ', m = n and S(¢;,a,) = S(¢;,a;) (1 < i < n) with a suitable
rearrangement of the ordering of S(¢},a}),---,S(¢,,al).

Lemma 7.1 If a T-module V' wvia @, is irreducible, then every T -module V' via @, that is
equivalent to V' is isomorphic to V as T -modules via @, in particular irreducible.

Proof. Since V and V' are equivalent, V' and V' have the same Drinfel’d polynomial by
Theorem 5.2. In particular o4(V) = 04(V’), where d is the diameter of the 7-modules V,
V', Let U] denote the highest weight space of the 7-module V' via ¢,. Set W = T U] and let
M be a maximal 7-submodule of W. Then V" and W/M have the same Drinfel’d polynomial
by Lemma 5.1. Hence V and W/M have the same Drinfel’d polynomial. By Theorem 1.9,
the irreducible 7-modules V', W/M are isomorphic, in particular dim V' = dim W/M. But
V and V' are equivalent, in particular dimV' = dim V’. Thus dim V' = dim W/M and we
have V! = W, M = 0. This means that V and V' are isomorphic as 7-modules via ¢,. O
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Proof of the ‘only if’ part of (i). The ‘only if’ part of Theorem 1.15 (i) follows from
Lemma 7.1. Suppose —s? € S(¢;,a;) U S(l;,a; ") for some i (1 < i < n). Then Py(es™2 +
e*s?) = 0 by Theorem 5.2, which contradicts the irreducibility of V' by Theorem 1.9. Suppose
the multi-set {S(¢;, a;)};_, of g-strings is not strongly in general position. Then there exists
a multi-set {S(¢},a})};~, of q—strings that is eqivalent to {S(¢;,a;)};_, and not in general
position. Set V' =V ({,a})®---@V (L, ,al,). Since {S(¢},al)}", is not in general position,

V' is not irreducible as an £- module consequently as a 7-module via p,. Sine {S(¢},a})};,

is eqivalent to {S(¢;, a;)};_, and V is irreducible as a 7-module via ¢, V' is also irreducible
as a 7-module via ¢, by Lemma 7.1. Thus we get a contradiction. The ‘only if’” part of

Theorem 1.18 (i), Theorem 1.21 (i) can be proved similarly. O

7.1 Proof of the ‘if’ part of Theorem 1.15 (i)
We start with an observation of the U,(sls)-loop algebra L.

Lemma 7 2 There exists an algebra anti-homomorphism of L that sends e, e; k;, ki, ki
to e; ki, el ki, kb, respectively (i = 0,1). Such an anti-homomorphism is unique and we
denote it by T:

7 )

T L— L (ef, e ki, kI e ks, ef k‘i respectively).
It holds that 7 =1 and (1 @ T) A = A7, where A : L — L ® L is the coproduct of L.

The assertions of Lemma 7.2 can be checked by straightforward calculations.

For an £-module V| the dual vector space of V
Hom (V,C) ={f:V — C| f is a linear mapping}
becomes an L-module by
(Xf) () = f(7(X)v) (veV)

for f € Hom(V,C), X € L. For L-modules V|, V'  we identify Hom (V ® V' C) with
Hom (V,C) ® Hom (V’,C) as vector spaces by

(f ®g) (v@v) = f(v)g(v).

It can be easily checked by the relation (7 ® 7) A = A7 that this identification gives an
L-module isomophism

Hom (V ® V’,C) ~ Hom (V,C) ® Hom (V’, C),
where £ acts on V ® V' and Hom (V,C) ® Hom (V’, C) via the coproduct A.

Lemma 7.3 For evaluation modules, we have the following isomorphisms as L-modules.

(i) Hom (V(¢,a),C) ~V({,a™").
(¢1) Hom (V({1,a1) ® -+ @V (ln,a,),C) = V(l,a;") @+ @V (Ln,ar").
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Proof. Let V(¢,a) = (vg, v1,- -+ ,vp) be astandard basis and Hom (V' (¢, a), C) = (fo, f1, -, f1)
the dual basis: f; (v;) = d;;. Set
iz €
gi=q Y (2) fis

where (f) = [()'/[¢—1]![i]!, the g-binomial coefficient. Then we have ef g; = a™q[i +1] gi11,
e gi =aq [0 —i+1]gi, efg = [ —i+1]gi1, e;gi = [i + 1] gis1, kogi = ¢* ‘i, where
g-1=ge1 =0. Soif V(¢,a™") = (wp,wy, - ,wy) is a standard basis, then Hom (V (¢, a), C)
is isomorphic to V(¢,a™!) as £ -modules by the correspondence of g; to w; (0 < i < /).
Part (ii) follows from part (i) and the fact Hom (V ® V', C) ~ Hom (V,C) ® Hom (V’,C) as
L-modules. O

