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Abstract

Motivated by investigations of the tridiagonal pairs of linear transformations, we
introduce the augmented tridiagonal algebra Tq. This is an infinite-dimensional asso-
ciative C-algebra with 1. We classify the finite-dimensional irreducible representations
of Tq. All such representations are explicitly constructed via embeddings of Tq into the
Uq(sl2)-loop algebra. As an application, tridiagonal pairs over C are classified in the
case where q is not a root of unity.
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1 Introduction

The purpose of this paper is to introduce the augmented tridiagonal algebra Tq and classify its
finite-dimensional irreducible representations. We explain our motivations in Sections 1.1, 1.2
and summarize our results in Sections 1.3, 1.4. Throughout this paper, we choose the complex
number field C as the ground field. An algebra means an associative C-algebra with 1.

1.1 Tridiagonal pairs: a background in combinatorics

The standard generators for the subconstituent algebra (Terwilliger algebra) of a P- and
Q-polynomial association scheme [1] give rise to a tridiagonal pair when they are restricted
to an irreducible submodule of the standard module [3, Example 1.4], [9, Lemmas 3.9, 3.12].
This fact motivates our ongoing investigation of the tridiagonal pairs [3], [4], [5], [6], [7], [8].

Let V denote a finite-dimensional nonzero vector space over C. Let End(V ) denote the
C-algebra of all C-linear transformations of V . By a tridiagonal pair (TD-pair) on V we
mean an ordered pair A, A∗ of elements in End(V ) that satisfy (i)–(iv) below:
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(i) A and A∗ are diagonalizable.

(ii) There exists an ordering V0, V1, . . . , Vd of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d),

where V−1 = 0, Vd+1 = 0.

(iii) There exists an ordering V ∗
0 , V ∗

1 , . . . , V ∗
d∗ of the eigenspaces of A∗ such that

AV ∗
i ⊆ V ∗

i−1 + V ∗
i + V ∗

i+1 (0 ≤ i ≤ d∗),

where V ∗
−1 = 0, V ∗

d∗+1 = 0.

(iv) V is irreducible as an 〈A,A∗〉-module, where 〈A, A∗〉 is the subalgebra of End(V )
generated by A, A∗.

A TD-pair A, A∗ ∈ End(V ) is isomorphic to a TD-pair B,B∗ ∈ End(V ′) whenever there
exists an isomorphism ψ : V → V ′ of vector spaces such that Bψ = ψA and B∗ψ = ψA∗.

In this subsection, we summarize the basic properties of a TD-pair A, A∗; they will be
used to introduce the augmented tridiagonal algebra Tq in the next subsection. First we
remark that A and A∗ have the same number of eigenvalues, i.e. d = d∗ [2, Lemma 4.5]: we
call this common integer the diameter of the pair. A TD-pair with d = 0 is called trivial.
We usually assume d ≥ 1 to avoid the trivial TD-pairs. Under this assumption, there exist
exactly two orderings of the eigenspaces of A (resp. A∗) that satisfy the condition (ii) (resp.
(iii)): if V0, V1, . . . , Vd (resp. V ∗

0 , V ∗
1 , . . . , V ∗

d ) is one of these, then the other is the reversed
ordering Vd, Vd−1, . . . , V0 (resp. V ∗

d , V ∗
d−1, . . . , V

∗
0 ). We understand that one of such orderings

is chosen and fixed unless otherwise stated.

By [3, Theorem 10.1] there exist scalers β, γ, γ∗, δ, δ∗ in C such that

[A, A2A∗ − βAA∗A + A∗A2] = γ [A, AA∗ + A∗A] + δ [A, A∗],

[A∗, A∗2A − βA∗AA∗ + AA∗2] = γ∗[A∗, A∗A + AA∗] + δ∗[A∗, A],

where [X,Y ] means X Y − Y X. The sequence of scalars β, γ, γ∗, δ, δ∗ is unique if d ≥ 3.
The above relations are called the tridiagonal relations (TD-relations) [8]. We fix a nonzero
q ∈ C such that

β = q2 + q−2.

Let θi (resp. θ∗i ) denote the eigenvalue of A for Vi (resp. A∗ for V ∗
i ) (0 ≤ i ≤ d). They are

expressed as follows [3, Theorem 11.2].

Type I (q2 6= ±1): there exist scalars a, a∗, b, b∗, c, c∗ such that

θi = a + b q2i + c q−2i (0 ≤ i ≤ d),

θ∗i = a + b∗q2i + c∗q−2i (0 ≤ i ≤ d).

In this case, γ = −(q − q−1)
2
a, γ∗ = −(q − q−1)

2
a∗, δ = (q − q−1)

2
a2−(q2 − q−2)

2
b c,

δ∗ = (q − q−1)
2
a∗2 − (q2 − q−2)

2
b∗c∗.
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Type II (q2 = 1): there exist scalars a, a∗, b, b∗, c, c∗ such that

θi = a + b i + c i2 (0 ≤ i ≤ d),

θ∗i = a∗ + b∗i + c∗i2 (0 ≤ i ≤ d).

In this case, γ = 2 c, γ∗ = 2 c∗, δ = b2 − c2 − 4 ac, δ∗ = b∗2 − c∗2 − 4 a∗c∗.

Type III (q2 = −1): there exist scalars a, a∗, b, b∗, c, c∗ such that

θi = a + b (−1)i + c (−1)i i (0 ≤ i ≤ d),

θ∗i = a∗ + b∗(−1)i + c∗(−1)i i (0 ≤ i ≤ d).

In this case, γ = 4 a, γ∗ = 4 a∗, δ = −4 a2 + c2, δ∗ = −4 a∗2 + c∗2.

In this paper, we treat TD-pairs of Type I. If a TD-pair of Type I comes from a P- and
Q-polynomial association scheme with sufficiently large diameter, then q is not a root of
unity, i.e., qn 6= 1 for any nonzero integer n [1, Chapter 3, Proposition 7.7]. From now on,
we fix a nonzero scalar q ∈ C and assume that q is not a root of unity. One of the effects
of this assumption is as follows. Let us call the conditions (ii), (iii) for a TD-pair the TD-
structures. Then under the diagonalizability condition (i) and the irreducibility condition
(iv), the TD-relations imply the TD-structures [10, Theorem 3.10]. This allows us to work
with the TD-relations instead of the TD-structures. We first establish the representation
theory of the augmented tridiagonal algebra Tq. The classification of TD-pairs of Type I will
be given as an application of the representation theory.

If A,A∗ are a TD-pair on V , then λA + µI, λ∗A∗ + µ∗I are also a TD-pair on V with
the same eigenspaces. Here λ, λ∗, µ, µ∗ ∈ C, λ 6= 0, λ∗ 6= 0 and I is the identity map. The
parameter β and hence q are invariant under the affine transformations A 7→ λA+µI, A∗ 7→
λ∗A∗+µ∗I. Also the diameter d is invariant under the affine transformations. For fixed d and
q, consider a TD-pair A,A∗ of Type I with diameter d and the parameter β = q2 + q−2. The
TD-pair A,A∗ can be standardized to have the following eigenvalues by applying appropriate
affine transformations and, if necessary, reversing the ordering of the eigenspaces Vi of A or
of the eigenspaces V ∗

i of A∗:

θi = b q2i−d + ε b−1qd−2i (0 ≤ i ≤ d), (1)

θ∗i = ε∗b∗q2i−d + b∗−1qd−2i (0 ≤ i ≤ d) (2)

for some constants b, b∗ (b 6= 0, b∗ 6= 0) and ε, ε∗ ∈ {1, 0}. A TD-pair A,A∗ is called a
standardized TD-pair of Type I, if A, A∗ have eigenvalues {θi}d

i=0, {θ∗i }d
i=0 as in (1), (2)

respectively for some integer d ≥ 1 and nonzero b, b∗ ∈ C under suitable orderings of the
eigenspaces {Vi}d

i=0, {V ∗
i }d

i=0.

If d = 1, then θ0, θ1 (resp. θ∗0, θ∗1) can be any pair of distinct scalars by applying a
suitable affine transformation to A (resp. A∗), in particular for stadardization, (ε, b) and
(ε∗, b∗) can be chosen arbitrarily from {0, 1} ×C× \ {(1,±1)}, where C× = C\{0}. Assume
d ≥ 2. Then the pair ε, ε∗ is uniquely determined by A,A∗ regardless of standardization, but
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the scalars b, b∗ are not. If ε = 1 (resp. ε∗ = 1), then b (resp. b∗) is determined up to the ±
sign by A (resp. A∗) and by the ordering of the eigenspaces of A (resp. A∗). In this case, b
(resp. b∗) is changed to b−1 (resp. b∗−1) when we reverse the ordering of the eigenspaces of
A (resp. A∗). If ε = 0 (resp. ε∗ = 0), then b (resp. b∗) can be an arbitrary nonzero scalar.
In this case, the ordering of the eigenspaces of A (resp. A∗) is uniquely determined when
standardized.

If (ε, ε∗) = (0, 1), we further standardize the TD-pair A,A∗ by interchanging A,A∗ and
then reversing the ordering of the eigenspaces V ∗

i so that the standardized TD-pair has
(ε, ε∗) = (1, 0). Thus a standardized TD-pair of Type I has

(ε, ε∗) = (1, 1), (1, 0) or (0, 0)

and is called of the 1st, 2nd, 3rd kind, accordingly.

The TD-relations for a standardized TD-pair A, A∗ of Type I are

(TD)

{
[A, A2A∗ − βAA∗A + A∗A2] = ε δ[A, A∗],

[A∗, A∗2
A − βA∗AA∗ + AA∗2

] = ε∗δ[A∗, A],

where β = q2 + q−2 and δ = −(q2 − q−2)
2
. Conversely, if a TD-pair A,A∗ satisfies the above

TD-relations (TD), then we have a = a∗ = 0, b c = ε, b∗c∗ = ε∗ in the general expression
of the eigenvalues for Type I, and so with suitable orderings of the eigenspaces, A,A∗ have
eigenvalues in the form of (1), (2) for some integer d ≥ 1 and some nonzero b, b∗, i.e., A,A∗

are a standardized TD-pair of Type I. Thus given (ε, ε∗) ∈ {(1, 1), (1, 0), (0, 0)} and a nonzero
scalar q that is not a root of unity, a TD-pair A,A∗ is a standardized TD-pair if and only
if it satisfies the above TD-relations (TD). In view of this fact, we call (TD) the stadardized
TD-relations of Type I.

Given TD-pair A,A∗ ∈ End(V ) with eigenspaces {Vi}d
i=0, {V ∗

i }
d
i=0, the underlying vector

space V has the split decomposition [3, Theorem 4.6]:

V =
d⊕

i=0

Ui,

where

Ui = (V ∗
0 + · · · + V ∗

i ) ∩ (Vi + · · · + Vd).

For a TD-pair A,A∗ ∈ End(V ) of Type I with eigenvalues (1), (2), let K ∈ End(V ) denote
the diagonalizable transformation for which Ui is the eigenspace belonging to the eigenvalue
q2i−d (0 ≤ i ≤ d). We define the raising map R and the lowering map L by

R = A − bK − ε b−1K−1,

L = A∗ − ε∗b∗K − b∗−1K−1.

Then indeed R (resp. L ) has the raising (resp. lowering) property [3, Theorem 4.6, Corol-
lary 6.3]:

RUi ⊆ Ui+1 (0 ≤ i ≤ d),

LUi ⊆ Ui−1 (0 ≤ i ≤ d),
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where U−1 = Ud+1 = 0. By the raising, lowering properties of R, L, we get

(TD)′0

{
KRK−1 = q2R,
KLK−1 = q−2L,

and conversely the relations (TD)′0 imply the raising, lowering properties of R, L. Writing
(TD)′0 in terms of A,A∗, K, we get the generalized q-Weyl relations :

(TD)0

{
(qAK − q−1KA)/(q − q−1) = bK2 + εb−1I,
(qKA∗ − q−1A∗K)/(q − q−1) = ε∗b∗K2 + b∗−1I,

where I is the identity map. Writing the tridiagonal relations (TD) for A,A∗ in terms of R,
L, K, we get

(TD)′
{

[R, R2L − βRLR + LR2] = δ′(ε∗s2R2K2 − εs−2K−2R2),
[L, L2R − βLRL + RL2] = δ′(−ε∗s2K2L2 + εs−2L2K−2),

where β = q2 + q−2, δ′ = −(q − q−1)(q2 − q−2)(q3 − q−3)q4, s2 = b b∗.

1.2 The TD-algebra A and the augmented TD-algebra T
Fix a nonzero scalar q ∈ C which is not a root of unity. We also fix (ε, ε∗) ∈ {(1, 1), (1, 0), (0, 0)}.
Let A = A(ε,ε∗)

q denote the associative C-algebra with 1 defined by genarators z, z∗ subject
to the relations

(TD)

{
[z, z2z∗ − βz z∗z + z∗z2] = ε δ [z, z∗],
[z∗, z∗2z − βz∗z z∗ + z z∗2] = ε∗δ [z∗, z],

where β = q2 + q−2 and δ = −(q2 − q−2)
2
. When we need to specify (ε, ε∗), we write (TD)I,

(TD)II, (TD)III for the relations (TD) and AI, AII, AIII for the algebra A according to
(ε, ε∗) = (1, 1), (1, 0), (0, 0). The algebra A is called the tridiagonal algebra (TD-algebra) [10]
of the 1st, 2nd, 3rd kind, accordingly. (TD)III is the q-Serre relations and AIII is isomorphic

to the positive part of the quantum affine algebra Uq(ŝl2). (TD)I can be regarded as a
q-analogue of the Dolan- Grady relations and we call AI the q-Onsager algebra.

Let T = T (ε,ε∗)
q denote the associative C-algebra with 1 defined by generators x, y, k, k−1

subject to the relations

(TD)′0

 k k−1 = k−1k = 1,
k x k−1 = q2x,
k y k−1 = q−2y,

and

(TD)′
{

[x, x2y − β x y x + y x2] = δ′(ε∗x2k2 − ε k−2x2),
[y, y2x − β y x y + x y2] = δ′(−ε∗k2y2 + ε y2k−2),

where β = q2 + q−2, δ′ = −(q − q−1)(q2 − q−2)(q3 − q−3)q4. When we need to specify (ε, ε∗),
we write (TD)′I, (TD)′II, (TD)′III for the relations (TD)′ and TI, TII, TIII for the algebra T
according to (ε, ε∗) = (1, 1), (1, 0), (0, 0). The algebra T is called the augmented tridiagonal
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algebra (augmented TD-algebra) of the 1st, 2nd, 3rd, kind, accordingly. TIII is isomorphic to

the Borel subalgebra of the quantum affine algebra Uq(ŝl2).

The augmented TD-algebra T has another presentation. Fix a nonzero scalar t ∈ C.
Define the elements zt, z

∗
t ∈ T to be

zt = x + t k + ε t−1k−1, (3)

z∗t = y + ε∗t−1k + t k−1. (4)

Then T is generated by zt, z
∗
t , k, k−1 and the following relations hold :

(TD)0

 k k−1 = k−1k = 1
(q ztk − q−1k zt)/(q − q−1) = t k2 + ε t−1,
(q k z∗t − q−1z∗t k)/(q − q−1) = ε∗t−1 k2 + t,

and

(TD)

{
[zt, z2

t z
∗
t − βztz

∗
t zt + z∗t z

2
t ] = ε δ [zt, z∗t ],

[z∗t , z
∗
t
2zt − βz∗t ztz

∗
t + ztz

∗
t
2] = ε∗δ [z∗t , zt],

where β = q2 + q−2, δ = −(q2 − q−2)
2
. One routinely verifies that T is isomorphic to the

algebra generated by symbols zt, z∗
t , k, k−1 with (TD)0, (TD) the defining relations.

Proposition 1.1 There exists an algebra homomorphism ιt from A to T that sends z, z∗

to zt, z∗
t , respectively :

ιt : A −→ T (z, z∗ 7→ zt, z∗
t ).

Moreover ιt is injective.

It is obvious that the correspondence z, z∗ 7→ zt, z∗
t can be extended to an algebra

homomorphism from A to T . The injectivity of ιt will be proved in Section 2.

Lemma 1.2 Let ρ : T −→ End(V ) be a finite-dimensional irreducible representation of T .
Then ρ(k) is diagonalizable with eigenvalues {s q2i−d | 0 ≤ i ≤ d} for some nonzero s ∈ C
and an integer d ≥ 0. Let V =

⊕d
i=0 Ui denote the eigenspace decomposition of ρ(k), where

Ui is the eigenspace belonging to s q2i−d. Then regarding V as an irreducible T -module via
ρ, we have

xUi ⊆ Ui+1, y Ui ⊆ Ui−1 (0 ≤ i ≤ d),

where U−1 = Ud+1 = 0. In particular ρ(x), ρ(y) are nilpotent.

The scalar s (resp. the integer d) is called the type (resp. diameter) of the representation
ρ and the T -module V . We call the direct sum V =

⊕d
i=0 Ui the weight-space decomposition

and U0 the highest weight space.

Proof. For θ ∈ C, set U(θ) = {v ∈ V | kv = θv}. Note that θ is an eigenvalue of ρ(k) if and
only if U(θ) 6= 0 , and in this case U(θ) is the corresponding eigenspace. Using the relations
kx = q2xk and ky = q−2yk , we find xU(θ) ⊆ U(q2θ) and y U(θ) ⊆ U(q−2θ). Now assume
that θ is an eigenvalue of ρ(k). Observe that θ 6= 0 since k−1 exists, and that

∑
i∈Z U(q2iθ) is

invariant under each of x, y, k±1 and the sum is a finite sum by dim V < ∞. These elements
x, y, k± generate T and the T -module V is irreducible, so we have V =

∑
i∈Z U(q2iθ). This

yields the lemma. 2
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Proposition 1.3 Let ρ : T −→ End(V ) be a finite-dimensional irreducible representation
of T with type s, diameter d, and V =

⊕d
i=0 Ui the weight-space decomposition. Let zt, z∗t

be as in (3), (4).

(i) ρ(zt) is diagonalizable if and only if the scalars

θi = stq2i−d + εs−1t−1qd−2i (0 ≤ i ≤ d)

are mutually distinct. In this case, {θi}d
i=0 is the set of eigenvalues of ρ(zt) and it holds

that
Vi + Vi+1 + · · · + Vd = Ui + Ui+1 + · · · + Ud (0 ≤ i ≤ d),

where Vi is the eigenspace of ρ(zt) belonging to θi.

(ii) ρ(z∗t ) is diagonalizable if and only if the scalars

θ∗i = ε∗st−1q2i−d + s−1tqd−2i (0 ≤ i ≤ d)

are mutually distinct. In this case, {θ∗i }d
i=0 is the set of eigenvalues of ρ(z∗t ) and it

holds that
V ∗

0 + V ∗
1 + · · · + V ∗

i = U0 + U1 + · · · + Ui (0 ≤ i ≤ d),

where V ∗
i is the eigenspace of ρ(z∗t ) belonging to θ∗i .