We now prove the ‘if” part of Theorem 1.15 (i). Namely, we are in the case of (¢,&*) =
(1,1) and given a 7-module

V=V{l,a)® -V, a,)

via ¢, such that —s? ¢ S(¢;,a;) U S(f;,a;") (1 < i < n) and the multi-set {S(¢;, a;)}7,
of g-strings is strongly in general position. We want to show that V is irreducible as a
T-module via ¢s. Observe that the ordering of the tensor product does not change the
isomorphism class of V' as an £-module and consequently as a 7-module via @, since the
multiset {S(¢;, a;)}, of g-strings is in general position. First we show

Lemma 7.4 For any choice of ¢; € {1,—1} (1 <i <mn), V is isomorphic to
V(gh a’il) Q- ® V<€nv a’fzn)
as T -modules via ps.

Proof. We proceed by induction on n. First let n = 1. Then V (¢, a1), V(¢1,a;") have the
same Drinfel’d polynomial by Theorem 5.2 and the Drinfel’d polynomial does not vanish
at 52 4+ s72, since —s% ¢ S(¢1,a1) U S(¢1,a7"). So V(fy,a1), V(¢1,a7") have nonzero oy,
by Remark 1.10. In the case of evaluation modules, the property o, # 0 implies the
irreducibility of the 7-modules via ¢,. Thus V({1,a;), V(¢1,a;") are irreducible as 7-
modules via ¢, and have the same Drinfel’d polynomial that does not vanish at s? + 52
By Theorem 1.9, V(¢1,a1), V({1,a;") are isomorphic as T-modules via (.

For n > 2, set V' = V([l,al) - ® V(€n 1,0n—1). Then by induction on n, V' is
isomorphic to V' =V ({1,a7') ®- - ®V(€n 1,a,"7") as 7T-modules via ¢s. Let ¢ : V! — V"
denote an isomorphism between the 7-modules V', V" via p,. The generators x,y, k, k7t
of T are mapped by ¢, to z(s) = a(sef + s’lefk:l), y(s) = segko + s tef, sko, sk,
respectively, and those elements of £ are mapped by A to

A(z(s)) = z(s)@1l+asko@ef +as 'k ® ek,
Ay(s)) = ys)@1+sko@egho+s ki @ef,
A(sko) = sko® ko,

A(s7'ky) = sk @k,
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respectively. It can be easily checked that the vector-space isomorphism
YRid: V' QV(ly,a,) — V'@V (L, a,)

commutes with the action of each of the elements A (z(s)), A (y(s)), A (sko), A(s™ k1). So
we get
V'@V (L, an) ~ V"RV (l,,a,)

as T-modules via ¢,. Since {S(;,a5)}1—, U {S(fy,a,)} is in general position,
V"'"QV (U, an) =V (ln,a,) @ V"
as L-modules and consequently as 7-modules via ps. By the same argument, we have

V(lp,a,) @ V" ~ V(l,,a") V"
V'@V (l,,a)

as 7-modules via ;. Thus V'@V (0,,a,) ~ V" @V ({,,as") as T-modules ¢, and the proof
is completed. O

Next we intoroduce a partial ordering on C\{0} by

a<b < b=aqg* for some integer i > 0. (34)

Consider iy (1 < iy < n) such that a;¢“ ! or a;)lqeio_l is maximal with respect to the

partial ordering on the set of nonzero scalars a;q“~!, a;'¢%~' (1 < i < n). Among such
i(s, choose one for which /¢;, is smallest. Since the ordering of the tensor product does not
matter about the isomorphism class of V' as a T—module via @, we may assume that ig = n,

and by Lemma 7.4 that a,¢ ! is maximal among af¢“~' (1 <4 < n). So
ang™ ¢ S(li, ;) US(C,a7t) (1<i<n), (35)
by < Ui if ang™ ' € S(l, a:) US4, a7h). (36)

We proceed by induction on dim V' to prove the ‘if” part of Theorem 1.15 (i). Set
V/ = V(gl, CL1> K- V(@n_l, Cln_l).

Then V = V' ® V({,,a,). Since the L-module V(¢,,a,) is by Lemma 5.6 embedded in
the L-module V (¢, — 1,a,q7') ® V(1,a,q" 1) as the L-submodule spanned by the highest
weight space, the £L-module V' can be regarded as embedded in the £-module

V=Va&V(l,—1a4") @ V(1 aqg"").

We understand V'@V (¢, —1,a,q7 ') = V' if £, = 1. Our strategy is to apply Proposition 6.1
to the 7-module V via ps. To do so, we need to check the prerequisites for it, namely that
V'@V (b, —1,a,q7") is irreducible as a T-module via ¢,, and that o4(V) # 0 holds, where
d=/{0,+---+/,, the diameter of the 7-module V via ©s. To show that V'@V (4, —1,a,q71)
is irreducible as a 7-module via g, it is enough to check the induction hypotheses for it, i.e.,
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the first induction hypothesis that —s? is contained neither in S(¢;, a;"') (1 < i < n—1) nor in
S0, —1, (ang~")*"), and the second induction hypothesis that the multi-set {S(£;, a;)}7—,' U
{S(l, — 1,a,q7")} of g-strings associated with V' @ V(¢,, — 1,a,q ") is strongly in general
position. The first induction hypothesis is satisfied, since —s* ¢ S(¢;,a') (1 < i < n) was
assumed at the beginning and it generally holds that S(¢,,—1,a,q71) = S(ln, a,) \ {ang™'}.
The second induction hypothesis is satisfied, since the multi-set {S(¢;,a;)};_, was assumed
at the beginning to be strongly in general position and n was chosen to satisfy (35), (36).
Thus by induction on dimension, V' ® V' (¢,, — 1, a,q ") is irreducible as a 7-module via ;.
To show o4(V) # 0, it is enough to check that Py(X) does not vanish at A = s72 4 s* (see
Remark 1.10). Since —s% ¢ S(£;,a™") (1 < i < n), Py(s72 + s%) # 0 by Theorem 5.2. We

are now ready to apply Proposition 6.1 to V.

Suppose that the 7-module V' via ¢, has a nonzero 7-submodule W that does not contain
the highest weight space of V. Embed V' into the 7-module V' via ¢, as a 7-submodule in
such a way that V' and V share the highest weight space in common (see the last pragragh).
Then by Proposition 6.1, the Drinfel’d polynomial of V' ® V({,, — 1,a,q™") vanishes at
—anq" Tt — a;1g7* 1. This contradicts (35) by Theorem 5.2. Therefore we conclude that
every nonzero 7-submodule W of the 7-module V' via ¢, contains the highest weight space
of V.

Finally consider the £-module Hom (V,C). By Lemma 7.3, Hom (V, C) is isomorphic to
V(l,a; )@ @V (£, a;t) as L-modules. So Hom (V, C) and V are isomorphic as 7-modules
via o, by Lemma 7.4. For a subspace W of V, define the subspace W+ of Hom (V,C) by

W+ ={f € Hom(V.C) | f(w) =0 (w e W)}

If W is invariant by the action of 7 via ¢,, then so is W=, because the action of X € £ on
Hom (V, C) is defined by (X f) (v) = f(7(X)v) (f € Hom (V,C), v € V) and 7(7) = 7 holds
by 7 (z(s)) = ay(s), 7(y(s)) = a ' z(s), (ko) = ko. Moreover by the proof of Lemma 7.3,
the highest weight space of Hom (V,C) does not vanish on the highest weight space of V,
i.e., f(v) # 0 for highest weight vectors f,v of Hom (V,C), V|, respectively. Now let W be a
nonzero 7 -submodule of the 7-module V' via ¢,. Then W contains the highest weight space
of V as shown in the last paragraph. This implies that W+ is a 7-submodule of Hom (V, C)
via s and does not contain the highest weight space of Hom (V, C). Recall Hom (V,C) and
V are isomorphic as 7-modules via ¢,. Thus W+ = 0. Therefore W=V and the proof of
the ‘if” part of Theorem 1.15 (i) is completed.

7.2 Proof of the ‘if’ part of Theorem 1.18 (i), Theorem 1.21 (i)

We start with observations about the quantum algebra U,(sly). The quantum algebra U =
U,(sls) is the associative C-algebra with 1 genarated by X*, K* subject to the relations

KK '=K'K =1,
KX:I:K—I — qi2Xi,
K- K1

Xt X7 = .
| | q—qt
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V (¢) denotes the (¢ + 1)-dimensional irreducible Y-module: V' (¢) = (vg, vy, -+ ,v,) and
KU?) - q%_e Ui,
X+'UZ' = [Z + 1] Vi+1,
X_UZ‘ = [E -1+ 1] Vi-1,
where v_; = vyy; = 0. We consider a finite-dimensional {/-module V' that has the following
weight-space decomposition:

d

vz@m K

1=0

v, = ¢ (0<i<d). (37)

k3

Since V' is completely reducible, we have

[d/2]

V = @ V(d=29)

J=0

where V) denotes the homogeneous component that is a direct sum of irreducible Z/-modules
isomorphic to V(£); V¥ is allowed to be zero. Set

U = ,n v (0<i<d, 0<j<l[d/2).