Proposition 1.3 will be proved in Section 2.

Recall we are given in advance (ε, ε∗) ∈ {(1, 1), (1, 0), (0, 0)} and a nonzero scalar q that is
not a root of unity. Let ρ : A −→ End(V ) be a finite-dimensional irreducible representation

of the TD-algebra A = A(ε,ε∗)
q . We assume that ρ satisfies the following property (C1):

(C1): ρ(z), ρ(z∗) are both diagonalizable.

Set A = ρ(z), A∗ = ρ(z∗). Then A, A∗ satisfy the TD-relations. The TD-relations for A, A∗

imply the TD-structures, i.e., the conditions (ii), (iii) for a TD-pair hold for A, A∗, while
the conditions (i), (iv) hold for A, A∗ by the property (C1) and the irreducibility of ρ. So
A, A∗ ∈ End(V ) are a TD-pair on V . Moreover since the TD-relations (TD) for A, A∗ is
the standardized TD-relations of Type I, the TD-pair A, A∗ is a standardized TD-pair of
Type I on V .

Conversely, let us start with a standardized TD-pair A, A∗ of Type I on V , where we un-
derstand q and (ε, ε∗) are chosen in advance and fixed. Consider the TD-algebra A = A(ε,ε∗)

q .
Then by the TD-relations (TD) for A, A∗, we obtain a finite-dimensional representation ρ
of A that sends z, z∗ to A, A∗, respectively:

ρ : A −→ End(V ) (z, z∗ 7→ A,A∗).

This representation ρ is irreducible and satisfies the property (C1) by the conditions (iv), (i)
for the TD-pair A, A∗.

We restate what we saw in the previous two paragraphs as a proposition below. We
are given in advance (ε, ε∗) ∈ {(1, 1), (1, 0), (0, 0)} and a nonzero scalar q that is not a root
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of unity. Let ST D denote the set of isomorphism classes of standardized TD-pairs A, A∗

of Type I together with the trivial TD-pairs: A (resp. A∗) has eigenvalues {θi}d
i=0 (resp.

{θ∗i }d
i=0) as in (1) (resp. (2)) for some integer d ≥ 0 and nonzero b (resp. b∗) ∈ C with a

suitable ordering of the eigenspaces {Vi}d
i=0 (resp. {V ∗

i }d
i=0). Set A = A(ε,ε∗)

q . Let Irr(A)
denote the set of isomorphism classes of finite-dimensional irreducible representations of A
that satisfy the property (C1). Then we have

Proposition 1.4 The mapping ρ 7→ A = ρ(z), A∗ = ρ(z∗) gives a bijection from Irr(A)
to ST D. The trivial representations, i.e., 1-dimensional representations, correspond to the
trivial TD-pairs.

Thus the classification of standardized TD-pairs of Type I is reduced to the following
problem.

Problem 1 Classify up to isomorphism the finite-dimensional irreducible representations of
A that satisfy the property (C1).

Let us start with a finite-dimensional irreducible representation ρ : T −→ End(V ) of
the augmented TD-algebra T with type s and diameter d. We assume that ρ satisfies the
following properties (C1)t, (C2)t for some nonzero t ∈ C:

(C1)t: ρ(zt), ρ(z∗t ) are both diagonalizable.
(C2)t: The restriction ρ|〈zt,z∗t 〉 : 〈zt, z

∗
t 〉 −→ End(V ) is irreducible,

where 〈zt, z
∗
t 〉 is the subalgebra of T generated by zt, z∗

t .

Set A = ρ(zt), A∗ = ρ(z∗t ). Then A, A∗ satisfy the TD-relations. Since the TD-relations for
A, A∗ imply the TD-structures for A, A∗, we find A, A∗ are a TD-pair on V . By Propo-
sition 1.3, the TD-pair A, A∗ has distinct eigenvalues {θi}d

i=0, {θ∗i }d
i=0 as in (1), (2) with

b = st, b∗ = st−1. So A, A∗ ∈ End(V ) are a standardized TD-pair of Type I. By Lemma
1.2 and Proposition 1.3, the eigenspace decomposition for ρ(k) coincides with the split de-
composition for the TD-pair A, A∗. So we have ρ(x) = R, ρ(y) = L, ρ(k) = sK, where
R, L, K are the raising, lowering, diagonalizable maps, respectively, associated with the
split decomposition.

Conversely, let us start with a standardized TD-pair A, A∗ ∈ End(V ) of Type I with
eigenvalues

θi = b q2i−d + ε b−1qd−2i (0 ≤ i ≤ d),

θ∗i = ε∗b∗q2i−d + b∗−1qd−2i (0 ≤ i ≤ d),

respectively as in (1), (2), where we understand q and (ε, ε∗) are chosen in advance and
fixed. We have the raising map R, the lowering map L and the diagonalizable K associated
with the split decomposition for the TD-pair A, A∗. Consider the augmented TD-algebra
T = T (ε,ε∗)

q . Define the nonzero scalars s, t ∈ C by

b = st, b∗ = st−1. (5)
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The scalars s, t are determined by b, b∗ up to the ± sign : s2 = bb∗, t2 = bb∗−1. We choose
s, t as one of the solutions of (5) and fix them. By the relations (TD)′0, (TD)′ for R, L, K,
we obtain a finite-dimensional representation ρ of T with type s and diameter d that sends
x, y, k to R, L, sK, respectively:

ρ : T −→ End(V ) (x, y, k 7→ R, L, sK)

expressed in terms of the 1st presentation of T with respect to the generators x, y, k, k−1.
By (3), (4), it holds that ρ(zt) = A, ρ(z∗t ) = A∗. So we have

ρ : T −→ End(V ) (zt, z∗
t , k 7→ A, A∗, sK)

expressed in terms of the 2nd presentation of T with respect to the generators zt, z∗t , k, k−1.
By the conditions (iv), (i) for the TD-pair A, A∗, ρ is irreducible and satisfies the properties
(C1)t, (C2)t.

We restate what we saw in the previous two paragraphs as a proposition below. We are
given in advance (ε, ε∗) ∈ {(1, 1), (1, 0), (0, 0)} and a nonzero scalar q that is not a root of
unity. Suppose that we are further given a positive integer d and nonzero b, b∗ ∈ C such
that the scalars θi = bq2i−d + εb−1qd−2i (0 ≤ i ≤ d) in (1) are mutually distinct and the

scalars θ∗i = ε∗b∗q2i−d + b∗−1qd−2i (0 ≤ i ≤ d) in (2) are mutually distinct. By ST D(b,b∗)
d

we denote the set of isomorphism classes of standardized TD-pairs A, A∗ of Type I with
eigenvalues {θi}d

i=0, {θ∗i }d
i=0 respectively. Note that if a standardized TD-pair A, A∗ of Type I

belongs to ST D(b,b∗)
d , then the ordering of the eigenspaces {Vi}d

i=0 of A (resp. {V ∗
i }d

i=0 of
A∗) is uniquely determined by the corresponding eigenvalues θi = bq2i−d + εb−1qd−2i (resp.
θ∗i = ε∗b∗q2i−d + b∗−1qd−2i). Recall that if ε = 1 (resp. ε∗ = 1), then b (resp. b∗) is changed
to b−1 (resp. b∗−1) when we reverse the ordering of the eigenspaces of A (resp. A∗). Thus

if ε = 1 (resp. ε∗ = 1), then ST D(b,b∗)
d = ST D(b−1,b∗)

d (resp. ST D(b,b∗)
d = ST D(b,b∗−1)

d ):

ST D(b−1,b∗)
d (resp. ST D(b,b∗−1)

d ) coincides with ST D(b,b∗)
d as sets of isomorphism classes of

standardized TD-pairs A, A∗ of Type I but has the ordering of the eigenspaces of A (resp.
A∗) reversed. Set b = st, b∗ = st−1 as in (5). Such scalars s, t are determined by b, b∗

uniquely up to the ± sign. We choose one of them and fix it. Note that if (s, t) is a solution
of b = st, b∗ = st−1, then

(s′, t′) = (t−1, s−1), (t, s), (s−1, t−1) (6)

are a solution of c = s′t′, c∗ = s′t′−1 for

(c, c∗) = (b−1, b∗), (b, b∗−1), (b−1, b∗−1) (7)

respectively. Set T = T (ε,ε∗)
q . By Irrs,t

d (T ) we denote the set of isomorphism classes of
finite-dimensional irreducible representations ρ of T with type s and diameter d that satisfy
the properties (C1)t, (C2)t for the scalar t. Then we have

Proposition 1.5 The mapping ρ 7→ A = ρ(zt), A∗ = ρ(z∗t ) gives a bijection from Irrs,t
d (T )

to ST D(b,b∗)
d , where b = st, b∗ = st−1.

9



Thus Problem 1 is reduced to the following problem.

Problem 2

(i) Classify up to isomorphism the finite-dimensional irreducible representations of T with
type s and diameter d.

(ii) Determine when a finite-dimensional irreducible representation ρ of T with type s and
diameter d satisfies the properties (C1)t, (C2)t .

We solve Problem 2 in this paper. Problem 1 is reduced to Problem 2 via ST D(b,b∗)
d

as follows. The set ST D is the disjoint union of the trivial TD-pairs and ST D(b,b∗)
d over

d ∈ N and (b, b∗) ∈ (C\{0}) × (C\{0})/ ∼, where ∼ is the equivalence relation defined by
(b, b∗) ∼ (c, c∗) if and only if

(c, c∗) ∈ {(b, b∗), (b−1, b∗), (b, b∗−1), (b−1, b∗−1)} for the case (ε, ε∗) = (1, 1), (8)

(c, c∗) ∈ {(b, b∗), (b−1, b∗)} for the case (ε, ε∗) = (1, 0), (9)

and (b, b∗) = (c, c∗) for the case (ε, ε∗) = (0, 0). For nonzero b, b∗ ∈ C, let Irr
(b,b∗)
d (A)

denote the subset of Irr(A) that is mapped to the subset ST D(b,b∗)
d of ST D by the bijection

ρ 7→ A = ρ(z), A∗ = ρ(z∗) from Irr(A) to ST D (see Proposition 1.4). Set b = st, b∗ = st−1

as in (5). Such scalars s, t are determined by b, b∗ uniquely up to the ± sign. We choose

one of them and fix it. Then by Proposition 1.5, Irrs,t
d (T ) is mapped to ST D(b,b∗)

d by the
bijection ρ 7→ A = ρ(zt), A∗ = ρ(z∗t ). This means that if a finite-dimensional irreducible
representation ρ : T −→ End(V ) belongs to Irrs,t

d (T ), then

ρ′ = ρ ◦ ιt : A −→ End(V )

is a finite-dimensional irreducible representation of A that belongs to Irr
(b,b∗)
d (A), where

ιt : A −→ T (z, z∗ 7→ zt, z∗
t )

is the injective algebra homomorphism from Proposition 1.1. Moreover every finite-dimensional
irreducible representation of A that belongs to Irr

(b,b∗)
d (A) arises in this way. In other words,

a finite-dimensional irreducible representation ρ′ : A −→ End(V ) that belongs to Irr
(b,b∗)
d (A)

can be ‘extended’ via ιt to a finite-dimensional irreducible representation ρ : T −→ End(V )
that belongs to Irrs,t

d (T ). Thus we have

Corollary 1.6 If b = st, b∗ = st−1, then the mapping ρ 7→ ρ ◦ ιt gives a bijection from
Irrs,t

d (T ) to Irr
(b,b∗)
d (A), where ιt : A −→ T (z, z∗ 7→ zt, z∗

t ) is the injective algebra homo-
morphism from Proposition 1.1.

Since Irr(A) is the disjoint union of the trivial representations and Irr
(b,b∗)
d (A) over d ∈ N

and (b, b∗) ∈ (C\{0}) × (C\{0})/ ∼, Problem 1 is reduced to Problem 2 by Corollary 1.6.
Namely, Irr(A) is the disjoint union of the trivial representations and

{ρ ◦ ιt | ρ ∈ Irrs,t
d (T )} (10)
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over d ∈ N and (s, t) ∈ (C\{0}) × (C\{0})/ ≈, where the equivalence relation ≈ is defined
by (s, t) ≈ (s′, t′) if and only if

(s′, t′) ∈ {±(s, t), ±(t−1, s−1), ±(t, s), ±(s−1, t−1)} for the case (ε, ε∗) = (1, 1), (11)

(s′, t′) ∈ {±(s, t), ±(t−1, s−1)} for the case (ε, ε∗) = (1, 0), (12)

and (s′, t′) = ±(s, t) for the case (ε, ε∗) = (0, 0).

As we see in the next proposition, the property (C1) for Irr(A) is automaically satisfied
when (ε, ε∗) = (1, 1).

Proposition 1.7 If (ε, ε∗) = (1, 1), then every finite-dimensional irreducible representation
ρ : A −→ End(V ) satisfies the property (C1), i.e., ρ(z), ρ(z∗) are diagonalizable.

Proof. Regard V as an irreducible A -module via ρ . For θ ∈ C, set V (θ) = {v ∈ V |zv = θv}.
Note that θ is an eigenvalue of ρ(z) if and only if V (θ) 6= 0, and in this case V (θ) is the
correspording eigenspace. Using the relation [z, z2z∗ − βz z∗z + z∗z2] = δ [z, z∗] with
β = q2 + q−2, δ = −(q2 − q−2), we find (z− θ−)(z− θ)(z− θ+)z∗v = 0 for all v ∈ V (θ), where
θ = ζ + ζ−1, θ+ = q2ζ + q−2ζ−1, θ− = q−2ζ + q2ζ−1 , i.e.,

z∗V (θ) ⊆ V (θ−) + V (θ) + V (θ+).

Set θ(i) = q2iζ + q−2iζ−1. Then
∑

i∈Z V (θ(i)), which is a finite sum by dim V < ∞, is
invariant under z, z∗. Since z, z∗ generate A and V is irreducible as an A -module, we have
V =

∑
i∈Z V (θ(i)). This implies that ρ(z) is diagonalizable. Similarly, ρ(z∗) is shown to be

diagonalizable. 2

So for the case (ε, ε∗) = (1, 1), Problem 1 is equivalent to

Problem 3 Classify up to isomorphism the finite-dimensional irreducible representations of
the q-Onsager algebra AI.

Thus the classification of standardized TD-pairs of Type I that are the 1st kind is equivalent
to that of finite-dimensional irreducible representations of the q-Onsager algebra AI.

1.3 Finite-dimensional irreducible T -modules

Let ρ : T −→ End(V ) be a finite-dimensional irreducible representation of the augmented
TD-algebra T . We regard V as an irreducible T -module via ρ. Let us recall Lemma 1.2 in
Section 1.2. The action of k on V is diagonalizable with eigenvalues {sq2i−d|0 ≤ i ≤ d} for
some nonzero s ∈ C and an integer d ≥ 0. The scalar s and the integer d are called the
type and the diameter, respectively. Let V =

⊕d
i=0 Ui denote the eigenspace decomposition

of the action of k on V , where Ui is the eigenspace belonging to sq2i−d. It holds that
xUi ⊆ Ui+1, yUi ⊆ Ui−1 (0 ≤ i ≤ d), where U−1 = Ud+1 = 0. We call the direct sum
V =

⊕d
i=0 Ui the weight space decomposition and U0 the highest weight space.

Theorem 1.8 Let V be a finite-dimensional irreducible T -module and V =
⊕d

i=0 Ui the
weight space decomposition. Then

dim Ui ≤
(

d

i

)
(0 ≤ i ≤ d).

In particular U0 has dimension 1.

11



Theorem 1.8 will be proved in Section 3. Since xUj ⊆ Uj+1, y Uj ⊆ Uj−1 (0 ≤ j ≤ d)
by Lemma 1.2, the highest weight space U0 is invariant under yixi for every integer i ≥ 0.
Since dim U0 = 1 by Theorem 1.8, there exists σi = σi(V ) ∈ C such that

yixiv = σiv (v ∈ U0)

for every integer i ≥ 0. Observe σ0 = 1 and σi = 0 if i > d, where d is the diameter of
the T -module V . It is shown later that σd 6= 0. Let Ms

d(T ) denote the set of isomorphism
classes of finite-dimensional irreducible T -modules with type s, diameter d, and Σd the set
of sequences {σi}d

i=0 of scalars σi ∈ C with σ0 = 1, σd 6= 0. Then we have a mapping σ

from Ms
d(T ) to Σd that sends V to {σi(V )}d

i=0, where σi(V ) is the eigenvalue of yixi on the
highest weight space of V .

Theorem 1.9 For each nonzero s ∈ C, the mapping

σ : Ms
d(T ) −→ Σd (V 7−→ {σi(V )}d

i=0)

is a bijection.

The fact σd(V ) 6= 0 and the injectiveness of σ will be proved in Section 3. The surjec-
tiveness of σ will be proved in Section 5.

For a finite-dimensional irreducible T -module V of type s and diameter d, we define a
monic polynomial PV (λ) of degree d in λ as follows:

PV (λ) = Q−1

d∑
i=0

σi(V )
d∏

j=i+1

(qj − q−j)
2
(εs−2q2(d−j) + ε∗s2q−2(d−j) − λ),

where σi(V ) is the eigenvalue of yixi on the highest weight space of V and

Q = Qd = (−1)d(q − q−1)
2
(q2 − q−2)

2 · · · (qd − q−d)
2
.

The polynomial PV (λ) is called the Drinfel’d polynomial of the T -module V . Note that the
parameters q and (ε, ε∗) in the definition of PV (λ) are independent of the T -module V , since
they are chosen and fixed in advance for the augmented TD-algebra T .

Remark 1.10 The following identities directly follow from the definition of PV (λ).

(i) For λ = εs−2 + ε∗s2,

PV (λ) = Q−1σd(V ).

(ii) For λ = t2 + εε∗t−2 with t an arbitrary nonzero scalar,

PV (λ) = Q−1

d∑
i=0

σi(V )(θ0 − θi+1) · · · (θ0 − θd)(θ
∗
0 − θ∗i+1) · · · (θ∗0 − θ∗d),

where θi = s t q2i−d + εs−1t−1qd−2i, θ∗i = ε∗s t−1q2i−d + s−1t qd−2i.
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Let Ps
d denote the set of monic polynomials P (λ) of degree d in λ such that

P (λ) 6= 0 for λ = εs−2 + ε∗s2.

Then the mapping that sends {σi}d
i=0 to

P (λ) = Q−1

d∑
i=0

σi

d∏
j=i+1

(qj − q−j)
2
(εs−2q2(d−j) + ε∗s2q−2(d−j) − λ)

gives a bijection from Σd to Ps
d . So we can restate Theorem 1.9 as follows.

Theorem 1.9′ The mapping V 7−→ PV (λ) gives a bijection from Ms
d(T ) to Ps

d.

This gives a parametrization of the set Ms
d(T ) in question in Problem 2 (i).