(2

Then

d—j
v = QU (0 << [d/2)),
i=j

U, = @PuiP (0<i<a),
§=0

where ¢/ = min {i,d — i}. For j <i < d — j, the mappings

d—2j7 d—2j
X+ . Ui( 7) _ Ui(+1 ])’

X~ - Ui(_iIQj) N Ui(d*QJ)

) U(d—Qj)

, . _ . d—2j
are inverses each other up to a nonzero scalar multiple and X, X~ vanish on U Cgf ; J ; ,

respectively. In particular,

7@=20) _ eor (X+)d72j+1’U

J J

Lemma 7.5 Let V be a finite-dimensional U-module that satisfies (37). Let W be a subspace
of V' as a vector space. Assume W is invariant by the actions of X and K :

(0< < [4/2). (38)

KWCWwW, XtWcw.

If it holds that
dim(WnNU;) =dim(WnNU;—;) (0<1i<d),

then X— W C W, i.e., W is a U-submodule.
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Proof. Set W; =W NU; (0<i<d). Then since W is K-invariant, we have

W= @wW " (0 <i<[d/2). (39)

The claim holds for ¢ = 0, since Wy C U, = Uéd). Suppose the claim holds up to i.
Observe the mapping

(XU, — Uy (0<i<[d)2))

is a bijection. By XTW C W, the image of W; by (X)* ™ is included in W,_;. Since
dim W; = dim W,_;, the mapping

(T W — Wy (0< < [d/2)
is a bijection. Consider the mapping
(X Wiy — W,
The subspace X TW; of W, is bijectively mapped onto Wy_; by (X +)d_2i_1. So we have
d—2z‘—1|Wi+1' (40)

Since W; = @j’:o W) by the induction hypothesis for the claim (39) and X+W ") C

d—2;
VVZ-(Jr1 7 we have

Wiy = X W, @ ker (XT)

XJrVVi C @ M/i(fIQJ')_

J=0

_ yld-2i-2) (i+1<[d/2]) by (38), we have

On the other hand, since ker (X+)* %" Usi 1

ker (XJr)diziil Wigr = Wi(—ic-llimiz)'

Thus by (40), we obtain W, ; C @;J:O VVZ-(fl_Qj ). Since the opposite inclusion is obvious, the
claim holds for ¢ + 1 and we finish the proof of the claim (39).

Since W; is bijectively mapped onto Wy_; by (X 1) (0 < i < [d/2]), it follows from
(39) that

Wi = W™ (0<i<[d/2), (41)
j=0
W = (X)W (0 < j<i < [d/2)). (42)
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Define the subspace W(@=2) by

d—j
W = Pwi (0<j < 14/2).
i=j
Then by (39), (41), we obtain
/2 |
W = w2, (43)
=0

For j < i < d — j, the mappings X : Ui(d_Qj) — Ui(ijZj) and X~ : Ui(ifj) — Ui(d_2j)
are inverses each other up to a nonzero scalar multiple. The image of Wi(d72j) by Xt is
contained in I/Vi(ffj ) in particular dim W% < dim Wz-(frlIZj ) (j <i < d—j). On the other
hand by (42), dim W) = dim W>%) (0 < j <i < [d/2]). So dim W™ = dim W, >
( <i < d—j). Therefore the mapping

d—27 d—2j
X+ . m( 7) _ M/Z(-‘rl 7)

is a bijection for j <7 < d — 7 and the inverse of this mapping coincides with X’|W<d_2j) up
i+1

to a nonzero scalar multiple. Thus we obtain X *Wi(fl_% ) = Wi(d_zj ) (j <i+1<d—j). Since
XWX~ U*) = 0, it holds that X~ W C W (0 <j < [d/2], j <i < d— ).
Hence X~W C W by (43) and the proof of Lemma 7.5 is completed. O

Proof of Theorem 1.21 (i). Theorem 1.21 (i) is well-known but we give a brief proof as
a warm-up. We are in the case of (¢,*) = (0,0) and given a 7-module

V=V({l,a)® - V(l,a,)

via @4. To prove Theorem 1.21 (i), it is enough to show that every 7-submodule W of V' via
s is L-invariant. The generators z, y, k, k=1 of T act on V via ¢, as asej, s tef, sko, s 1k,
i.e., 7 is embedded in £ via @, as the Borel subalgebra genarated by eg, €7, k‘gﬂ. V' has
weight-space decomposition as in (37):

d
V= @ Ui (kolu, = ¢*7),
i=0

where d = 01 + - - -+ {,,. For a T-submodule W of the 7-module V via ¢y, set W; = W NU;.
Then

Since the mapping (ef{)d_% : Ui — Uy is a bijection and W; is mapped into Wy—; by
(ear)d_zl, we have dim W; < dim W,_; (0 <i < [d/2]). Since the mapping (ef)d_% tUgei —
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U; is a bijection and W;_; is mapped into W; by (ef)d_%, we have dim W;_; < dim W; (0 <
i < [d/2]). Thus it holds that

Consider the algebra homomorphism from the quantum algebra U = U,(sly) to the
U,(sly)-loop algebra £ that sends X, X~ K*' to e, e, ki', respectively. Regard V/
as a U-module via this algebra homomorphism. Then XTW C W, KW C W. Since
dim W; = dim W,_; (0 < i < d), we have by Lemma 7.5 X~ W C W, ie., e,W C W.
Similarly, consider the algebra homomorphism from U to £ that sends X, X~ K*! to
ef, er, k’fl, respectively. Regard V' as a U-module via this algebra homomorphism. Then
the weight-space decomposition of this U/-module V' is V = @?:0 Usi (Kly,, = ¢4,
where V = @j:o U; is the weight-space decomposition of the £-module V. Since dim W,_; =
dimW; (0 <i<d)and XTW C W, KW C W, we have by Lemma 7.5, X~ W C W, ie.,
ey W C W. Thus W is L-invariant and the proof of Theorem 1.21 (i) is completed. O

We are now ready to prove the ‘if” part of Theorem 1.18 (i).

Proof of the ‘if’ part of Theorem 1.18 (i). We are in the case of (¢,¢*) = (1,0) and
given a 7 -module

V=VU)@aV(,a)® - V(l, a)
via ¢, such that —s™2 ¢ S((;,a;) (1 <i < n) and the multi-set {S(¢;,a;)};_, is in general
position. We want to show that the 7-module V' is irreducible. Note that Py)(s™%) #
0, Py(6;.0)(s7%) # 0 by Theorem 5.2, so

aa(V) # 0 (44)

by Remark 1.10, where d = ¢ + ¢y + - -+ + ¢,,. We may assume n > 1, otherwise V = V (/)
is obviously irreducible as a 7-module, since o,(V) # 0. Consider iy such that a;,q‘o~1
is maximal in the set of scalars a;q¢% " (1 < i < n) with respect to the partial ordering
introduced in (34) in Section 7.1. Among such s, choose one that has the smallest ¢;,.
Since {S(¢;,a;)};—, is in general position, the ordering of V(¢;,a;) (1 < i < n) in the
tensor product of V' does not matter about the isomorphism class of V' as an £-module and
consequently as a 7-module via 4. So we may assume iy = n. Then

ang" ¢ S(lia;) (1 <i<n), (45)
En S gz if aann—l € S(gz, CLZ'>. (46)
We proceed by induction on dim V' to prove that V is irreducible as a 7-module. Set
V' = V(f) ® V(gh a1) Q- V(gn—la an—l)-

Then V = V' @ V(¢,,a,). Since the L-module V' (¢,,a,) is by Lemma 5.6 embedded in
the L-module V (¢, — 1,a,q7') ® V(1,a,¢"~1) as the L-submodule spanned by the highest
weight space, the £'-module V' can be regarded as embedded in the £'-module

V= (V’ @V, —1, anq_l)) @ V(1,a,q™"),
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sharing the highest weight space in common. We understand V' @ V (£, — 1,a,q7 ') = V'
if £, = 1. To apply Proposition 6.1 to ‘N/, we check the prerequisites for it, namely that
V'@ V(l, —1,a,q7") is irreducible as a 7-module via ¢4, and that o4(V) # 0 holds,
where d = ¢ 4+ ¢, + --- + £, is the diameter of the 7-module V via vs. Observe that
SUp —1,a,q7Y) = Sl an) \{ang""1}. So —s72 ¢ S(l;,a;) (1 <i<n—1)and —s72 ¢
S(l, — 1,a,g™"). Moreover the multi-set {S(¢,,a,)}r— U {S(l, — 1,a,q7")} of g-strings
associated with V' ® V (¢, — 1,a,q7") is in general position by (45), (46). Therefore by
induction on dimension, V' ® V (¢, — 1,a,q™") is irreducible as a 7-module via ¢,. Since
Py(s7%) # 0 as we observed before, and since Py(A) = Py(\) by Theorem 5.2, we have
Py(s7%) #0, ie., o4(V) # 0. Thus the prerequisites are satisfied for Proposition 6.1 to be

applied to V. On the other hand, the conclusion of Proposition 6.1

PV’@V(&;—I,aanl)(_anqgn—i_l) =0

fails by Theorem 5.2, since a,¢"*' ¢ S(¢;,a;) (1 <i < n) by (45). This implies that any
nonzero 7-submodules W of V via @5 contains the highest weight space of V. Since the
T-module V via p, is embedded in the 7-module V' via ¢,, sharing the highest weight space
in common, we conclude that any nonzero 7-submodule W of V' contains the highest weight
space of V.