Theorem 1.11 Let V be a finite-dimensional irreducible T -module of type s and diameter
d. Assume that the property (C1)t holds for some t ∈ C, i.e., the actions of zt, z∗

t on V are
both diagonalizable. Then V is irreducible as a 〈zt, z

∗
t 〉-module if and only if PV (λ) 6= 0 for

λ = t2 + εε∗t−2. Here PV (λ) is the Drinfel’d polynomial of the T -module V .

Theorem 1.11 will be proved in Section 4. Theorem 1.11 together with Proposition 1.3
gives a parametrization of the representations of T in question in Problem 2 (ii). For an
integer d ≥ 1 and nonzero s, t ∈ C, define the sets Ms,t

d (T ) and Ps,t
d as follows. Ms,t

d (T )
denotes the set of isomorphism classes of finite-dimensional irreducible T -modules V with
type s, diameter d that satisfy the properties (C1)t, (C2)t, i.e., the actions of zt, z∗

t on V
are both diagonalizable and V is irreducible as a 〈zt, z

∗
t 〉-module. Ps,t

d denotes the set of
monic polynomials P (λ) of degree d in λ such that P (λ) 6= 0 for λ = εs−2 + ε∗s2 and
λ = t2 + εε∗t−2. Note that Ms,t

d (T ) (resp. Ps,t
d (T )) is a subset of Ms

d(T ) (resp. Ps
d(T ))

and Ms
d(T ) is bijectively mapped to Ps

d by V 7−→ PV (λ) by Theorem 1.9′. Let V be a
finite-dimensional irreducible T -module that belongs to Ms

d(T ). Then by Proposition 1.3,
the property (C1)t holds for the T -module V if and only if

s t 6= ±εqi for any integer i (1 − d ≤ i ≤ d − 1), (13)

s t−1 6= ±ε∗qi for any integer i (1 − d ≤ i ≤ d − 1). (14)

Thus if one of the conditions (13), (14) fails, then Ms,t
d (T ) is empty. Suppose each of (13),

(14) holds. Then by Theorem 1.11, the property (C2)t holds for the T -module V if and only
if PV (λ) 6= 0 for λ = t2 + εε∗t−2. So Ms,t

d (T ) is precisely mapped onto Ps,t
d by the bijection

V 7−→ PV (λ) from Ms
d(T ) to Ps

d . Thus we have

Corollary 1.12 If one of the conditions (13), (14) fails, then Ms,t
d (T ) is empty. Suppose

each of (13), (14) holds. Then the mapping V 7−→ PV (λ) gives a bijection from Ms,t
d (T ) to

Ps,t
d .

This gives a parametrization of the set Ms,t
d (T ) in question in Problem 2 (ii). Since

Ms,t
d (T ) can be natually identified with Irrs,t

d (T ), Corollary 1.12 gives a parametrization of

ST D(b,b∗)
d through Proposition 1.5, where b = s t, b∗ = s t−1.
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1.4 Construction of finite-dimensional irreducible T -modules

Given (ε, ε∗) ∈ {(1, 1), (1, 0), (0, 0)} and a nonzero scalar q that is not a root of unity, let

T = T (ε,ε∗)
q denote the augmented TD-algebra. T is generated by x, y, k±1 subject to the

relations (TD)′0, (TD)′ in Section 1.2. In the next proposition, we give an injective algebra-
homomorphism ϕs of T into the Uq(sl2)-loop algebra L = Uq(L(sl2)) for each nonzero scalar
s ∈ C. L is the associative C-algebra with 1 defined by generators e+

i , e−i , ki, k
−1
i (i = 0, 1)

subject to the relations

k0k1 = k1k0 = 1,

kik
−1
i = k−1

i ki = 1,

kie
±
i k−1

i = q±2e±i ,

kie
±
j k−1

i = q∓2e±j (i 6= j),

[e+
i , e−i ] =

ki − k−1
i

q − q−1
,

[e+
i , e−j ] = 0 (i 6= j),

[e±i , (e±i )2e±j − (q2 + q−2)e±i e±j e±i + e±j (e±i )2] = 0 (i 6= j).

Note that if we replace k0k1 = k1k0 = 1 in the defining relations for L by k0k1 = k1k0,
then we have the quantum affine algebra Uq(ŝl2): L is isomorphic to the quotient algebra of

Uq(ŝl2) by the two-sided ideal generated by k0k1 − 1.

Proposition 1.13 For each nonzero s ∈ C, there exists an algebra homomorphism ϕs from
T to L that sends x, y, k to x(s), y(s), k(s), respectively, where

x(s) = α(se+
0 + εs−1e−1 k1) with α = −q−1(q − q−1)

2
,

y(s) = ε∗se−0 k0 + s−1e+
1 ,

k(s) = sk0.

Moreover ϕs is injective.

The existence of ϕs follows from the fact that the relations (TD)′0, (TD)′ hold for x(s),
y(s), k(s), k(s)−1. We leave the tedious calculations of checking it to the reader. The
injectivity of ϕs will be proved in Section 2.

Let L′ denote the subalgebra of L generated by e+
0 , e±1 , k±1

i (i = 0, 1): e−0 is missing
from the set of generators for L′. Let B denote the subalgebra of L generated by e+

0 , e+
1 , k±1

i

(i = 0, 1), the Borel subalgebra of L. Observe B ⊆ L′. Note that the image of ϕs is contained
in L′ if (ε, ε∗) = (1, 0) and it coincides with B if (ε, ε∗) = (0, 0). If (ε, ε∗) = (1, 1) (resp.
(1, 0), (0, 0)), each finite-dimensional irreducible L-module (resp. L′-module, B-module) can
be regarded as a T -module via the injective algebra homomorphism ϕs : T −→ L. Such a
T -module is called a T -module via ϕs. We determine when a finite-dimensional irreducible
L-module (resp. L′-module, B-module) remains irreducible as a T -module via ϕs, and by
finding an explicit formula for the Drinfel’d polynomial PV (λ), we show that every finite-
dimensional irreducible T -module with type s arises in this way via ϕs (see Theorem 1.9′).
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We give an overview of finite-dimensional representations of L that we need to state our
explicit construction of irreducible T -modules via ϕs. For a ∈ C (a 6= 0) and ` ∈ Z (` > 0),
V (`, a) denotes the evaluation module of L, i.e., V (`, a) is an (`+1)-dimensional vector space
over C with a basis v0, v1, . . . , v` on which L acts as follows:

k0vi = q2i−` vi,

k1vi = q`−2ivi,

e+
0 vi = a q [i + 1] vi+1,

e−0 vi = a−1q−1[` − i + 1] vi−1,

e+
1 vi = [` − i + 1] vi−1,

e−1 vi = [i + 1] vi+1,

where v−1 = v`+1 = 0 and [j] = [j]q = (qj−q−j)/(q−q−1). V (`, a) is an irreducible L-module.
We call v0, v1, . . . , v` a standard basis.

Let ∆ denote the coproduct of L: the algebra homomorphism from L to L ⊗ L defined
by

∆(k±1
i ) = k±1

i ⊗ k±1
i ,

∆(e+
i ) = ki ⊗ e+

i + e+
i ⊗ 1,

∆(e−i ki) = ki ⊗ e−i ki + e−i ki ⊗ 1.

Given L-modules V1, V2, the tensor product V1 ⊗ V2 becomes an L-module via ∆. Given a
set of evaluation modules V (`i, ai) (1 ≤ i ≤ n) of L, the tensor product

V (`1, a1) ⊗ · · · ⊗ V (`n, an)

makes sense as an L-module without being affected by the parentheses for the tensor product
because of the coassociativity of ∆.

With an evaluation module V (`, a) of L, we associate the set S(`, a) of scalars a q−`+1,
a q−`+3, · · · , a q`−1:

S(`, a) = {a q2i−`+1 | 0 ≤ i ≤ ` − 1}.

The set S(`, a) is called a q-string of length `. Two q-strings S(`, a), S(`′, a′) are said to be
adjacent if S(`, a) ∪ S(`′, a′) is a longer q-string, i.e., S(`, a) ∪ S(`′, a′) = S(`′′, a′′) for some
`′′, a′′ with `′′ > max{`, `′}. It can be easily checked that S(`, a), S(`′, a′) are adjacent if
and only if a−1a′ = q±i for some

i ∈ {|` − `′| + 2, |` − `′| + 4, · · · , ` + `′}.

Two q-strings S(`, a), S(`′, a′) are defined to be in general position if they are not adjacent,
i.e., if either

(i) S(`, a) ∪ S(`′, a′) is not a q-string,
or
(ii) S(`, a) ⊆ S(`′, a′) or S(`, a) ⊇ S(`′, a′).
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A multi-set {S(`i, ai)}n
i=1 of q-strings is said to be in general position if S(`i, ai) and S(`j, aj)

are in general position for any i, j (i 6= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n). The following fact is
well-known and easy to prove. Let Ω be a finite multi-set of nonzero scalars from C. Then
there exists a multi-set {S(`i, ai)}n

i=1 of q-strings in general position such that

Ω =
n⋃

i=1

S(`i, ai)

as multi-sets of nonzero scalars. Moreover such a multi-set of q-strings is uniquely determined
by Ω.

With a tensor product V (`1, a1) ⊗ · · · ⊗ V (`n, an) of evaluation modules V (`i, ai) (1 ≤
i ≤ n), we associate the multi-set {S(`i, ai)}n

i=1 of q-strings. The following (i), (ii), (iii) are
well-known [2]:

(i) A tensor product V (`1, a1) ⊗ · · · ⊗ V (`n, an) of evaluation modules is irre-
ducible as an L -module if and only if the multi-set {S(`i, ai)}n

i=1 of q-strings is
in geneal position.

(ii) Set V = V (`1, a1) ⊗ · · · ⊗ V (`n, an), V ′ = V (`′1, a
′
1) ⊗ · · · ⊗ V (`′n′ , a′

n′) and
assume that V , V ′ are both irreducible as an L-module. Then V , V ′ are iso-
morphic as L-modules if and only if the multi-sets {S(`i, ai)}n

i=1, {S(`′i, a
′
i)}

n′

i=1

coincide, i.e., n = n′ and `i = `′i, ai = a′
i for all i (1 ≤ i ≤ n) with a suitable

reordering of S(`′1, a
′
1), · · · , S(`′n, a

′
n).

(iii) Every nontrivial finite-dimensional irreducible L-module of type (1,1) is iso-
morphic to some V (`1, a1) ⊗ · · · ⊗ V (`n, an).

Two multi-sets {S(`i, ai)}n
i=1, {S(`′i, a

′
i)}

n′

i=1 of q-strings are defined to be equivalent if

there exists εi ∈ {±1} (1 ≤ i ≤ n) such that {S(`i, a
εi
i )}n

i=1 and {S(`′i, a
′
i)}

n′

i=1 coincide,
i.e., n = n′ and `i = `′i, aεi

i = a′
i for all i (1 ≤ i ≤ n) with a suitable reordering of

S(`′1, a
′
1), · · · , S(`′n, a

′
n). A multi-set {S(`i, ai)}n

i=1 of q-strings is defined to be strongly in
general position if any multi-set of q-strings equivalent to {S(`i, ai)}n

i=1 is in general position,
i.e., the multi-set {S(`i, a

εi
i )}n

i=1 is in general position for any choice of εi ∈ {±1} (1 ≤ i ≤ n).

Lemma 1.14 Let Ω be a finite multi-set of nonzero scalars from C such that c and c−1

appear in Ω in pairs, i.e., c and c−1 have the same multiplicity in Ω for each c ∈ Ω, where
we understand that if 1 or -1 appears in Ω, it has even multiplicity. Then there exists a
multi-set {S(`i, ai)}n

i=1 of q-strings strongly in general position such that

Ω =
n⋃

i=1

(
S(`i, ai) ∪ S(`i, a

−1
i )

)
as multi-sets of nonzero scalars. Such a multi-set of q-strings is uniquely determined by Ω
up to equivalence.
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Lemma 1.14 will be proved in Section 7.

Theorem 1.15 (Case (ε, ε∗) = (1, 1)) Let T = T (1,1)
q denote the augmented TD-algebra of

the 1st kind. The following (i), (ii), (iii) hold.

(i) A tensor product V (`1, a1) ⊗ · · · ⊗ V (`n, an) of evaluation modules is irreducible as a
T -module via ϕs if and only if −s2 /∈ S(`i, ai)∪S(`i, a

−1
i ) for all i (1 ≤ i ≤ n) and the

multi-set {S(`i, ai)}n
i=1 of q-strings is strongly in general position. In this case, the T -

module V = V (`1, a1)⊗· · ·⊗V (`n, an) via ϕs has type s and diameter d = `1 + · · ·+ `n

and the Drinfel’d polynomial PV (λ) of the T -module V via ϕs is

PV (λ) =
n∏

i=1

PV (`i,ai)(λ),

where
PV (`i,ai)(λ) =

∏
c∈S(`i,ai)

(λ + c + c−1).

(ii) Set V = V (`1, a1) ⊗ · · · ⊗ V (`n, an), V ′ = V (`′1, a
′
1) ⊗ · · · ⊗ V (`′n′ , a′

n′) and assume
that V , V ′ are both irreducible as a T -module via ϕs. Then V , V ′ are isomorphic as
T -modules via ϕs if and only if the multi-sets {S(`i, ai)}n

i=1, {S(`′i, a
′
i)}

n′

i=1 of q-strings
are equivalent.

(iii) Every nontrivial finite-dimensional irreducible T -module of type s is isomorphic to
some T -module V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs .

Theorem 1.15 will be proved in Section 7. Note that the Drinfel’d polynomial of an
irreducible T -module V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs is determined by the multi-set
{S(`i, ai)}n

i=1 of q-strings and independent of ϕs. Problem 2, which is to determine Ms
d(T )

and Ms,t
d (T ), is solved by Theorem 1.15 as follows in the case of (ε, ε∗) = (1, 1). Assume

(ε, ε∗) = (1, 1). The set Ms
d(T ) is determined in terms of tensor products of evaluation

modules by Theorem 1.15 (i), (ii), (iii). Recall the bijection V 7→ PV (λ) from Ms
d(T ) to Ps

d

in Theorem 1.9′. The subset Ms,t
d (T ) of Ms

d(T ) is nonempty if and only if the conditions
(13), (14) hold, i.e.,

±st, ±st−1 /∈ {qi | i = −d + 1, −d + 2, · · · , d − 1}, (15)

and in this case Ms,t
d (T ) is mapped onto Ps,t

d by the bijection V 7→ PV (λ) (see Corollary 1.12).
For an irreducible T -module V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs, we find by Theorem 1.15 (i)
that PV (λ) does not vanish at λ = t2 + t−2 if and only if −t2 /∈ S(`i, ai) ∪ S(`i, a

−1
i ) for all

i (1 ≤ i ≤ n). Thus we have

Corollary 1.16 Assume (ε, ε∗) = (1, 1). Then Ms
d(T ) and Ms,t

d (T ) are determined as
follows.

(i) Ms
d(T ) consists of the isomorphism classes of T -modules V (`1, a1) ⊗ · · · ⊗ V (`n, an)

via ϕs with the properties that
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(i.1) the multi-set {S(`i, ai)}n
i=1 of q-strings is strongly in general position,

(i.2) −s2 /∈ S(`i, ai) ∪ S(`i, a
−1
i ) for all i (1 ≤ i ≤ n),

(i.3) d = `1 + · · · + `n.

The isomorphism classes of such T -modules V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs are in
one-to-one correspondence with the equivalence classes of the multi-sets {S(`i, ai)}n

i=1

of q-strings that have the properties (i.1), (i.2), (i.3) above.

(ii) Ms,t
d (T ) is nonempty if and only if the condition (15) holds. Suppose the condition

(15) holds. Then Ms,t
d (T ) consists of the isomorphism classes of T -modules V (`1, a1)⊗

· · · ⊗ V (`n, an) via ϕs with the properties (i.1), (i.2), (i.3) above and

(ii.1) −t2 /∈ S(`i, ai) ∪ S(`i, a
−1
i ) for all i (1 ≤ i ≤ n).

The next theorem follows from Corollary 1.16 and [8, Proposition 7.15]. It solves Prob-
lem 3, which is to determine the finite-dimensional irreducible representations of the q-
Onsager algebra up to isomorphism. For an L-module V , let ρV denote the representation
of L afforded by the L-module V . Then ρV ◦ ϕs is the representation of T afforded by the
T -module V via ϕs, and ρV ◦ ϕs ◦ ιt is a representation of A, where

ιt : A −→ T (z, z∗ 7→ zt, z∗
t )

is the injective algebra homomorphism from Proposition 1.1.

Theorem 1.17 Assume (ε, ε∗) = (1, 1). Let A = A(1,1)
q denote the q-Onsager algebra. The

following (i), (ii), (iii) hold.

(i) For an L-module V = V (`1, a1) ⊗ · · · ⊗ V (`n, an) and nonzero s, t ∈ C, the represen-
taiton ρV ◦ ϕs ◦ ιt of A is irreducible if and only if

(i.1) the multi-set {S(`i, ai)}n
i=1 of q-strings is strongly in general position,

(i.2) none of −s2, −t2 belongs to S(`i, ai) ∪ S(`i, a
−1
i ) for any i (1 ≤ i ≤ n),

(i.3) none of the four scalars ±st, ±st−1 equals qi for any i ∈ Z (−d+1 ≤ i ≤ d−1),
where d = `1 + · · · + `n.

(ii) For L-modules V = V (`1, a1) ⊗ · · · ⊗ V (`n, an), V ′ = V (`′1, a
′
1) ⊗ · · · ⊗ V (`′n′ , a′

n′) and
(s, t), (s′, t′) ∈ (C\{0}) × (C\{0}), set ρ = ρV ◦ ϕs ◦ ιt and ρ′ = ρV ′ ◦ ϕs′ ◦ ιt′. Assume
that the representations ρ, ρ′ of A are both irreducible. Then they are isomorphic
as representations of A if and only if the multi-sets {S(`i, ai)}n

i=1, {S(`′i, a
′
i)}

n′

i=1 are
equivalent and (s, t) ≈ (s′, t′) in the sense of (11) ,i.e.,

(s′, t′) ∈ {±(s, t), ±(t−1, s−1), ±(t, s), ±(s−1, t−1)}.