Let W be a minimal 7 -submodule of the 7-module V' via 4. Note that W is irreducible
as a 7-module. Let V = @?:0 U; denote the weight-space decomposition of the 7-module
V via ps. Then

d
W=EWwW, Wi=wnU, (1<i<n).
i=0
By what we just proved in the last paragraph, we have Wy # 0. Moreover W, # 0 by (44).
Since dim Uy = dim Uy = 1, we obtain Wy = Uy, W, = U,;. We claim

Let A denote the TD-algebra for (g,¢*) = (1,0). Consider ¢ 0¢; : A — L’ and regard V as
an A-module via g0 ¢;. By Theorem 1.11 and (13), the generators z, z*, of A act on W as
a TD-pair, if we choose t suitably. The split decomposition of W for the TD-pair coincides
with the weight-space decomposition of W. Thus we obtain (47) by [3, Corollary 5.7].

The generators z, y, k, k™' of T act on V via ¢, as a(sef + s el ki), s tef, sko, s71ky
respectively. Consider the algebra homomorphism from I/ to £’ that sends X+, X, K*! to
ef, el ki'. Regard V as alf-module via this algebra homomorphism. Then the weight-space
decomposition of this #-module V is V = @% Us; (K|y, , = ¢* %), where V = @, U;
is the weight space-decomposition of the 7-module V' via ¢,. Since dim W, ; = dim W;
(0 < i <d) by (47) and XTW C W, KW C W, we have by Lemma 7.5 X~ W C W,
ie., e;W C W. Since zW C W, i.e., (seg + s te; k)W C W, we obtrain ef W C W by
e; kiW C W. Thus W is L'-invariant. Recall that we have already shown that W cantains
the highest weight space Uy of the 7-module V' via ¢,. By the following lemma, we obtain

W =V and the ‘if’ part of Theorem 1.18 (i) is completed.

61



Lemma 7.6 Assume that a multi-set {S(¢;,a;)}?_, of g-strings is in general position. Con-
sider the L'-module
V = V(g) ® V(gl, al) ® te ® V(fn, an)

and let
d

V:@Ui ko

i=0
be the eigenspace decomposition of ko, where d =€+ €y + -+ £,. If W is an L'-submodule
of V and contains Uy, then W =V,

2i—d
U = ¢

Proof. Set
V/ = V(fl, Cll) KRR V(fn, an)

and let B denote the subalgebra of £ generated by ed, ef, k;oil. Note that V' is irreducible
as an L£'-module, since it is already irreducible as a B-module by Theorem 1.21 (i). We may
assume ¢ > 1, since if £ = 0, then V' =V’ and the £-module V is irreducible.

Let V(£) = (vg,v1, -+ ,v) be a standard basis as an £'-module: ejv; = 0, efv; =

[0 —i+1vi_1, e;v; = [i + 1 viy1, kovs = ¢**v; (0 <i <€), where v_; = vy = 0. Then

¢
V= @<U1> X V,.
i=0
We show W D (v;) ® V' (0 < i < ¢) by induction on i. For ¢ = 0, some element
v (V' 30 #£0)

is containd in W by W 2 Up. Since ef (vo ®v') = ¢ ‘v @ (ed '), ef (vg @ ') = ¢*vg @ (ef V')
and k' (vo ® V') = ¢ @ (kF'v'), it follows from BW C W that vy ® (efv’), vo ® (efv'),
vo ® (kiv') are contained in W. Since the elements eg, e, ki’ generate B, we obtain

<Uo> ® B’Ul g W.

Since V' is irreducible as a B-module by Theorem 1.21 (i), we have Bv' =V’ so vg@ V' C W.
Suppose that (v;) @ V! C W. Choose a nonzero element v’ from V’. Then e (v; ® V') =
[i + 1] vip1 ® (k') +v; @ (epv'). Since ey (v; ® ') and v; ® (e7v') are contained in W, we
have
Vi1 @V €W,

where v" = k7' # 0. So ef (viy1 @ V"), ef (vip1 @ "), ko(vig1 ® v") are contained in W.
Since ef (viy1 ® V") = @20 @ (ef V"), ef (vig1 @ V) = [ —i]v; @ V" + ¢ 20 ®
("), ko(vig1 ® V") = ¢? 2 v, @ (kov”), it follows from v; ® v” € W that

Vit1 @ (egv"), vit1 ® (e70"), vip1 @ (kov”)

are all contained in W. So
<Ui+1> X BUH Q W.