(iii) Every nontrivial finite-dimensional irreducible representation of A is isomorphic to
ρV ◦ ϕs ◦ ιt for some L-module V = V (`1, a1) ⊗ · · · ⊗ V (`n, an) and (s, t) ∈ (C\{0}) ×
(C\{0}).
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Proof. The assertions (i), (iii) follow from Corollary 1.6 and Corollary 1.16, since Irrs,t
d (T )

is naturally identified with Ms,t
d (T ). To prove the assertion (ii), suppose that the irreducible

representations ρ = ρV ◦ ϕs ◦ ιt and ρ′ = ρV ′ ◦ ϕs′ ◦ ιt′ of A are isomorphic, where V =
V (`1, a1) ⊗ · · · ⊗ V (`n, an), V ′ = V (`′1, a

′
1) ⊗ · · · ⊗ V (`′n′ , a′

n′). Set A = ρ(z), A∗ = ρ(z∗)

and B = ρ′(z), B∗ = ρ′(z∗). Then A, A∗ are a TD-pair belonging to ST D(b,b∗)
d , where

b = st, b∗ = st−1, d = `1 + · · · + `n, and B, B∗ are a TD-pair belonging to ST D(c,c∗)
d′ , where

c = s′t′, c∗ = s′t′−1, d′ = `′1 + · · · + `′n′ (see Proposition 1.5). Since ρ, ρ′ are isomorphic,
the TD-pair A, A∗ is isomorphic to the TD-pair B, B∗, so we have (b, b∗) ∼ (c, c∗) in the
sense of (8), i.e., (s, t) ≈ (s′, t′) in the sense of (11). Moreover by [8, Proposition 7.15], the
Drinfel’d polynomial PV (λ) of the T -module V via ϕs coincides with the Drinfel’d polynomial
PV ′(λ) of the T -module V ′ via ϕs′ . By Theorem 1.15 (i) and Lemma 1.14, the multi-sets

{S(`i, ai)}n
i=1, {S(`′i, a

′
i)}

n′

i=1 of q-strings are equivalent.

Conversely for the irrreducible representations ρ = ρV ◦ ϕs ◦ ιt and ρ′ = ρV ′ ◦ ϕs′ ◦ ιt′
of A with V = V (`1, a1) ⊗ · · · ⊗ V (`n, an), V ′ = V (`′1, a

′
1) ⊗ · · · ⊗ V (`′n′ , a′

n′), suppose that

(s, t) ≈ (s′, t′) and the multi-sets {S(`i, ai)}n
i=1, {S(`′i, a

′
i)}

n′

i=1 of q-strings are equivalent. Set
b = st, b∗ = st−1, c = s′t′, c∗ = s′t′−1 and d = `1 + · · · + `n, d′ = `′1 + · · · + `′n′ . Then

(b, b∗) ∼ (c, c∗) and d = d′, so ST D(b,b∗)
d = ST D(c,c∗)

d′ . Set A = ρ(z), A∗ = ρ(z∗). Then

A, A∗ is a TD-pair belonging to ST D(b,b∗)
d , so it belongs to ST D(c,c∗)

d′ : the difference is the

orderings of the eigenspaces of A, A∗. Apply Proposition 1.5 to ST D(c,c∗)
d′ . Then there exists

a unique representation ρ′′ of T up to isomorphism belonging to Irrs′,t′

d′ (T ) such that the
TD-pair B = ρ′′ ◦ ιt′(z), B∗ = ρ′′ ◦ ιt′(z

∗) is isomorphic to A, A∗. By Theorem 1.15 (iii),
we may assume ρ′′ = ρV ′′ ◦ ϕs′ for some V ′′ = V (`′′1, a

′′
1) ⊗ · · · ⊗ V (`′′n′′ , a′′

n′′). Apparently,
ρ′′ ◦ ιt′ = ρV ′′ ◦ ϕs′ ◦ ιt′ is isomorphic to ρ = ρV ◦ ϕs ◦ ιt as representations of A, since the
TD-pair B = ρ′′◦ιt′(z), B∗ = ρ′′◦ιt′(z

∗) is isomophic to A = ρ(z), A∗ = ρ(z∗). Then by what

we have already proved in the 1st half of the proof, the multi-set {S(`′′i , a
′′
i )}

n′′

i=1 of q-strings

is equivalent to {S(`i, ai)}n
i=1 and hence to {S(`′i, a

′
i)}

n′

i=1. This means ρ′′ ◦ ιt′ = ρV ′′ ◦ϕs′ ◦ ιt′
is isomorphic to ρ′ = ρV ′ ◦ ϕs′ ◦ ιt′ as representations of A. So ρ, ρ′ are isomophic as
representations of A. This completes the proof of the theorem. 2

Next we consider the case (ε, ε∗) = (1, 0). Then ϕs(T ) ⊆ L′. Note that the subalgebra
L′ of L is, by the triangular decomposition of L, isomorphic to the algebra generated by the
symbols e+

0 , e±1 , k±
i (i = 0, 1) subject to the defining relations

k0k1 = k1k0 = 1,

kik
−1
i = k−1

i ki = 1,

k0e
+
0 k−1

0 = q2e+
0 ,

k1e
±
1 k−1

1 = q±2e±1 ,

[e+
0 , e−1 ] = 0,

[e+
1 , e−1 ] =

k1 − k−1
1

q − q−1
,

[e+
i , (e+

i )
2
e+

j − (q2 + q−2)e+
i e+

j e+
i + e+

j (e+
i )

2
] = 0 (i 6= j).
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So the evaluation module V (`, a) makes sense as an L′-modle even for a = 0: for the standard
basis v0, v1, · · · , vd of V (`, a),

k0vi = q2i−` vi

k1vi = q`−2i vi,

e+
0 vi = a q [i + 1] vi+1,

e+
1 vi = [` − i + 1] vi−1,

e−1 vi = [i + 1] vi+1.

For a positive integer ` and a scalar a ∈ C, allowing a = 0, V (`, a) is irreducible as an
L′-module and called an evaluation module for L′. Since the coproduct ∆ of L is closed for
L′, i.e., ∆(L′) ⊆ L′⊗L′, the tensor product V (`1, a1)⊗· · ·⊗V (`n, an) of evaluation modules
for L′ becomes an L′ -module. We denote by V (`) the evaluaion module V (`, 0). We allow
` = 0 for V (`) and understand that V (0) is the trivial L′-module, i.e., the 1-dimensional
space on which k±1

i = 1, the identity map, e+
0 = e±1 = 0, the zero map. Thus V (`, a) means

the evaluation module for L′ with ` ≥ 1, a 6= 0 and V (`) the evaluation module V (`, 0) for
L′ with ` ≥ 0.

Theorem 1.18 (Case (ε, ε∗) = (1, 0)) Let T = T (1,0)
q denote the augmented TD-algebra of

the 2nd kind. The following (i), (ii), (iii) hold.

(i) A tensor product V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n, an) of evaluation modules for L′ is
irreducible as a T -module via ϕs if and only if −s−2 /∈ S(`i, ai) for all i (1 ≤ i ≤ n)
and the multi-set {S(`i, ai)}n

i=1 of q-strings is in general position. In this case, the
T -module V = V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs has type s and diameter
d = ` + `1 + · · · + `n and the Drinfel’d polynomial PV (λ) of the T -module V via ϕs is

PV (λ) = PV (`)(λ)
n∏

i=1

PV (`i,ai)(λ),

where

PV (`)(λ) = λ`,

PV (`i,ai)(λ) =
∏

c∈S(`i,ai)

(λ + c).

(ii) Set V = V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n, an), V ′ = V (`′) ⊗ V (`′1, a
′
1) ⊗ · · · ⊗ V (`′n′ , a′

n′)
and assume that V , V ′ are both irreducible as a T -module via ϕs. Then V , V ′ are
isomorphic as T -modules via ϕs if and only if ` = `′ and the multi-sets {S(`i, ai)}n

i=1,

{S(`′i, a
′
i)}

n′

i=1 of q-strings coincide, i.e., n = n′, `i = `′i, ai = a′
i for all i (0 ≤ i ≤ n)

with a suitable reordering of S(`′1, a
′
1), · · · , S(`′n, a

′
n).

(iii) Every nontrivial finite-dimensional irreducible T -module of type s is isomorphic to
some T -module V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs .
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Theorem 1.18 will be proved in Section 7. Note that the Drinfel’d polynomial of an
irreducible T -module V (`)⊗V (`1, a1)⊗· · ·⊗V (`n, an) via ϕs is determined by ` and the multi-
set {S(`i, ai)}n

i=1 of q-strings, independent of ϕs. Problem 2, which is to determine Ms
d(T )

and Ms,t
d (T ), is solved by Theorem 1.18 as follows in the case of (ε, ε∗) = (1, 0). Assume

(ε, ε∗) = (1, 0). The set Ms
d(T ) is determined in terms of tensor products of evaluation

modules by Theorem 1.18 (i), (ii), (iii). Recall the bijection V 7→ PV (λ) from Ms
d(T ) to Ps

d

in Theorem 1.9′. The subset Ms,t
d (T ) of Ms

d(T ) is nonempty if and only if the conditions
(13), (14) hold, i.e.,

±st /∈ {qi | i = −d + 1, −d + 2, · · · , d − 1}, (16)

and in this case Ms,t
d (T ) is mapped onto Ps,t

d by the bijection V 7→ PV (λ) (see Corollary 1.12).
For an irreducible T -module V = V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs, we find by
Theorem 1.18 (i) that PV (λ) does not vanish at λ = t2 if and only if −t2 /∈ S(`i, ai) for all
i (1 ≤ i ≤ n). Thus we have

Corollary 1.19 Assume (ε, ε∗) = (1, 0). Then Ms
d(T ) and Ms,t

d (T ) are determined as
follows.

(i) Ms
d(T ) consists of the isomorphism classes of T -modules V (`) ⊗ V (`1, a1) ⊗ · · · ⊗

V (`n, an) via ϕs with the properties that

(i.1) the multi-set {S(`i, ai)}n
i=1 of q-strings is in general position,

(i.2) −s−2 /∈ S(`i, ai) for all i (1 ≤ i ≤ n),

(i.3) d = ` + `1 + · · · + `n.

The isomorphism classes of such T -modules V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs

are in one-to-one correspondence with the set of pairs of ` ∈ N∪{0} and the multi-sets
{S(`i, ai)}n

i=1 of q-strings that have the properties (i.1), (i.2), (i.3) above.

(ii) Ms,t
d (T ) is nonempty if and only if the condition (16) holds. Suppose the condition

(16) holds. Then Ms,t
d (T ) consists of the isomorphism classes of T -modules V (`) ⊗

V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs with the properties (i.1), (i.2), (i.3) above and

(ii.1) −t2 /∈ S(`i, ai) for all i (1 ≤ i ≤ n).

The next theorem follows from Corollary 1.19 and [8, Proposition 7.15]. It solves Prob-
lem 1, which is to determine Irr(A), the set of isomorphism classes of finite-dimensional

irreducible representations of the TD-algebra A = A(1,0)
q of the 2nd kind that have the

property (C1). For an L′-module V , let ρV denote the representation of L′ afforded by the
L′-module V . Then ρV ◦ ϕs is the representation of T afforded by the T -module V via ϕs,
and ρV ◦ϕs ◦ ιt is a representation of A, where ιt : A −→ T (z, z∗ 7→ zt, z∗

t ) is the injective
algebra homomorphism from Proposition 1.1.

Theorem 1.20 Assume (ε, ε∗) = (1, 0). Let A = A(1,0)
q denote the TD-algebra of the 2nd

kind. The following (i), (ii), (iii) hold.
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(i) For an L′-module V = V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n, an) and nonzero s, t ∈ C, the
representaiton ρV ◦ ϕs ◦ ιt of A is irreducible if and only if

(i.1) the multi-set {S(`i, ai)}n
i=1 of q-strings is in general position,

(i.2) none of −s−2, −t2 belongs to S(`i, ai) for any i (1 ≤ i ≤ n),

(i.3) none of ±st equals qi for any i ∈ Z (−d + 1 ≤ i ≤ d − 1).

(ii) For L′-modules V = V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n, an), V ′ = V (`′) ⊗ V (`′1, a
′
1) ⊗

· · · ⊗ V (`′n′ , a′
n′) and (s, t), (s′, t′) ∈ (C\{0}) × (C\{0}), set ρ = ρV ◦ ϕs ◦ ιt and

ρ′ = ρV ′ ◦ ϕs′ ◦ ιt′. Assume that the representations ρ, ρ′ of A are both irreducible.
Then they are isomorphic as representations of A if and only if ` = `′, the multi-sets
{S(`i, ai)}n

i=1, {S(`′i, a
′
i)}

n′

i=1 coincide and (s, t) ≈ (s′, t′) in the sense of (12) ,i.e.,

(s′, t′) ∈ {±(s, t), ±(t−1, s−1)}.

(iii) Every nontrivial finite-dimensional irreducible representation of A with the property
(C1) is isomorphic to ρV ◦ϕs◦ιt for some L′-module V = V (`)⊗V (`1, a1)⊗· · ·⊗V (`n, an)
and (s, t) ∈ (C\{0}) × (C\{0}).

We do not give a proof of Theorem 1.20, since it can be proved by the same argument
for the case of the q-Onsager algebra.

Finally we consider the case (ε, ε∗) = (0, 0). By Proposition 1.13, ϕs gives an isomorphism
between the augmented TD-algebra T and the Borel subalgebra B of L. The TD-algebra A
is isomorphic to the positive part of the Borel subalgebra B.

Theorem 1.21 (Case (ε, ε∗) = (0, 0)) Let T = T (0,0)
q denote the augmented TD-algebra of

the 3rd kind. The following (i), (ii), (iii) hold.

(i) A tensor product V (`1, a1) ⊗ · · · ⊗ V (`n, an) of evaluation modules for L is irreducible
as a T -module via ϕs if and only if the multi-set {S(`i, ai)}n

i=1 of q-strings is in general
position. In this case, the T -module V = V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs has type s
and diameter d = `1 + · · ·+ `n and the Drinfel’d polynomial PV (λ) of the T -module V
via ϕs is

PV (λ) =
n∏

i=1

PV (`i,ai)(λ),

where
PV (`i,ai)(λ) =

∏
c∈S(`i,ai)

(λ + c).

(ii) Set V = V (`1, a1) ⊗ · · · ⊗ V (`n, an), V ′ = V (`′1, a
′
1) ⊗ · · · ⊗ V (`′n′ , a′

n′) and assume
that V , V ′ are both irreducible as a T -module via ϕs. Then V , V ′ are isomorphic as
T -modules via ϕs if and only if the multi-sets {S(`i, ai)}n

i=1, {S(`′i, a
′
i)}

n′

i=1 of q-strings
coincide.

(iii) Every nontrivial finite-dimensional irreducible T -module of type s is isomorphic to
some T -module V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs .

22



Theorem 1.21 is well-known but a brief proof will be given in Section 7. The polynomial
λdPV (λ−1) (d = `1 + · · · + `n) for the case (ε, ε∗) = (0, 0) is known as the original Drinfel’d
polynomial:

λdPV (λ−1) =
n∏

i=1

∏
c∈S(`i,ai)

(1 + cλ).

Corollary 1.22 and Theorem 1.23 below, which are the main results of [7, Theorem 1.6,
Theorem 1.7], follow immediately from Theorem 1.21 through Theorem1.9′ and Corollary
1.12, solving Problem 1 and Problem 2 in the case of (ε, ε∗) = (0, 0).

Corollary 1.22 Assume (ε, ε∗) = (0, 0). Then Ms
d(T ) and Ms,t

d (T ) are determined as
follows.

(i) Ms
d(T ) consists of the isomorphism classes of T -modules V (`1, a1) ⊗ · · · ⊗ V (`n, an)

via ϕs with the properties that

(i.1) the multi-set {S(`i, ai)}n
i=1 of q-strings is in general position,

(i.2) d = `1 + · · · + `n.

The isomorphism classes of such T -modules V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs are in
one-to-one correspondence with the set of the multi-sets {S(`i, ai)}n

i=1 of q-strings that
have the properties (i.1), (i.2) above.

(ii) Ms,t
d (T ) is nonempty for any nonzero s, t ∈ C. Ms,t

d (T ) consists of the isomorphism
classes of T -modules V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs with the properties (i.1), (i.2)
above and

(2.1) −t2 /∈ S(`i, ai) for all i (1 ≤ i ≤ n).

Theorem 1.23 Assume (ε, ε∗) = (0, 0). Let A = A(0,0)
q denote the TD-algebra of the 3rd

kind. The following (i), (ii), (iii) hold.

(i) For an L-module V = V (`1, a1) ⊗ · · · ⊗ V (`n, an) and nonzero s, t ∈ C, the represen-
taiton ρV ◦ ϕs ◦ ιt of A is irreducible if and only if

(i.1) the multi-set {S(`i, ai)}n
i=1 of q-strings is in general position,

(i.2) −t2 /∈ S(`i, ai) for any i (0 ≤ i ≤ n).

(ii) For L-modules V = V (`1, a1) ⊗ · · · ⊗ V (`n, an), V ′ = V (`′1, a
′
1) ⊗ · · · ⊗ V (`′n′ , a′

n′) and
(s, t), (s′, t′) ∈ (C\{0}) × (C\{0}), set ρ = ρV ◦ ϕs ◦ ιt and ρ′ = ρV ′ ◦ ϕs′ ◦ ιt′. Assume
that the representations ρ, ρ′ of A are both irreducible. Then they are isomorphic as
representations of A if and only if the multi-sets {S(`i, ai)}n

i=1, {S(`′i, a
′
i)}

n′

i=1 coincide
and (s, t) = ±(s′, t′).

(iii) Every nontrivial finite-dimensional irreducible representation of A with the property
(C1) is isomorphic to ρV ◦ ϕs ◦ ιt for some L-module V = V (`1, a1) ⊗ · · · ⊗ V (`n, an)
and (s, t) ∈ (C\{0}) × (C\{0}).
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Let A,A∗ ∈ End(V ) be a TD-pair of Type I with eigenspaces {Vi}d
i=0, {V ∗

i }
d
i=0 respec-

tively. Then we have the split decomposition (see Section 1.1):

V =
d⊕

i=0

Ui,

where
Ui = (V ∗

0 + · · · + V ∗
i ) ∩ (Vi + · · · + Vd).

By [3, Corollary 5.7 ], it holds that

dim Ui = dim Vi = dim V ∗
i (0 ≤ i ≤ d),

and
dim Ui = dim Ud−i (0 ≤ i ≤ d).

Note that dim Ui is invariant under standardization of A, A∗. We want to find the generating
function for dim Ui:

g(λ) =
d∑

i=0

(dim Ui) λi.

We may assume that A,A∗ are standardized. Then by Theorem 1.17, Theorem 1.20, Theorem
1.23, the TD-pair A, A∗ is afforded via ϕs ◦ ιt by an L-module

V = V (`1, a1) ⊗ · · · ⊗ V (`n, an)

for the cases (ε, ε∗) = (1, 1), (0, 0) and by an L′-module

V = V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n, an)

for the case (ε, ε∗) = (1, 0). The split decomposition of V for A, A∗ coincides with the
eigenspace decomposition of the element k0 of L acting on V . Thus we have

Proposition 1.24 ([3, Conjecture 13.7 ])

g(λ) =
n∏

i=1

(1 + λ + λ2 + · · · + λ`i) if (ε, ε∗) = (1, 1), (0, 0),

g(λ) =
n∏

i=0

(1 + λ + λ2 + · · · + λ`i) with `0 = ` if (ε, ε∗) = (1, 0).