Since Bv" = V', we have (v;41) ® V! C W. This completes the proof of Lemma 7.6. 0
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7.3 Proof of part (iii)

The part (iii) of Theorem 1.15, Theorem 1.18, Theorem 1.21 follows from the part (i) together
with Theorem 1.9’, Theorem 5.2, and some combinatorial observations as in Lemma 1.14; we
prove Lemma 1.14 at the end of this subsection separately. Let s and d be a nonzero scalar
and a positive integer respectively, chosen arbitrarily. We are given a polynomial P()) in
P35, ie., P(\) is a monic polynomial of degree d such that P(es™2 + &*s?) # 0. We want
to construct an irreducible 7-module V' via ¢, such that the Drinfel’d polynomial Py ()
coincides with P()). Let A1, Ag, - -+, Ay denote the roots of P(\), allowing repetition.

If (e,e*) = (1,1), let ©Q; denote the set of solutions of
Ni+C+¢ =0

for (. We understand that €2; is a multi-set if \; = £2. So [;| =2 (1 < i < d). Set

Q=]
i=1
as a multi-set. Then |Q] = 2d as a multi-set. By Lemma 1.14, there exists a multi-set

{S(€;,a;)};_, of ¢g-strings strongly in general position such that

n

Q= (5(t,a) US(tia;")

i=1
as multi-sets. Since |S(¢;, a;)| = ¢;, we have d = ¢, + -+ - + £,. The T-module
V = V(Ela al) Q- V(Env an)

via g has Drinfel’d polynomial
PV(/\) = H PV(&wai)()‘)
i=1

by Theorem 5.2, where
PrieayO) = [I (A +¢+¢),
CGS(ZZ',CLZ‘)

Thus Py (A\) = P(\). Since P(s72+ %) # 0, we have —s? ¢ S({;,a;) US(¢;,a; ") (1 <i < n).
So by Theorem 1.15 (i), the 7-module V' via ¢ is irreducible.

If (g,e*) = (1,0), set

Q={-XN|N#0,1<i<d}

as a multi-set. We may assume that Q@ = {-=\; | {+1<i<d}and \y =--- = X\ =0,

allowing ¢ = 0 . It is well-known and easy to show that there exists a multi-set {S(¢;, a;)}i,

of ¢-strings in general position such that

n

Q= ]S a)

=1
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as multi-sets. Since |S(4;, a;)| = ¢;, we have d — £ = {1 + - - - + £,,. The T-module
V=V({)@V(h,a)®-- @ V(l,,a)

via ¢, has Drinfel’d polynomial

A) = )\Z H Pv(fiﬂi)()\)
=1

by Theorem 5.2, where

PrayN) = T (A +o0.

ceS(4;,a;)

Thus Py(\) = P()\). Since P(s72) # 0, we have —s™2 ¢ S({;,a;) (1 < i < n). So by
Theorem 1.18 (i), the 7-module V' via ;4 is irreducible.

If (e,e*) = (0,0), set
Q= {_>\17 >\27 T 7_)\d}7

as a multi-set. Since P(es™? +&*s?) = P(0) # 0, we have \; # 0 (1 < < n). There exists a
multi-set of g-strings {S(¢;,a;)};_, in general position such that

n

Q= U S(&,al)

i=1
as multi-set. Since S|(¢;, a;)| = ¢;, we have d = ¢, + -+ - + £,,. The T-module
V = V(gl, (11) R R V([n, CLn)

via g has Drinfel’d polynomial

)‘) = H PV(&',ai)()‘)
=1

by Theorem 5.2, where
PrayN) = J[ (A +o.

c€S(4;,a;)

Thus Py(\) = P(A). By Theorem 1.21 (i), the 7-module V' via ¢ is irreducible. This
completes the proof of the part (iii) for Theorem 1.15, Theorem 1.18, Theorem 1.21.

Proof of Lemma 1.14. We proceed by induction on |Q2], where || denotes the number
of elements in €2, counting the multiplicities. Recall the partial ordering (34) on C\ {0}
introduced in Section 7.1:

a<b < b=aqg” for some integer i > 0.

Choose a maximal element c in € with respect to this partial ordering. Note that ¢! is
minimal in 2. Set
=\ {c,c'}
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as multi-sets of nonzero scalars. Then by induction, there exists a multi-set {S(¢, Z)};il of
g-strings strongly in general position such that

n/

O = J (S, a)) uS(,a )
i=1
as multi-sets of nonzero scalars. Moreover such a multi-set {S(¢, Z)}?l1 of g-strings is

uniquely determined by €' up to equivalence. Observe that the union S(¢;, a}) U {c} (resp.