A TD-pair A,A∗ is called a Leonard pair if dim Ui = 1 for all i (0 ≤ i ≤ d). A
standardized TD-pair A,A∗ of Type I is a Leonard pair if and only if it is afforded by an
evaluation module. In view of this fact, a standardized TD-pair A, A∗ of Type I is regarded
as a ‘tensor product of Leonard pairs’.
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2 Linear bases for A and T
In this section, we give a linear basis for the TD-algebra A that involves the generators z, z∗.
We also give two linear bases for the augmented TD-algebra T ; one involves the generators
x, y, k±1 and the other involves the generators zt, z∗

t , k±1 (see Section 1.2). Using these
bases, we prove Proposition 1.1, Proposition 1.3 and Proposition 1.13.

For an integer r ≥ 0, we denote by Λr the set of sequences λ = (λ0, λ1, · · · , λr) of integers
such that λ0 ≥ 0, λi ≥ 1 (1 ≤ i ≤ r), and define Λ to be the union of Λr (r ≥ 0):

Λr = {λ = (λ0, λ1, · · · , λr) ∈ Zr+1 | λ0 ≥ 0, λi ≥ 1 (1 ≤ i ≤ r)},
Λ =

⋃
r∈N∪{0}

Λr.

Call λ = (λ0, λ1, · · · , λr) ∈ Λ irreducible if there exists an integer i (0 ≤ i ≤ r) such that

λ0 < λ1 < · · · < λi ≥ λi+1 ≥ · · · ≥ λr.

Note that each λ in Λ0 ∪ Λ1 is irreducible. We denote the set of irreducible λ ∈ Λ by Λirr:

Λirr = {λ ∈ Λ | λ is irreducible}.

Let X, Y denote noncommuting indeterminates. For λ = (λ0, λ1, · · · , λr) ∈ Λ, we define the

word ωλ(X,Y ) by

ωλ(X,Y ) =

{
Xλ0Y λ1 · · ·Xλr if r is even,
Xλ0Y λ1 · · ·Y λr if r is odd,

where we interpret Xλ0 = 1 if λ0 = 0. By the length of the word ωλ(X,Y ), we mean
λ0 + λ1 + · · · + λr and denote it by |λ|:

|λ| = λ0 + λ1 + · · · + λr.

Theorem 2.1 The following set is a basis of the TD-algebra A as a C-vector space:

{ωλ(z, z
∗) | λ ∈ Λirr}.

Theorem 2.2 Each of the following sets is a basis of the augmented TD-algebra T as a
C-vector space:

(i) {kn ωλ(x, y) | n ∈ Z, λ ∈ Λirr}.

(ii) {kn ωλ(zt, z
∗
t ) | n ∈ Z, λ ∈ Λirr}, where t is a fixed nonzero scalar of C and zt, z

∗
t , k

±1

are the second generators of T that are introduced in (3), (4) in Section 1.2.
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We first prove the spanning property for the sets in Theorem 2.1, Theorem 2.2. Our
strategy will be to reduce the essential part to [4, Theorem 2.29]. We start with a description
of the C-algebra generated by symbols ξ, η, κ, κ−1 subject to the relations (TD)′0: κκ−1 =
κ−1κ = 1, κξκ−1 = q2ξ, κηκ−1 = q−2η. Let Φ denote the free algebra over C generated by
symbols ξ, η. Let C[κ, κ−1] denote the algebra over C generated by symbols κ, κ−1 subject
to the relations κκ−1 = κ−1κ = 1. Consider the C-vector space C[κ, κ−1]⊗Φ, where ⊗ = ⊗C.
This space has the basis

{κn ⊗ ωλ(ξ, η) | n ∈ Z, λ ∈ Λ}.

Define the product of basis elements by

(κm ⊗ ωλ(ξ, η))(κn ⊗ ωµ(ξ, η)) = κm+n ⊗ ωλ(q
−2nξ, q2nη)ωµ(ξ, η)

and extend it bilinearly to the product of elements of C[κ, κ−1] ⊗ Φ. Then C[κ, κ−1] ⊗ Φ
becomes an associative C-algebra. The mapping f⊗u 7→ fu (f ∈ C[κ, κ−1], u ∈ Φ) induces a
C-algebra isomorphism from C[κ, κ−1]⊗Φ to the C-algebra generated by ξ, η, κ, κ−1 subject
to the relations (TD)′0: κκ−1 = κ−1κ = 1, κξκ−1 = q2ξ, κηκ−1 = q−2η. We henceforth
identify these two algebras via the isomorphism and denote this algebra by C[κ, κ−1]Φ.

Define the elements v0, v1 ∈ Φ and u0, u1 ∈ C[κ, κ−1]Φ by

v0 = [ξ, ξ2η − βξηξ + ηξ2],

v1 = [ξη2 − βηξη + η2ξ, η],

u0 = δ′ (ε∗ξ2k2 − εk−2ξ2),

u1 = δ′ (ε∗k2η2 − εη2k−2),

where β = q2 + q−2 and δ′ = −(q − q−1)(q2 − q−2)(q3 − q−3)q4. Let I denote the two-sided
ideal of C[κ, κ−1]Φ generated by v0 − u0, v1 − u1:

I = C[κ, κ−1]Φ (v0 − u0)Φ + C[κ, κ−1]Φ(v1 − u1)Φ.

Since the relations (TD)′ for the augmented TD-algebra is v0 = u0, v1 = u1, the quotient
algebra C[κ, κ−1]Φ/I coincides with T and we have the canonical algebra homomorphism

πT : C[κ, κ−1]Φ −→ T (ξ, η, κ, κ−1 7→ x, y, k, k−1 respectively).

Let J denote the two-sided ideal of Φ generated by v0, v1:

J = Φv0Φ + Φv1Φ.

Write AIII = Φ/J for the quotient algebra (the TD-algebra of the 3rd kind), and let us use
the bar notation for the canonical algebra homomorphism:

πAIII
: Φ −→ AIII (ξ, η 7→ ξ̄, η̄ respectively).

By [4, Theorem 2.29], the set {ωλ(ξ̄, η̄) | λ ∈ Λirr} is a basis for AIII. Consequently

Φ = W + J (direct sum),

26



where W is the subspace of Φ spanned by

{ωλ(ξ, η) | λ ∈ Λirr}.

For an integer n ≥ 0, we mean by a word of length n in Φ a product a1a2 · · · an in Φ
such that ai ∈ {ξ, η} for 1 ≤ i ≤ n. We interpret the word of length 0 as the identity in Φ.
Let Φn denote the subspace of Φ spanned by the words of length n. For example, Φ0 = C 1.
We have the direct sum Φ =

∑
n≥0 Φn and Φr Φs = Φr+s for all r, s ≥ 0. For an integer

n ≥ 0, difine Wn = Φn ∩W and Jn = Φn ∩ J . This yields the direct sum decompositions
W =

∑
n≥0 Wn and J =

∑
n≥0 Jn. By Φ = W + J , we have

Φn = Wn + Jn

for n ≥ 0. Since v0, v1 ∈ Φ4,

Jn =
∑

Φiv0Φj +
∑

Φiv1Φj,

where both sums are over the ordered pairs of nonnegative integers (i, j) such that i + j =
n − 4. In particular, Jn = 0 for n ≤ 3. Since v0 = (v0 − u0) + u0, v1 = (v1 − u1) + u1 and
u0, u1 ∈ C[κ, κ−1]Φ2, the above expression for Jn together with the definition of I implies

Jn ⊆ I + C[κ, κ−1]Φn−2 (n ≥ 4).

To prove that the set in Theorem 2.2 (i) spans T , it suffices to show

C[κ, κ−1]Φ = C[κ, κ−1]W + I.

To this end we show C[κ, κ−1]Φn ⊆ C[κ, κ−1]W + I for n ≥ 0 and this will be done by
induction on n. Let n be given. Recall Φn = Wn + Jn. If n ≤ 3, then Jn = 0, and so
Φn = Wn ⊆ W and certainly C[κ, κ−1]Φn ⊆ C[κ, κ−1]W + I as desired. If n ≥ 4, we argue
by Jn ⊆ I + C[κ, κ−1]Φn−2

C[κ, κ−1]Φn = C[κ, κ−1]Wn + C[κ, κ−1]Jn

⊆ C[κ, κ−1]W + I + C[κ, κ−1]Φn−2

and this is contained in C[κ, κ−1]W + I by induction on n. We have now proved that the
set in Theorem 2.2 (i) spans T .

To prove the spanning property for the sets in Theorem 2.1 and Theorem 2.2 (ii), let J ′

denote the two-sided ideal of Φ generated by v0 − εδ[ξ, η] and v1 − ε∗δ[ξ, η] :

J ′ = Φ(v0 − εδ[ξ, η])Φ + Φ(v1 − ε∗δ[ξ, η])Φ,

where δ = −(q2 − q−2)
2
. Since Jn =

∑
Φiv0Φj +

∑
ΦiviΦj over (i, j) with i + j = n− 4, we

have
Jn ⊆ J ′ + Φn−2 (n ≥ 4),
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noting that [ξ, η] ∈ Φ2. We claim that

Φ = W + J ′.

The inclusion ⊇ is from the construction. To get the inclusion ⊆, we show Φn ⊆ W + J ′

for n ≥ 0 and this will be done by induction on n. Let n be given. If n ≤ 3, then
Jn = 0, Φn = Wn + Jn = Wn ⊆ W so Φn ⊆ W + J ′ as desired. If n ≥ 4, we argue by
Jn ⊆ J ′ + Φn−2

Φn = Wn + Jn

⊆ W + J ′ + Φn−2

and this is contained in W + J ′ by induction on n. We have now proved the claim. Write
A′ = Φ/J ′ for the quotient algebra, and let us use the prime notation for the canonical
algebra homomorphism :

πA′ : Φ −→ A′ (ξ, η 7→ ξ′, η′ respectively).

The above claim implies that A′ is spanned by

{ωλ(ξ
′, η′) | λ ∈ Λirr}.

Since the defining relations (TD) for A are v0 = εδ[ξ, η], v1 = ε∗δ[ξ, η], A′ is isomorphic
to the TD-algebra A by the correspandence ξ′ 7→ z, η′ 7→ z∗. This proves that the set in
Thereom 2.1 spans A. For a fixed nonzero t ∈ C, let 〈z, z∗

t 〉 denote the subalgebra of T
generated by zt, z

∗
t . We have a surjective algebra homomorphism

A′ −→ 〈zt, z
∗
t 〉 (ξ′, η′ 7→ zt, z

∗
t respectively)

by the relations (TD) for zt, z
∗
t . So 〈zt, z

∗
t 〉 is spaned by {ωλ(zt, z

∗
t ) | λ ∈ Λirr}. By the

relations (TD)0 for T , it holds that T =
∑

n∈Z kn〈zt, z
∗
t 〉. Therefore the spanning property

holds for the set in Theorem 2.2 (ii).

Next we prove the linear independency of the sets in Theorem 2.1 and Theorem 2.2. For
a nonzero s ∈ C, let ϕs be the algebra homomorphism from T to the Uq(sl2)-loop algebra
L = Uq(L(sl2)) as in Proposition 1.13: ϕs sends x, y, k to x(s), y(s), k(s), respectively,
where

x(s) = α(se+
0 + εs−1e−1 k1) with α = −q−1(q − q−1)

2
,

y(s) = ε∗se−0 k0 + s−1e+
1 ,

k(s) = sk0.

Note that the existence of the algebra homomorphism ϕs has been established already,
although the injectivety of ϕs is left to be proved. For a nonzero t ∈ C, let ιt be the algebra
homomorphism from A to T as in Proposition 1.1: ιt sends z, z∗ to zt = x+tk+εt−1k−1, z∗t =
y + ε∗t−1k + tk−1, respectively. Note also that the existence of the algebra homomorphism
ιt has been estabished already, although the injectivity of ιt is left to be proved. We set
zt(s) = ϕs ◦ ιt(z), z∗

t (s) = ϕs ◦ ιt(z
∗):

zt(s) = x(s) + tk(s) + εt−1k(s)−1,

z∗t (s) = y(s) + ε∗t−1k(s) + tk(s)−1.
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Lemma 2.3 For nonzero scalars s, t ∈ C, each of the following sets is linearly independent
in L.

(i) {k(s)nωλ(x(s), y(s)) | n ∈ Z, λ ∈ Λirr}.

(ii) {k(s)nωλ(zt(s), z
∗
t (s)) | n ∈ Z, λ ∈ Λirr}.

The linear independency of the sets in Theorem 2.2 (resp. Theorem 2.1) immediately
follows from Lemma 2.3 by applying the algebra homomorphism ϕs (resp. ϕs ◦ ιt). We
prove Lemma 2.3 by using the triangular decomposition of L together with the basis of AIII

given in [4]. Let 〈e+
0 , e+

1 〉 (resp. 〈e−0 , e−1 〉 ) be the subalgebra of L genereted by e+
0 , e+

1 (resp.
e−0 , e−1 ). Then by [4, Theorem 2.29], 〈e+

0 , e+
1 〉 (resp. 〈e−0 , e−1 〉 ) is isomorphic to AIII and has

the set B+ (resp.B−) as a linear basis, where

B+ = {ωλ(e
+
0 , e+

1 ) | λ ∈ Λirr},
B− = {ωλ(e

−
0 , e−1 ) | λ ∈ Λirr}.

By the triangular decomposition of L, the set

B = {ω−kn
0 ω+ | n ∈ Z, ω− ∈ B−, ω+ ∈ B+}

is a linear basis of L, and so every element of L is uniquely expressed as a finite sum of

cµ,n,λωµ(e−0 , e−1 )kn
0 ωλ(e

+
0 , e+

1 )

with cµ,n,λ ∈ C, n ∈ Z, µ, λ ∈ Λirr. The expression for the element k(s)nωλ(x(s), y(s)) in
question of Lemma 2.3 (i) is, by the defining relations of L,

snkn
0 ωλ(αse+

0 , s−1e+
1 )

plus some other terms cµ′,n′λ′ωµ′(e−0 , e−1 )kn′
0 ωλ′(e+

0 , e+
1 ) with |λ′| < |λ|. The highest term

snkn
0 ωλ(αse+

0 , s−1e+
1 ) is the product of the nonzero scalar snωλ(αs, s−1) ∈ C, kn

0 and the
element ωλ(e

+
0 , e+

1 ) ∈ B+. Therefore any linear dependency relation among the elements in
Lemma 2.3 (i) is the trivial one by induction on the maximal length |λ| of λ that appears
in the relation. Similarly the set in (ii) is shown to be linearly independent. This completes
the proof of Lemma 2.3.

Proof of Proposition 1.1 and Proposition 1.13: the injectivity of ιt and ϕs. The
algebra homomorphism ϕs ◦ ιt is injective by Theorem 2.1 and Lemma 2.3 (ii) and so ιt is
injective. The injectivity of ϕs follows from Theorem 2.2 (i) and Lemma 2.3 (i). 2

Proof of Proposition 1.3. Let V be a finite-dimensional irreducible T -module of type
s, diameter d and V =

⊕d
i=0 Ui the weight space decomposition from Lemma 1.2. Since

zt = x+tk+εt−1k−1, k|Ui
= sq2i−d, we have zt = x+θi on Ui, where θi = stq2i−d+εs−1t−1qd−2i.

Since xUi ⊆ Ui+1, we have (zt − θ0)(zt − θ1) · · · (zt − θd) = 0 on V . If θ0, · · · , θd are mutually
distinct, then zt is diagonalizable on V and it holds that

Vi + Vi+1 + · · · + Vd = Ui + Ui+1 + · · · + Ud (0 ≤ i ≤ d),
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where Vi is the eigenspace of zt on V that belongs to the eigenvalue θi.

Conversely, suppose zt is diagonalizable on V . Let θi0 , θi1 , · · · , θir denote the distinct
members among θi (0 ≤ i ≤ d). Then (zt − θir) · · · (zt − θi1)(zt − θi0) vanishes on V , in
particular on U0. We claim

(zt − θij) · · · (zt − θi1)(zt − θi0) = fj(x) on U0

for some monic polynomial fj of degree j + 1 (0 ≤ j ≤ r). The claim holds for j = 0, since
zt − θi0 = x + θ0 − θi0 on U0. If the claim holds for j, then there exit scalars c0, c1, · · · , cj+1

with cj+1 = 1 such that

(zt − θij) · · · (zt − θi1)(zt − θi0)u =

j+1∑
i=0

cix
iu (u ∈ U0).

Since the right-hand side has the i-th term cix
iu ∈ Ui and zt − θij+1

= x + θi − θij+1
on

Ui, the claim holds for j + 1. Thus the claim is proved by induction on j. Since (zt −
θir) · · · (zt − θi1)(zt − θi0) vanishes on U0, the monic polynomial fr of degree r + 1 satisfies
fr(x)U0 = 0. This implies xr+1U0 = 0, since xiU0 ⊆ Ui and V is the direct sum of U ′

is. On
the other hand, we have V = T U0 by the irreducibility of the T -module V , so V is spanned
by ωλ(x, y)U0 (λ ∈ Λirr) due to Theorem 2.2. For λ = (λ0, λ1, · · · , λn) ∈ Λirr, there exists
some i (0 ≤ i ≤ n) such that λ0 < λ1 < · · · < λi ≥ λi+1 ≥ · · · ≥ λn. If ωλ(x, y)U0 6= 0
for such λ, then i, n are even and it holds that λi+1 = λi+2 ≥ · · · ≥ λn−1 = λn, since
xUj ⊆ Uj+1, yUj ⊆ Uj−1 with U−1 = 0. Moreover we have λi ≤ r, otherwise ωλ(x, y)U0 = 0
by the vanishing property xr+1U0 = 0 we just proved. Therefore if ωλ(x, y)U0 6= 0, then
ωλ(x, y)U0 ⊆ Uj, where j = λi − λi−1 + · · · + λ2 − λ1 + λ0 ≤ λi ≤ r. Thus V = T U0 ⊆
U0 + U1 + · · · + Ur. This implies r = d, i.e., θ0, · · · , θd are mutually distinct. We have now
prove the first half (i) of Proposition 1.3. The sencond half (ii) is similarly proved, using
V = T Ud. 2

3 The subspace of height 0 in T
Let T be the augmented TD-algebra. T is the algebra generated by x, y, k± subject to
the relations (TD)′0, (TD)′ in Section 1.2. We introduce the notion of height for a word in
x, y, k± and discuss the structure of the subspace of T spanned by the words of height 0.
The main result of this section is Theorem 3.1. As applications of Theorem 3.1, we prove
Theorem 1.8 and the injectivity of σ in Theorem 1.9. We keep the notations in Section 2.

Consider the free algebra over C generated by ξ, η, κ, κ−1. Let τ0 denote the automor-
phism of this free algebra that sends ξ, η, κ, κ−1 to η, ξ, κ, κ−1 respectively, and let τ1 denote
the anti-automorphism that reverses the word order. Then τ0, τ1 commute and the prod-
uct τ = τ0τ1 = τ1τ0 is an antiautomorphism that sends a word ζ1ζ2 · · · ζn to ζ ′

n · · · ζ ′
2ζ

′
1

(ζi ∈ {ξ, η, κ, κ−1}), where ζ ′
i = η, ξ, κ, κ−1 for ζi = ξ, η, κ, κ−1 respectively. Note that

τ 2
0 = τ 2

1 = τ 2 = id, the identity map. Keeping the notations in Section 2, let Φ denote the
free algebra generated by ξ, η, and C[κ, κ−1]Φ the algebra generated by ξ, η, κ, κ−1 subject
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to the relations (TD)′0 : κκ−1 = κ−1κ = 1, κξκ−1 = q2ξ, κηκ−1 = q−2η. Since (TD)′0 is in-
variant under τ as a set of relations, the map τ induces an anti-antomorphism of the algebra
C[κ, κ−1]Φ. Recall the elements v0, v1 ∈ Φ and u0, u1 ∈ C[k, k−1]Φ introduced in Section 2:

v0 = [ξ, ξ2η − βξηξ + ηξ2],

v1 = [ξη2 − βηξη + η2ξ, η],

u0 = δ′(ε∗ξ2κ2 − εκ−2ξ2),

u1 = δ′(ε∗κ2η2 − εη2κ−2),

where β = q2 + q−2, δ′ = −(q − q)(q−2 − q2)(q−3 − q3)q4. The augmented TD-algebra T is
defined by (TD)′ : v0 = u0, v1 = u1 together with (TD)′0. Since vτ

0 = v1, u
τ
0 = u1, (TD)′

is invariant under τ and the map τ induces an anti-antomorphism of T . Also τ induces an
anti-antomorphism of AIII = Φ/J , where J is the two-sided ideal of Φ generated by v0, v1.
We use the same notation τ for these anti-antomorphisms of C[κ, κ−1]Φ, T , AIII.

Let W denote the free semi-group generated by ξ, η. As a set, W is the collection of all
words in Φ. Let h

h : W −→ Z
denote the semi-group homomorphism from W to the additive group Z defined by h(ξ) =
1, h(η) = −1. For a word w ∈ W , the value h(w) is called the height of w. Thus a word
of height 0 is a word in which ξ, η appear the same number of times. Denote by Φ(i) the
subspace of Φ linearly spanned by the words of height i:

Φ(i) = Span{w ∈ W | h(w) = i}.

Then Φ is the direct sum of the vector spaces Φ(i) (i ∈ Z):

Φ =
⊕
i∈Z

Φ(i). (17)

The above decomposion is an algebra grading, i.e., Φ(i)Φ(j) ⊆ Φ(i+j). Note that Φ(0) is a
subalgebra of Φ. The antiautomorphism τ changes the sign of the height of a word and so
sends Φ(i) to Φ(−i). In particular, τ induces an antiautomorphism of the subalgebra Φ(0).
Let Φsym denote the subspace of Φ(0) consisting of the fixed points of τ :

Φsym = {v ∈ Φ(0) | vτ = v}.

A word w ∈ W is called nil if w can be written as w = w1w2 with w1, w2 ∈ W and h(w2) < 0.
Let Φnil denote the subspace of Φ(0) linearly spanned by the words of height 0 that are nil:

Φnil = Span{w ∈ W | h(w) = 0, w is nil}.

Then Φnil is a two-sided ieal of Φ(0) and invariant under the antiautomorphism τ . Recall Φn

is the subspase of Φ spanned by the words of length n in ξ, η. Set Φsym
n = Φn ∩ Φsym and

Φnil
n = Φn ∩ Φnil. Then we have the direct sum decompositions as vector spaces:

Φsym =
⊕
n≥0

Φsym
n , (18)

Φnil =
⊕
n≥0

Φnil
n . (19)
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The algebra C[κ, κ−1]Φ becomes a graded algebra

C[κ, κ−1]Φ =
⊕
i∈Z

C[κ, κ−1]Φ(i).

Recall T = C[κ, κ−1]Φ/I, where I is the two-sided ideal of C[κ, κ−1]Φ generated by v0 −
u0, v1 − u1. Note that v0 − u0, v1 − u1 belong to C[κ, κ−1]Φ(2), C[κ, κ−1]Φ(−2) respectively.
Set

I(i) = I ∩ C[κ, κ−1]Φ(i).

Then we have

I =
⊕
i∈Z

I(i). (20)

For T = C[κ, κ]Φ/I, consider the canonical homomorphism

π = πT : C[κ, κ−1]Φ −→ T (ξ, η, κ, κ−1 7→ x, y, k, k−1 respectively). (21)

Set Ψ = π(Φ), Ψ(i) = π(Φ(i)). Then by (20), the algebra T inherits the algebra grading of
C[κ, κ−1]Φ =

⊕
i∈Z C[κ, κ−1]Φ(i) via π:

T = C[k, k−1]Ψ =
⊕
i∈Z

C[k, k−1]Ψ(i).

This enables us to define the height function for T : a nonzero element of T is said to have
height i if it belongs to C[k, k−1]Ψ(i).

Note that Ψ = π(Φ) is the subalgebra of T generated by x, y. Ψ has the grading

Ψ =
⊕
i∈Z

Ψ(i). (22)

Ψ(i) is the subspace of Ψ spanned by the words in x, y of height i. Ψ(0) is a subalgebra of
Ψ. The antiautomorphism τ of T sends Ψ(i) to Ψ(−i). In particular, τ induces an antiauto-
morphism of the subalgebra Ψ(0). Set

Ψsym = π(Φsym).

Then Ψsym ⊆ Ψ(0) and every element of Ψsym is fixed by τ . Let Ψnil denote the image of
Φnil under π:

Ψnil = π(Φnil).

Then Ψnil is a two-sided ideal of Ψ(0) and invariant under τ . Note that k, k−1 commute
with every element of Ψ(0). So C[k, k−1]Ψ(0) is a subalgebra of T and C[k, k−1]Ψsym (resp.
C[k, k−1]Ψnil) is a subspace (resp. two-sided ideal) of C[k, k−1]Ψ(0).

Theorem 3.1 The following (i), (ii) hold.

(i) C[k, k−1]Ψ(0) = C[k, k−1]Ψsym + C[k, k−1]Ψnil.
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(ii) The quotient algebra C[k, k−1]Ψ(0)/C[k, k−1]Ψnil is commutative and generated by k, k−1

and yixi (i = 0, 1, 2, . . .) mod C[k, k−1]Ψnil.

Proof. Our strategy will be to reduce the essential part to [4, Theorem 2.20]. Recall the
canonical homomophism in Section 2

πAIII
: Φ −→ AIII = Φ/J (ξ, η 7→ ξ̄, η̄ respectively),

where J is the two-sided ideal of Φ generated by v0, v1. Apply πAIII
to Φ(0), Φsym, Φnil

and denote the images by A(0), Asym, Anil respectively. Then Anil is a two-sided ideal of
A(0) and the quotient A(0)/Anil is a commutatve algebra generated by η̄iξ̄i (i = 0, 1, 2, . . .)
mod Anil (see [4, Lemma 3.1]). So each element of A(0)/Anil is a linear combination
of (η̄i1 ξ̄i1)(η̄i2 ξ̄i2) · · · (η̄in ξ̄in) mod Anil. Apply the antiautomorphism τ of AIII to w̄ =
(η̄i1 ξ̄i1)(η̄i2 ξ̄i2) · · · (η̄in ξ̄in). Then by the commutativity of A(0)/Anil, we have

w̄ − w̄τ = (η̄i1 ξ̄i1)(η̄i2 ξ̄i2) · · · (η̄in ξ̄in) − (η̄in ξ̄in) · · · (η̄i2 ξ̄i2)(η̄i1 ξ̄i1)

≡ 0 mod Anil.

Thus

w̄ =
1

2
(w̄ + w̄τ ) +

1

2
(w̄ − w̄τ ) ∈ Asym + Anil,

and hence
A(0) = Asym + Anil.

This means that for a word w in ξ, η of length n, height 0, there exist elements v ∈ Φsym, v′ ∈
Φnil such that w − v − v′ ∈ J . Write v (resp. v′) in the form of the direct sum (18) (resp.
(19)): v =

∑
i vi, v′ =

∑
i v

′
i with vi ∈ Φsym

i , v′
i ∈ Φnil

i . Observe J =
⊕

i Ji, where
Ji = J ∩ Φi. Since w ∈ Φn, we have w − vn − v′

n ∈ Jn. Thus from the beginning, we may
assume v = vn, v′ = v′

n, i.e., for a word w in ξ, η of length n, height 0, there exist elements
v ∈ Φsym

n , v′ ∈ Φnil
n such that

w − v − v′ ∈ Jn = J ∩ Φn. (23)

First we prove Theorem 3.1 (i). Take any word ŵ in x, y of height 0, length n. Choose
a word w in ξ, η of height 0, length n such that ŵ = π(w), where π is the canonical
homomorphism from (21). Then by (23) there exixt elements v ∈ Φsym

n , v′ ∈ Φnil
n such

that w − v − v′ ∈ Jn. Observe Jn =
∑

Φiv0Φj +
∑

Φiv1Φj, where the summation is over
i, j with i + j = n − 4, since v0, v1 have length 4. Write the element w − v − v′ ∈ Jn

as a linear combination of wiv0wj, w′
iv1w

′
j for finitely many words wi, wj, w

′
i, w

′
j in ξ, η such

that `(wi) + `(wj) = `(w′
i) + `(w′

j) = n − 4, where the function ` stands for the length
of a word. Recall that Φ is a graded algebra according to the height as in (17). Since
the element w − v − v′ has height 0 and v0, v1 have height 2, −2 respectively, we may
assume that h(wi) + h(wj) = −2, h(w′

i) + h(w′
j) = 2, where the function h stands for the

height of a word. Apply the canonical homomorphism π from (21) to w − v − v′. Then
π(v) ∈ Ψsym, π(v′) ∈ Ψnil. Since π(v0) = π(u0), π(v1) = π(u1), the terms wiv0wj, w′

iv1w
′
j in

the linear combination for w − v − v′ are mapped to

π(wi)π(u0)π(wj) ∈ C[k, k−1](Ψ(0) ∩ Ψn−2),

π(w′
i)π(u1)π(w′

j) ∈ C[k, k−1](Ψ(0) ∩ Ψn−2),
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where Ψm = π(Φm). Thus π(w) − π(v) − π(v′) belongs to C[k, k−1](Ψ(0) ∩ Ψn−2), while
π(v) + π(v′) belongs to Ψsym + Ψnil. The proof of part (i) is completed by induction on n.

Next we prove Theorem 3.1 (ii). By Theorem 2.2, C[k, k−1]Ψ(0)/C[k, k−1]Ψnil is linearly
spanned by knwλ(x, y) mod C[k, k−1]Ψnil, where n runs through Z and λ runs through
irreducible sequences such that the word wλ(x, y) has height 0. Since λ = (λ0, λ1, · · · , λr) is
irreducible and wλ(x, y) has height 0, we may assume that r is even and λ0 = 0, λ1 = λ2 ≥
λ3 = λ4 ≥ · · · ≥ λr−1 = λr, otherwise wλ(x, y) ∈ Ψnil. Therefore C[k, k−1]Ψ(0)/C[k, k−1]Ψnil

is generated by k±1 and yixi (i = 0, 1, 2, . . .) mod C[k, k−1]Ψnil. Note that k±1 commutes
with yixi. We want to show yixi, yjxj commute mod C[k, k−1]Ψnil. Set w = (yixi)(yjxj).
By part (i) we just proved, there exist f, g ∈ C[k, k−1], u ∈ Ψsym, v ∈ Ψnil such that
w = fu + gv. Then wτ = fu + gvτ , since uτ = u and k, k−1 commute with every word of
height 0 in x, y. Note that Ψnil is invariant under τ , so w − wτ = g(v − vτ ) ∈ C[k, k−1]Ψnil.
Since w−wτ = (yixi)(yjxj)−(yjxj)(yixi), this means yixi, yjxj commute mod C[k, k−1]Ψnil

and the proof of part (ii) is completed. 2

Proof of Theorem 1.8. Let V be a finite-dimensional irreducible module of the augmented
TD-algebra T . Let V =

⊕d
i=0 Ui denote the weight-space decomposition of the T -module

V . We want to show dim Ui ≤
(

d
i

)
(0 ≤ i ≤ d).

Recall the algebra grading T =
⊕

i∈Z C[k, k−1]Ψ(i), where Ψ(i) is the linear span of the
words of height i in x, y. Also recall xUi ⊆ Ui+1, yUi ⊆ Ui−1. The subalgebra C[k, k−1]Ψ(0)

acts on U0 and C[k, k−1]Ψnil belongs to the kernel of the action. By Theorem 3.1 (ii),
there exists a common eigenvector v ∈ U0 of yixi (0 ≤ i ≤ d). Since yjxj vanishes on
U0 for j ≥ d + 1, each element of C[k, k−1]Ψ(0) fixes the 1-dimensional subspace Cv by
Theorem 3.1 (ii). Since V is irreducible and T =

⊕
i∈Z C[k, k−1]Ψ(i), we have V = T v =∑d

i=0 Ψ(i)v. Then Ui = Ψ(i)v, since Ψ(i)v ⊆ Ui and the sum V =
∑d

i=0 Ui is direct. In
particular, U0 = Ψ(0)v = Cv. By Theorem 2.2,

Ui = Ψ(i)v =
∑

λ∈Λ(i)

C ωλ(x, y) v, (24)

where Λ(i) denotes the set of λ = (λ0, λ1, · · · , λr) ∈ Λirr such that r is even and

r∑
j=0

(−1)jλj = i, λ0 < λ1 < · · · < λr ≤ d.

Since Λ(i) contains exactly
(

d
i

)
members, the proof of Theorem 1.8 is completed. 2

Proof of Theorem 1.9: the injectivity of σ. Let V be a finite-dimensional irreducible
module of the augmented TD-algebra T . Let V =

⊕d
i=0 Ui denote the weight-space decom-

position of the T -module V . Recall kv = sq2i−dv for v ∈ Ui, xUi ⊆ Ui+1, yUi ⊆ Ui−1. By
Theorem 1.8 we just proved, dim U0 = 1. Let σi = σi(V ) denote the eigenvalue of yixi on
the heighest weight space U0. Apparently σ0 = 1, σi = 0 for i ≥ d + 1.

We want to show σd 6= 0. By (24) in the proof of Theorem 1.8, it holds that Ud =∑
λ∈Λ(d) ωλ(x, y)U0. Since Λ(d) = {λ = (λ0) | λ0 = d}, we have Ud = xdU0. In the proof of
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Theorem 1.8, the formula (24) follows from V =
⊕d

i=0 Ψ(i)U0. Apply the same argument

starting with V =
⊕d

i=0 Ψ(−i)Ud. Then we end up with U0 =
∑

λ∈Λ(d) ωλ(y, x)Ud. Thus we
have U0 = ydUd. So U0 = ydUd = ydxdU0 and the eigenvalue σd of ydxd on U0 is nonzero. Thus
the diameter d of the T -module V is determined by the property σd 6= 0, σi = 0 (i ≥ d + 1)
of the sequence {σi}∞i=0.

Next we want to show that the isomorphism class of the T -module V is determined by
the type s and the sequence {σi}d

i=0. Let N denote the set of elements of T that vanish on
U0:

N = {ν ∈ T | νU0 = 0}.
Then N is a maximal left ideal of T and V is isomorphic to T /N as T -modules. Hence it is
enough to show that N is determined by s and {σi}d

i=0. With respect to the algebra grading
T =

⊕
i∈Z C[k, k−1]Ψ(i), write ν ∈ N as ν =

∑
νi (νi ∈ C[k, k−1]Ψ(i)). Then νiU0 ⊆ Ui.

Since V =
⊕d

i=0 Ui and νU0 = 0, we have νiU0 = 0, i.e., νi ∈ N . Therefore

N =
⊕
i∈Z

N (i),

where N (i) = N ∩ C[k, k−1]Ψ(i). Note that N (i) = C[κ, κ−1]Ψ(i) for i < 0. Thus it is enough
to show that N (i) is determined by s and {σj}d

j=0 for i = 0, 1, 2, · · · .
For i = 0, N (0) is the kennel of the action of C[κ, κ−1]Ψ(0) on U0. By Theorem 3.1 (ii),

C[k, k−1]Ψ(0)/C[k, k−1]Ψnil is generated by k±1 and yixi (i = 0, 1, 2, . . .) mod C[k, k−1]Ψnil.
Apparently C[k, k−1]Ψnil belongs to N (0) and the action of yixi on U0 is determined by σi.
Also, using the fact that the T -module V is type s, the action of k±1 on U0 is determined by
s and d. Therefore the action of C[k, k−1]Ψ(0) on U0 is determined by s and {σj}d

j=0. Since

N (0) = N ∩ C[k, k−1]Ψ(0) is the kernel of the action, N (0) is determined by s and {σj}d
j=0.

For i ≥ 1, we claim

N (i) = {ν ∈ C[k, k−1]Ψ(i) | Ψ(−i)ν ⊆ N (0)}.
For ν ∈ N (i) = N ∩ C[k, k−1]Ψ(i), we have νU0 = 0 and so Ψ(−i)νU0 = 0, i.e., Ψ(−i)ν ⊆ N ∩
C[k, k−1]Ψ(0) = N (0). Conversely, choose ν ∈ C[k, k−1]Ψ(i) such that Ψ(−i)ν ⊆ N (0). If νU0 6=
0, then T νU0 = V by the irreducibility of the T -module V . Since T ν =

⊕
j∈Z C[k, k−1]Ψ(j)ν

and Ψ(j)νU0 ⊆ Uj+i, we have T νU0 =
⊕d−i

j=−i Ψ
(j)νU0, in particular Ψ(−i)νU0 = U0, which

contradicts the assumption Ψ(−i)ν ⊆ N (0). Thus νU0 = 0, i.e., ν ∈ N ∩C[k, k−1]Ψ(i) = N (i),
and the claim is proved. This means N (i) is determined by N (0). Since N (0) is determined
by s and {σj}d

j=0, so is N (i). This completes the proof of the injectivity of σ in Theorem 1.9.
2

4 Finite-dimensional irreducible A-modules via ιt:

Proof of Theorem 1.11

The TD-algebra A = A(ε,ε∗)
q is by Proposition 1.1 embedded into the augmented TD-algebra

T = T (ε,ε∗)
q via the injective algebra-homomorphism

ιt : A −→ T (z 7→ zt, z∗ 7→ z∗t )
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for each fixed t ∈ C (t 6= 0), where

zt = x + tk + εt−1k−1,

zt
∗ = y + ε∗t−1k + tk−1.

Let V be a fintite-dimensional irreducible T -module of type s and diameter d. As we
discussed in Section 1.2, the pair A = zt|V , A∗ = zt

∗|V of linear transformations of V gives
rise to a TD-pair if and only if

(C1)t: the actions of zt, z∗
t on V are both diagonalizable,

(C2)t: V is irreducivble as a 〈zt, z
∗
t 〉-module,

where 〈zt, z
∗
t 〉 is the subalgebra of T genarated by zt, z∗

t .