S(:,a) U {c™") ) as a multi-set of nonzero scalars is a g-string if and only if ¢ = agli™!
-1

(resp. ¢! = alg~%"1), in which case
S, a;) U{ch = S(€; +1,aiq) (resp. S(€,af) U{c™'} = S(€; +1,aiq7")).

. . . _ _p .
If there exist i’s such that either ¢ = a’qéﬁrl or ¢! = alqg %1, choose one among such i’s

that has the largest ¢,. By rearranglng the ordering of the ¢- strings we may assume i = n/’.

By replacing a’, by /' if ¢t = d/, g Tt we may assume ¢ = a,,q fut Thus ¢ = a ,qzn A

is maximal in € and if ¢ = a'qzﬂrl or ¢t = alg~%~! holds for some i, then ¢/, > ¢.. In this

case, define ¢-strings S(¢;,a;) (1 <i <n’) by
Sy, an) = S(En/ +1,al,q). (49)

Then the multi-set {S(¥;, ai)};il of g-strings is strongly in general position and

Q= U (0;,a:) US4, a;7h))

=1
as multi-set of nonzero scalars.
If there exist no i’s such that either ¢ = a/¢“*! or ¢! = a/g~%"", then define ¢-strings
S(liya;) (1<i<n' +1)by
S(liya;) = S(t,a;)  (L<i<n), (50)
S(én/_H,an/_H) = S(l,C). (51)

Then the multi-set {S(¢;, a,)}Z 1 of g-strings is strongly in general position and

n'/4+1

Q= J (S(ti,a) US(ti,a;h))

i=1
as multi-sets of nonzero scalars. In any case, there exists a desired multi-set of g-strings.

Next we show the uniqueness of such a multi-set of g¢-strings up to equivalence. Let
{S(m;, b;)}, be a multi-set of ¢g-strings strongly in general position such that

Q= (S(mi,b:) U S(mi, b))

=1
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Then the maximal element c¢ of €2, which was chosen in the course of the construction of a
desired multi-sets of g-strings, belongs to either S(m;, b;) or S(m;,b; ') for some i. Among
such i’s, choose one that has the smallest m;. We many assume i = n and ¢ € S(my,b,) by
rearranging the ordering of the g-strings and replacing b, by b, ! if necessary. Thus b,g"™ ! is
the maximal element ¢ and m,, < m; holds if ¢ € S(m;, b;) or ¢ € S(my, b 1), i.e., ¢ = byg™i !
or ¢! = g mitL,

If m,, > 2, then the multi-set
{S<m27 bl)}::ll U {S(mn - 17 bnq_l)}

of g-strings is strongly in general position and covers the multi-set ' = Q\ {c¢, ¢!} of nonzero
scalars as the union of S(m;, b;), S(m;, b;') (1 <i<n—1)and S(m, —1,b,q7 "), S(m, —
1,b,'q). Such a multi-set of g-strings is unique up to equivalence by induction. So the
multi-set {S(my, b))} U{S(m, — 1,b,g~")} of g-strings is equivalent to {S(£}, a})}7,, the
one which was chosen in the course of the construction of a desired multi-sets of g-strings.
Observe that ¢ = (b,g~ g™~V and m,, — 1 > m; if ¢ = big™* or ¢! = byg~™ ! for
some i (1 <i<n— 1), since S(my,b,) includes either S(m;, b;) or S(m;,b;*) for such an 3.
Thus we have n = n’ and we may assume

S(ms, b)) =S, a;) (1<i<n-—1),
S(mn —1,baq™") = S(0,, ay).
By (48), (49), the multi-set {S(m;, b;) }I_, of g-strings is equivalent to the one we constructed

/

by means of {S(¢,a;)}" .
If m,, =1, then S(m,,b,) = {c} and the multi-set

{S(ma, bi)}12)

of g-strings is strongly in general position and covers the multi-set Q' = Q\ {c,c'} as a
union of S(my, b;), S(ms,b; ') (1 <i <n—1). Such a multi-set of g-strings is unique up to
equivalence. Observe that there exist no #’s (1 < ¢ < n — 1) such that either ¢ = b;g™ ™! or

U= byg™~1 since otherwise S(my,,b,) U S(m;,b;) or S(my,,b,) U S(m;,b;) would be a
g-string for such an i. Thus we have n’ =n — 1 and we may assume

S(ms, b;) = S(C,a

(2 2

N (1<i<n-—1).

By (50), (51), the multi-set {S(m;, b;)}1_; of ¢-strings is equivalent to the one we constructed
by means of {S(¢,a;)}*,. This completes the proof of Lemma 1.14. O
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