By Proposition 1.3, the condition (C1)t holds if and only if θi 6= θj and θ∗i 6= θj for i 6= j
(0 ≤ i, j ≤ d), where

θi = s t q2i−d + ε s−1t−1qd−2i,

θi
∗ = ε∗s t−1q2i−d + s−1t qd−2i.

In this section, we prove Theorem 1.11, a criterion for (C2)t. Namely assume (C1)t. Then
the condition (C2)t holds if and only if PV (t2 + ε ε∗t−2) 6= 0, where PV (λ) is the Drinfel’d
polynomial of the T -module V .

We proceed parallel to [7]. Let V =
⊕d

i=0 Ui denote the weight-space decomposition of

the T -module V , and Fi the projection of V =
⊕d

i=0 Ui onto Ui. Note that k acts on V as∑d
i=0 s q2i−dFi. Identifying z, z∗ with zt, z∗

t via ιt, we write z = zt, z∗ = zt
∗ for short. Since

(C1)t is assumed, the action of z (resp.z∗) on V has d + 1 distinct eigenvalues θ0, · · · , θd

(resp. θ∗0, · · · , θ∗d) on V by Proposition 1.3. Let Vi (resp. V ∗
i ) denote the eigenspace of z

(resp. z∗) on V belonging to θi (resp. θ∗i ). Then we have

Vi + Vi+1 + · · · + Vd = Ui + Ui+1 + · · · + Ud,

V ∗
0 + V ∗

1 + · · · + V ∗
i = U0 + U1 + · · · + Ui

for 0 ≤ i ≤ d. In particular, U0 = V ∗
0 , Ud = Vd. Let Ei (resp. E∗

i ) denote the projection of
V =

⊕d
i=0 Vi (resp. V =

⊕d
i=0 V ∗

i ) onto Vi (resp.V ∗
i ). Then the mappings

Fi|Vi
: Vi −→ Ui,

Ei|Ui
: Ui −→ Vi

are both bijections and inverses each other. Also the mappings

Fi|V ∗
i

: V ∗
i −→ Ui,

E∗
i |Ui

: Ui −→ V ∗
i

are both bijections and inverses each other. In particular, by Theorem 1.8

dim V0 = 1, dim V ∗
d = 1.
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By the argument in the proof of Proposition 1.7, the TD-relations (TD) for z, z∗ imply

z∗Vi ⊆ Vi−1 + Vi + Vi+1,

z V ∗
i ⊆ V ∗

i−1 + V ∗
i + V ∗

i+1

for 0 ≤ i ≤ d, where V−1 = Vd+1 = V ∗
−1 = V ∗

d+1 = 0.

Regard V as an A-module via ιt. Let W be an irreducible A-submodule of V . Set
Wi = W ∩ Vi, W ∗

i = W ∩ V ∗
i . Then

z∗Wi ⊆ Wi−1 + Wi + Wi+1,

z W ∗
i ⊆ W ∗

i−1 + W ∗
i + W ∗

i+1

for 0 ≤ i ≤ d. Since W is irreducible as an A-module and since z, z∗ are diagonalizable on
W , the pair z|W , z∗|W is a TD-pair on W . This implies that the eigenspace decompositions
of z|W , z|W ∗ are

W =
r+d′⊕
i=r

Wi,

W =
r′+d′⊕
i=r′

W ∗
i ,

for some integers r, r′, where d′ is the diameter of the TD-pair z|W , z∗|W ∈ End(W ). As
we discussed in Section 1.2, the A-module structure on W can be extended to a T -module
structure on W by using the split decomposition of the TD-pair z|W , z∗|W . (Note that the
weight-space decomposition of the T -module W may be totally different from that of the
T -module V .) By applying Theorem 1.8 to the irreducible T -module W , we have

dim Wr = dim W ∗
r′+d′ = 1.

First we want to show r = 0, r′ + d′ = d, i.e., W ⊇ V0, W ⊇ V ∗
d .

Since dim Wr = 1, we have Wr = Cv for some nonzero element v ∈ Wr. Since W ⊆
Vr + · · · + Vd = Ur + · · · + Ud, we can express v as

v = ur + · · · + ud,

where ui = Fiv ∈ Ui. Then ur 6= 0, since v ∈ Wr ⊆ Vr and Fr|Vr : Vr −→ Ur is a bijection.

Lemma 4.1 The action of T on V satisfies the following (i), (ii), (iii).

(i) xjur = (θr − θr+1) · · · (θr − θr+j) ur+j (1 ≤ j ≤ d − r).

(ii) yur = 0.

(iii) yjur+j ∈ Cur (1 ≤ j ≤ d − r).
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Proof. Recall z = zt and so z|V = x|V +
∑d

i=0 θiFi. Since ui ∈ Ui, we have z ui = x ui + θiui,
so zv = θrur + (xur + θr+1ur+1) + · · · + (xud−1 + θdud). Note xui ∈ Ui+1. On the other
hand, since v ∈ Wr ⊆ Vr, we have z v = θrv = θrur + θrur+1 + · · ·+ θrud. Therefore we have
xui−1 + θiui = θrui, i.e., xui−1 = (θr − θi)ui and we obtain (i) recursively.

Recall z∗ = z∗t and so z∗|V = y|V +
∑d

i=0 θ∗i Fi. Since ui ∈ Ui, we have z∗ui = y ui + θ∗i ui,
so z∗v = y ur + (y ur+1 + θ∗rur) + · · · + (y ud + θ∗d−1ud−1) + (θ∗dud). Note y ui ∈ Ui−1. On
the other hand, since z∗v ∈ W and Fr−1W = 0, we have y ur = 0, i.e., (ii) holds. Since
z∗v ∈ W and FrW = FrWr = Cur, we have y ur+1 + θ∗rur ∈ Cur, i.e., (iii) holds for j = 1.
By z∗|V = y|V +

∑d
i=0 θ∗i Fi and y Ui ⊆ Ui−1, we can write z∗jui as a linear combination of

ui, y ui, y
2ui, . . . , y

jui, in which the coefficient of yjui is 1 if i − j ≥ r. In particular for
v = ur + · · · + ud, the projection of z∗jv onto Ur by Fr can be written as

Frz
∗jv = yjur+j + c1y

j−1ur+j−1 + · · · + cj−1y ur+1 + cjur

for some c1, · · · , cj−1, cj ∈ C. Since Frz
∗jv ∈ FrW = FrWr = Cur, (iii) holds by induction

on j. 2

Proposition 4.2 It holds that W ⊇ V0 and W ⊇ V ∗
d .

Proof. We only show W ⊇ V0, i.e., r = 0; W ⊇ V ∗
d is proved similarly, using W ∗

r′+d′ in place
of Wr. By Lemma 4.1, the action of T on V satisfies

yur = 0,

yjxjur ∈ Cur (j = 0, 1, 2, · · · ).

This implies T ur ⊆ Ur + · · ·+ Ud, since T is linealy spanned by knwλ(x, y) (n ∈ Z, λ ∈ Λirr)
by Theorem 2.2. Since V is irreducible as a T -module, we have V = T ur and hence r = 0.
2

Thus for a finite-dimensional irreducible T -module V of type s, diameter d and an irre-
ducible A-module W ⊆ V via ιt, we have W0 = V0, W ∗

d = V ∗
d . In particuler, W = AV0.

Next we calculate how the eigenspace V0 of z|V is mapped to V ∗
0 by the projection

E∗
0 : V =

⊕d
i=0 V ∗

i −→ V ∗
0 . It holds that on V

E∗
0 =

d∏
j=1

z∗ − θ∗j
θ∗0 − θ∗j

,

since the right-hand side vanishes on V ∗
j (1 ≤ j ≤ d) and is the identity map on V ∗

0 . Write
V0 as V0 = Cv for some nonzero element v ∈ V0 and express v as v = u0 + u1 + · · · + ud,
where ui = Fiv ∈ Ui. Then we obtain

E∗
0ui = Θ∗

i
−1yiui, Θ∗

i =
i∏

j=1

(θ∗0 − θ∗j ).
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This is because
(∏i

j=1(z
∗ − θ∗j )

)
ui = yiui ∈ U0 = V ∗

0 by (z∗ − θ∗j )|Uj
= y|Uj

, y Uj ⊆ Uj−1 and
because (z∗ − θ∗j )|U0 = θ∗0 − θ∗j for i + 1 ≤ j ≤ d. By Lemma 4.1 with r = 0,

ui = Θ−1
i xiu0, Θi =

i∏
j=1

(θ0 − θj).

Since yixiu0 = σiu0, we have
E∗

0ui = Θ−1
i Θ∗

i
−1σiu0

and so

E∗
0v =

d∑
i=0

Θ−1
i Θ∗

i
−1σiu0.

Note that u0 = F0v 6= 0, since F0|V0 : V0 −→ U0 is a bijection. Thus by Remark 1.10 in
Section 1.3, we have

Proposition 4.3 For a finite-dimensional irreducible T -module V of type s and diameter
d, assume the condition (C1)t for a nonzero t ∈ C. Then for v ∈ V0, it holds that

E∗
0v = Θ−1QPV (t2 + εε∗t−2) u0,

where u0 = F0v,

Θ = (θ0 − θ1) · · · (θ0 − θd)(θ
∗
0 − θ∗1) · · · (θ∗0 − θ∗d),

Q = (−1)d(q − q−1)
2
(q2 − q−2)

2 · · · (qd − q−d)
2
,

and PV (λ) is the Drinfel’d polynomial of the T -module V defined in Section 1.3:

PV (λ) = Q−1

d∑
i=0

σi(V )
d∏

j=i+1

(qj − q−j)
2
(εs−2q2(d−j) + ε∗s2q−2(d−j) − λ).

Proof of Theorem 1.11. Suppose PV (t2 + εε∗t−2) 6= 0. Then by Proposition 4.3, we have
E∗

0V0 6= 0. Then E∗
0V0 = V ∗

0 , since E∗
0V0 ⊆ V ∗

0 and dim V ∗
0 = 1. Let W be an irreducible

A-submodule of V via ιt. Then W ⊇ V0 by Proposition 4.2. Since E∗
0 is a polynomial of

z∗|V , W is E∗
0 -invariant and so W ⊇ E∗

0W ⊇ E∗
0V0 = V ∗

0 , i.e., W ⊇ U0 by U0 = V ∗
0 . We

want to prove W = V . To do so, it is enough to show ωU0 ⊆ W for every word ω in x, y,
since V = T U0 and T U0 is linearly spanned by such ωU ′

0s. Now ωU0 belongs to some Ui and
x, y coincide with z − θi, z∗ − θ∗i on Ui respectively. Therefore ωU0 ⊆ W implies xωU0 ⊆ W
and yωU0 ⊆ W , since W is invariant under z − θi, z

∗ − θ∗i . This means induction works
on the word length. Thus ωU0 ⊆ W holds for every word ω in x, y and it is shown that
PV (t2 + εε∗t−2) 6= 0 implies W = V , i.e., V is irreducible as an A-module.

Suppose PV (t2 + εε∗t−2) = 0. Then by Proposition 4.3, we have E∗
0V0 = 0. This means

V0 ⊆ V ∗
1 + · · · + V ∗

d . Set

Vi,i+1 = (V0 + · · · + Vi) ∩ (V ∗
i+1 + · · · + V ∗

d )
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for 0 ≤ i ≤ d−1. Note V0 = V0,1. Then by zV ∗
j ⊆ V ∗

j−1+V ∗
j +V ∗

j+1 and z∗Vj ⊆ Vj−1+Vj+Vj+1,
we have

(z − θi)Vi,i+1 ⊆ Vi−1,i,

(z∗ − θ∗i+1)Vi,i+1 ⊆ Vi+1,i+2,

where V−1,0 = Vd,d+1 = 0. Set V ′ = V0,1 + V1,2 + · · · + Vd−1,d. Then V ′ is 〈z, z∗〉-invariant.
Since V0 ⊆ V ′ ⊆ V ∗

1 + · · · + V ∗
d , the 〈z, z∗〉-invariant subspace V ′ is a proper subspace of V .

Thus it is shown that if PV (t2 + εε∗t−2) = 0, then V is not irreducible as an A -module.
This comletes the proof of Theorem 1.11. 2

5 The product formula for the Drinfel’d polynomial

PV (λ) of a T -module V via ϕs: Proof of the surjectiv-

ity of σ in Theorem 1.9

The augmented TD-algebra T = T ε,ε∗
q is by Proposition 1.13 embedded into the Uq(sl2)-loop

algebra L = Uq(L(sl2)) via the injective algebra-homomorphism

ϕs : T −→ L (x, y, k 7→ x(s), y(s), sk0 respectively)

for each fixed nonzero s ∈ C, where

x(s) = α(se+
0 + εs−1e−1 k1), α = −q−1(q − q−1)

2
,

y(s) = ε∗se−0 k0 + s−1e+
1 .

For (ε, ε∗) = (1, 1), (0, 0), let

V = V (`1, a1) ⊗ · · · ⊗ V (`n, an)

be the tensor product of evaluation modules V (`i, ai) for L (1 ≤ `i, ai ∈ C\{0}, 1 ≤ i ≤ n)
(see Section 1.4). We regard V as a T -module via the embedding ϕs. We call such a
T -module V a tensor product of evaluation modules via ϕs.

For (ε, ε∗) = (1, 0), let L′ denote the subalgebra of L generated by e+
0 , e+

1 , e−1 , k±1
i (i =

0, 1) and V = V (`1, a1) ⊗ · · · ⊗ V (`n, an) the tensor product of evaluation modules V (`i, ai)
for L′ (1 ≤ `i, ai ∈ C, 1 ≤ i ≤ n): note that e−0 is missing from the set of generators for L′

and ai = 0 is allowed for the evaluation module V (`i, ai) of L′ (see Section 1.4). We regard
V as a T -module via the embedding ϕs, since the image of T by ϕs is contained in L′ in the
case of (ε, ε∗) = (1, 0). We call such a T -module V a tensor product of evaluation modules
via ϕs.

We treat such a T -module V = V (`1, a1) ⊗ · · · ⊗ V (`n, an) via ϕs in one argument,
regardless of (ε, ε∗), and use the same notation L for L′ in the case of (ε, ε∗) = (1, 0). So in
this section, we understand in the case of (ε, ε∗) = (1, 0) that L denotes the subalgebra of
the Uq(sl2)-loop algebra Uq(L(sl2)) generated by e+

0 , e+
1 , e−1 , k±1

i (i = 0, 1) with e−0 missing
from the set of generators, and that ai = 0 is allowed for the evaluation module V (`i, ai).
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For a T -module V = V (`1, ai)⊗· · ·⊗V (`n, an) via ϕs, let v
(i)
0 , · · · , v

(i)
`i

denote a standard

basis of V (`i, ai): we write v0 = v
(i)
0 , v1 = v

(i)
1 , · · · , v`i

= v
(i)
`i

for short. The action of T on
V (`i, ai) = 〈v0, v1, · · · , v`i

〉 is

k0vj = q2j−`i vj,

e+
0 vj = aiq [j + 1] vj+1,

ε∗e−0 vj = ε∗a−1
i q−1[`i − j + 1] vj−1,

e+
1 vj = [`i − j + 1] vj−1,

e−1 vj = [j + 1] vj+1,

where v
(i)
−1 = v

(i)
`i+1 = 0, and we understand ε∗a−1

i = 0 if (ε, ε∗) = (1, 0) and ai = 0. Let
Ui denote the subspace of V spanned by vj1 ⊗ · · · ⊗ vjn , where (j1, · · · , jn) runs through
0 ≤ j1 ≤ `1, · · · , 0 ≤ jn ≤ `n such that j1 + · · · + jn = i:

Ui =
⊕

j1+···+jn=i

Cvj1 ⊗ · · · ⊗ vjn .

Then k|Ui
= sq2i−d, so

V =
d⊕

i=0

Ui (d = `1 + · · · + `n)

is the eigenspace decomposition of ϕs(k). We call V =
⊕d

i=0 Ui the weight space decomposi-
tion of the T -module V via ϕs and U0 the highest weight space. Observe that

dim U0 = 1,

x Ui ⊆ Ui+1, y Ui ⊆ Ui−1

for 0 ≤ i ≤ d, where U−1 = Ud+1 = 0. So the 1-dimensional space U0 is invariant under yixi.
Define the sequence {σi}∞i=0 of scalars σi = σi(V ) by

yixi|U0 = σi.

Then σ0 = 1 , σi = 0 (d + 1 ≤ i). Note that the T -module V via ϕs is not necessarily
irreducible and σd = 0 is possible. Define the Drinfel’d polynomial PV (λ) of the T -module
V via ϕs by

PV (λ) = Q−1

d∑
i=0

σi(V )
d∏

j=i+1

(qj − q−j)
2
(εs−2q2(d−j) + ε∗s2q−2(d−j) − λ), (25)

Q = Qd = (−1)d(q − q−1)
2
(q2 − q−2)

2 · · · (qd − q−d)
2
. (26)

Since σ0 = 1, PV (λ) is a monic polynomial of degree d. Observe

σd(V ) = Q · PV (εs−2 + ε∗s2).

More generally the Drinfel’d polynomial PV (λ) is defined in the same way for a finite-
dimensional T -module V that has the following properties:
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(D)0: k is diagonalizable on V with V =
⊕d

i=0 Ui, k|Ui
= sq2i−d (0 ≤ i ≤ d)

for some nonzero constant s.
(D)1: dim U0 = 1.

By the relations (TD)0 : kk−1 = k−1k = 1, kxk−1 = q2x, kyk−1 = q−2y, it holds that
xUi ⊆ Ui+1, y Ui ⊆ Ui−1 (0 ≤ i ≤ d), where U−1 = Ud+1 = 0. Thus σi(V )’s are defined as
before and hence PV (λ) by (25), (26). The eigenspace decomposition and the subspace U0 in
(D)0 are called the weight-space decomposition and the highest weight space of the T -module
V respectively. The nonzero scalar s and the nonnegative integer d in (D)0 are called the
type and the diameter of the T -module V respectively. We further consider the following
property for a T -module V that satisfies (D)0, (D)1 with diameter d:

(D)2: σd(V ) 6= 0.

Lemma 5.1 Let V be a finite-dimensional T -module that satisfies the properties (D)0, (D)1.
Consider the T -submodule W = T U0, where U0 is the highest weight space of the T -module
V . Let M be a maximal T -submodule of W . Set W = W/M . Then the T -submodule W and
the quotient T -module W satisfy (D)0, (D)1 as well. Furthermore if V satisfies (D)2 with
diameter d, then so do the T -modules W and W and it holds that

(i) σi(V ) = σi(W ) = σi(W ) (0 ≤ i ≤ d),

(ii) PV (λ) = PW (λ) = PW (λ).

Lemma 5.1 follows from Lemma 1.2, since W is irreducible as a T -module.

In what follows, we fix a nonzero scalar s ∈ C arbitrarily and we only treat finite-
dimensional T -modules via ϕs that satisfy the above properties (D)0, (D)1. In this case,
the weight space decomposition of a T -module V coincides with that of the L-module V ,
since ϕs(k) = s k0. Note that the tensor product of evaluation modules V (`i, ai) (1 ≤ i ≤ n)
satisfies (D)0, (D)1 and has type s, diameter d = `1 + · · ·+`n. If V, V ′ are T -modules via ϕs,
then the tensor product V ⊗ V ′ becomes a T -module via ∆ ◦ ϕs, where ∆ : L −→ L⊗ L is
the coproduct. Furthermore, if the T -modules V, V ′ via ϕs satisfy the properties (D)0, (D)1,
so does the tensor product V ⊗ V ′ as a T -module via ϕs and so the Drinfel’d polynomial
PV ⊗V ′(λ) is defined. We have the following product formula.

Theorem 5.2 Let V, V ′ be finite-dimensional T -modules via ϕs that satisfy the properties
(D)0, (D)1. Assume that V ′ is afforded by a tensor product of evaluation modules via ϕs.
Then the following (i), (ii) holds.

(i) The Drinfel’d polynomial PV ⊗V ′(λ) of the T -module V ⊗ V ′ via ϕs is

PV ⊗V ′(λ) = PV (λ)PV ′(λ).

(ii) The Drinfel’d polynomial PV (`,a)(λ) of the T -module V (`, a) via ϕs is

PV (`,a)(λ) =
∏

c∈S(`,a)

(λ + c + εε∗c−1),
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where
S(`, a) = {a q2i−`+1 | 0 ≤ i ≤ ` − 1}.

We understand that if (ε, ε∗) = (1, 0) and a = 0, S(`, a) is the multiset with 0 appearing
` times and PV (`,0) = λ`.

To prove Theorem 5.2, we prepare two lemmas and a proposition. Let V, V ′ be T -modules
via ϕs as in Theorem 5.2 and have weight-space decompositions

V =
d⊕

i=0

Ui,

V ′ =
d′⊕

i=0

U ′
i ,

respectively. Then the T -module V ⊗ V ′ via ϕs has weight-space decomposition

V ⊗ V ′ =
d+d′⊕
i=0

Ũi,

where
Ũi =

⊕
i1+i2=i

Ui1 ⊗ Ui2 (0 ≤ i ≤ d + d′).

Lemma 5.3 Set x(s) = ϕs(x), y(s) = ϕs(y). Then the actions of x(s), y(s) on Ui ⊗ V ′ are

x(s)|Ui⊗V ′ = x(s)|Ui
⊗ 1V ′ + 1Ui

⊗ x(q2i−ds)|V ′ ,

y(s)|Ui⊗V ′ = y(s)|Ui
⊗ 1V ′ + 1Ui

⊗ y(q2i−ds)|V ′ .

Proof. These identities follow directly from x(s) = α(se+
0 +εs−1e−1 k1), y(s) = ε∗se−0 k0+s−1e+

1

and the coproduct ∆ that sends e+
i , e−i ki, ki to e+

i ⊗ 1 + ki ⊗ e+
i , e−i ki ⊗ 1 + ki ⊗ e−i ki, ki ⊗ ki

respectively. 2

Lemma 5.4 Assume V ′ = V (1, a), an evaluation module of diameter 1, and let V (1, a) =
〈v0, v1〉 be a standard basis. For u ∈ Um (0 ≤ m ≤ d) and 1 ≤ i, we have

(i) xi(u ⊗ v0) = (xiu) ⊗ v0 + α q [ i ] ci(m)(xi−1u) ⊗ v1,

xi(u ⊗ v1) = (xiu) ⊗ v1,

where ci(m) = a s qi+2m−d−1 + εs−1q−i−2m+d+1,

(ii) yi(u ⊗ v0) = (yiu) ⊗ v0,

yi(u ⊗ v1) = (yiu) ⊗ v1 + [ i ] c∗i (m)(yi−1u) ⊗ v0,

where c∗i (m) = ε∗a−1s q−i+2m−d+1 + s−1qi−2m+d−1.
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Proof. Recall e+
0 v0 = q a v1, e−1 v0 = v1, e+

0 v1 = e−1 v1 = 0, ε∗e−0 v1 = ε∗a−1q−1v0, e+
1 v1 =

v0, ε∗e−0 v0 = e+
1 v0 = 0, k0v0 = q−1v0, k0v1 = qv1. We proceed by induction on i. For i = 1,

we have by Lemma 5.3

x(u ⊗ v0) =
(
x(s)u

)
⊗ v0 + u ⊗

(
x(q2m−ds) v0

)
= (xu) ⊗ v0 + α (q2m−ds q a + εq−2m+ds−1q) u ⊗ v1

= (xu) ⊗ v0 + α q c1(m) u ⊗ v1,

x(u ⊗ v1) =
(
x(s)u

)
⊗ v1 + u ⊗

(
x(q2m−ds) v1

)
= (xu) ⊗ v1,

and

y(u ⊗ v0) =
(
y(s)u

)
⊗ v0 + u ⊗

(
y(q2m−ds) v0

)
= (yu) ⊗ v0,

y(u ⊗ v1) =
(
y(s)u

)
⊗ v1 + u ⊗

(
y(q2m−ds) v1

)
= (yu) ⊗ v1 + (ε∗q2m−ds a−1 + q−2m+ds−1) u ⊗ v0

= (yu) ⊗ v1 + c∗1(m) u ⊗ v0.

For i ≥ 2, we have by Lemma 5.3 and induction on i

xi(u ⊗ v0) = xi−1
(
(xu) ⊗ v0 + α q c1(m) u ⊗ v1

)
= (xiu) ⊗ v0 + α q[i − 1] ci−1(m + 1) (xi−1u) ⊗ v1

+α q c1(m) (xi−1u) ⊗ v1

= (xiu) ⊗ v0 + α q [ i ] ci(m) (xi−1u) ⊗ v1,

since [i − 1]ci−1(m + 1) + c1(m) = [ i ] ci(m) , and

yi(u ⊗ v1) = yi−1
(
(yu) ⊗ v1 + c∗1(m) u ⊗ v0

)
= (yiu) ⊗ v1 + [i − 1] c∗i−1(m − 1) (yi−1u) ⊗ v0

+c∗1(m) (yi−1u) ⊗ v0

= (yiu) ⊗ v1 + [ i ] c∗i (m) (yi−1u) ⊗ v0,

since [i − 1] c∗i−1(m − 1) + c∗1(m) = [ i ] c∗i (m). Also we have xi(u ⊗ v1) = xi−1((xu) ⊗ v1) =
(xiu) ⊗ v1, yi(u ⊗ v0) = yi−1((yu) ⊗ v0) = (yiu) ⊗ v0 by induction on i. 2

Proposition 5.5 Assume V ′ = V (1, a), an evaluation module of diameter 1. For the T -
modules V and V ⊗ V ′ via ϕs, set σi = σi(V ) and σ̃i = σi(V ⊗ V ′). Then for i ≥ 1, we
have

σ̃i = σi − (qi − q−i)
2(

a + ε ε∗a−1 + ε s−2q2(d+1−i) + ε∗s2q−2(d+1−i)
)
σi−1,

where d is the diameter of the T -module V . We understand that ε∗a−1 = 0 if (ε, ε∗) = (1, 0)
and a = 0.
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Proof. Let V =
⊕d

i=0 Ui denote the weight-space decomposition of the T -module V and
V (1, a) = 〈v0, v1〉 a standard basis of V ′. Choose a nonzero vector u0 ∈ U0. Then u0 ⊗ v0

spans the highest weight space of V ⊗ V ′. We have by Lemma 5.4

yixi(u0 ⊗ v0) = yi
(
(xiu0) ⊗ v0 + α q [ i ] ci(0) (xi−1u0) ⊗ v1

)
= (yixiu0) ⊗ v0

+α q [ i ] ci(0)
(
(yixi−1u0) ⊗ v1 + [ i ] c∗i (i − 1) (yi−1xi−1u0) ⊗ v0

)
= σiu0 ⊗ v0 + α q [ i ]2ci(0) c∗i (i − 1) σi−1u0 ⊗ v0,

since yixi−1u0 = 0. So it holds that

σ̃i = σi + α q [ i ]2ci(0) c∗i (i − 1) σi−1

= σi − (qi − q−i)
2(

a + εε∗a−1 + εs−2q2(d+1−i) + ε∗s2q−2(d+1−i)
)
σi−1.

2

Proof of Theorem 5.2. We first treat the case of V ′ = V (1, a), an evaluation module of
diameter 1. By Proposition 5.5,

σ̃i = σi − (qi − q−i)
2
σi−1

(
(εs−2q2(d+1−i) + ε∗s2q−2(d+1−i) − λ) + (λ + a + εε∗a−1)

)
,

and we have, with Q̃ = (−1)d+1(q − q−1)
2
(q2 − q−2)

2 · · · (qd+1 − q−d−1)
2
,

PV ⊗V (1,a)(λ) = Q̃−1

d+1∑
i=0

σ̃i

d+1∏
j=i+1

(qj − q−j)2
(
εs−2q2(d+1−j) + ε∗s2q−2(d+1−j) − λ

)
= Q̃−1

d+1∑
i=0

σi

d+1∏
j=i+1

(qj − q−j)2
(
εs−2q2(d+1−j) + ε∗s2q−2(d+1−j) − λ

)
− Q̃−1

d∑
i−1=0

σi−1

d+1∏
j=i

(qj − q−j)2
(
εs−2q2(d+1−j) + ε∗s2q−2(d+1−j) − λ

)
− Q̃−1

d∑
i−1=0

σi−1(λ + a + ε ε∗a−1)(qd+1 − q−d−1)2

×
d∏

j−1=i

(qj−1 − q−j+1)2
(
εs−2q2(d−j+1) + ε∗s2q−2(d−j+1) − λ

)
.

This equals (λ + a + ε ε∗a−1) PV (λ), since σd+1 = σd+1(V ) = 0 and so the first and second
terms cancel out. This argument is valid even if V is the trivial module, i.e., dim V = 1,
e±i |V = 0, k±1

i |V = 1. In this case, V ⊗ V (1, a) ' V (1, a) and it is easily checked that
PV (λ) = 1 and

PV (1,a)(λ) = λ + a + ε ε∗a−1. (27)

45



Thus in the case of V ′ = V (1.a), we have

PV ⊗V (1,a)(λ) = PV (λ)PV (1,a)(λ). (28)

Next we treat the case V ′ = V (`, a), an evaluation module of diameter `. We want to
show

PV ⊗V (`,a)(λ) = PV (λ)PV (`,a)(λ) (29)

for every integer ` ≥ 1 by induction on `. To do so, we prepare a lemma below that
gives an embedding of V ′ = V (`, a) into V (` − 1, a q−1) ⊗ V (1, a q`−1) as an L-submodule.
Start with the evaluation modules V (` − 1, a q−1), V (1, a q`−1) for L. Let V (` − 1, a q−1) =
〈u0, u1, · · · , u`−1〉, V (1, a q`−1) = 〈v0, v1〉 be standard bases of the evaluation modules. By
direct calculations, we have the following lemma.

Lemma 5.6 Consider the tensor product V (`−1, a q−1)⊗V (1, a q`−1) of evaluation modules
as an L-module via the coproduct ∆. Set

wi = q−iui ⊗ v0 + ui−1 ⊗ v1 ∈ V (` − 1, a q−1) ⊗ V (1, a q`−1)

for 0 ≤ i ≤ `, where u−1 = u` = 0. Then Cw0 is the highest weight space of the L-module
V (` − 1, a q−1) ⊗ V (1, a q`−1). Set W = Lw0. Then

W ' V (`, a)

as L-modules with
W = 〈w0, w1, · · · , w`〉

a standard basis for W .

Consider the L⊗L-modules V ⊗V (`, a) and V ⊗
(
V (`−1, a q−1)⊗V (1, a q`−1)

)
. Regard

them as L-modules via the coproduct ∆ : L −→ L ⊗ L and then as T -modules via ϕs.
Choose nonzero vectors u, w from the highest weight spaces of V , V (`−1, a q−1)⊗V (1, aq`−1)
respectively. Then C u⊗w is the highest weight space of V ⊗

(
V (`− 1, a q−1)⊗V (1, aq`−1)

)
as an L-module and hence as a T -module via ϕs. Set W = Lw. The properties (D)0, (D)1

hold for the T -module V ⊗
(
V (`−1, a q−1)⊗V (1, aq`−1)

)
and its T -submodule V ⊗W . The

Drinfel’d polynomials of these T -modules coincide, since they share the common highest
weight space and have the same diameter. On the other hand, V ⊗ V (`, a) is isomophic to
V ⊗W as L-modules by Lemma 5.6 and so as T -modules via ϕs. In particular, the Drinfel’d
polynomial of V ⊗ V (`, a) coincides with that of V ⊗ W as T -modules via ϕs. Therefore
V ⊗ V (`, a) and V ⊗

(
V (` − 1, a q−1) ⊗ V (1, aq`−1)

)
have the same Drinfel’d polynomial

as T -modules via ϕs. The Drinfel’d polynomial of the T -module V ⊗
(
V (` − 1, a q−1) ⊗

V (1, aq`−1)
)

is the product of those of the T -modules V ⊗ V (` − 1, a q−1) and V (1, aq`−1)
by (28), since V ⊗

(
V (` − 1, a q−1) ⊗ V (1, aq`−1)

)
is isomorphic to

(
V ⊗ V (` − 1, a q−1)

)
⊗

V (1, aq`−1) as T -modules via ϕs. By induction on `, the formula (29) holds for ` − 1, so we
have PV ⊗V (`−1,a q−1) = PV PV (`−1,a q−1). Therefore PV ⊗V (`,a) = PV PV (`−1,a q−1) PV (1,aq`−1). On
the other hand, PV (`−1, aq−1)PV (1,a q−1) = PV (`−1,a q−1)⊗V (1,aq−1) = PW = PV (`,a) by the same
argument. This proves the formula (29).
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Finally we treat the general case V ′ = V ′′ ⊗ V (`, a), where V ′′ is afforded by a tensor
product of evaluation modules via ϕs. By (29), PV ⊗V ′ = PV ⊗V ′′⊗V (`,a) = PV ⊗V ′′PV (`,a). By
induction on dim V ′′, PV ⊗V ′′ = PV PV ′′ . So PV ⊗V ′ = PV PV ′′PV (`,a). By (29), PV ′′PV (`,a) =
PV ′′⊗V (`,a) = PV ′ . So PV ⊗V ′ = PV PV ′ . This completes the proof of Theorem 5.2 (i).

By Lemma 5.6 and Theorem 5.2 (i), we have

PV (`,a)(λ) =
∏

c∈S(`,a)

PV (1,c)(λ).

By (27), PV (1,c)(λ) = λ + c + ε ε∗c−1. This completes the proof of Theorem 5.2 (ii). 2

Proof of the surjectivity of σ in Theorem 1.9. Given an arbitrary monic polynomial
P (λ) of degree d and an arbitrary nonzero s ∈ C such that P (εs−2 + ε∗s2) 6= 0, we show
that there exists an irreducible T -module V of type s and diameter d that has Drinfel’d
polynomial P (λ), i.e., PV (λ) = P (λ). Let λ1, λ2, · · · , λd denote the roots of P (λ), allowing
repetition. For each i (1 ≤ i ≤ d), choose ai ∈ C such that

λi + ai + εε∗a−1
i = 0.

If (ε, ε∗) = (1, 1), the equation λi + ai + a−1
i = 0 has nonzero solutions for ai : we choose one

of then and fix it. If (ε, ε∗) = (1, 0) or (0,0), we understand that the equation is λi + ai = 0
and ai = −λi. Observe that if (ε, ε∗) = (0, 0), then λi 6= 0 (1 ≤ i ≤ d) by the condition
P (εs−2 + ε∗s2) 6= 0, so ai 6= 0 (1 ≤ i ≤ d). Consider the T -module V via ϕs, where

T = T (ε,ε∗)
q and

V = V (1, a1) ⊗ V (1, a2) ⊗ · · · ⊗ V (1, ad).

By Theorem 5.2, it holds that PV (λ) = P (λ). Choose a nonzero vector w from the highest
weight space of V and set W = T w. Let M be a maximal T -submodule of W . Observe
w /∈ M , since M 6= W . The quotient T -module W = W/M is irreducible. Since PV (εs−2 +
ε∗s2) 6= 0, we have σd(V ) 6= 0 by Remark 1.10. By Lemma 5.1, PV (λ) = PW (λ). Thus W is
the desired T -module. 2

6 Irreducibility of a T -module Ṽ = V ⊗ V (`, a) via ϕs

For the augmented TD-algebra T = T ε,ε∗
q , we have so far established the bijectivity of the

mapping
Irrs

d(T ) 7−→ Ps
d (V 7−→ PV (λ)),

namely, the set of finite-dimensional irreducible T -modules of type s and diameter d is
parametrized up to isomorphism by monic polynomials of degree d that do not vanish at
εs−2 + ε∗s2. Given a polynomial P (λ) ∈ Ps

d , we want to construct explicitly a T -module
via ϕs that belongs to Irrs

d(T ) and has P (λ) as its Drinfel’d polynomial. In this section, we
prepare a key proposition to the construction of such T -modules via ϕs. The construction
itself will be discussed in the next section. We consider T -modules

V = V (`1, a1) ⊗ · · · ⊗ V (`n, an),

Ṽ = V ⊗ V (1, a)
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via ϕs, where 1 ≤ n, 1 ≤ `i (1 ≤ i ≤ n) and a, ai are allowed to be zero if (ε, ε∗) =

(1, 0). The diameters of V, Ṽ are d = `1 + · · · + `n, d + 1 respectively. Observe that

σd+1(Ṽ ) = Q̃ P
eV (εs−2 + ε∗s2) for some nonzero scalar Q̃ by Remark 1.10. We have P

eV (λ) =

PV (λ)PV (1,a)(λ) by Theorem 5.2. So again by Remark 1.10, σd+1(Ṽ ) 6= 0 if and only if
σd(V ) 6= 0 and σ1(V (1, a)) 6= 0. By Theorem 1.9, observe also that σd(V ) 6= 0 holds if the
T -module V is irreducible.

Proposition 6.1 Assume that a T -module V via ϕs is irreducible and has diameter d.
Assume also that the T -module Ṽ = V ⊗ V (1, a) via ϕs satisfies σd+1(Ṽ ) 6= 0. If the T -

module Ṽ via ϕs has a nonzero T -submodule W that does not contain the highest weight
space Ũ0 of Ṽ , then the Drinfel’d polynomial PV (λ) of the T -module V via ϕs vanishes at
λ = −a q2 − ε ε∗a−1q−2:

PV (−a q2 − ε ε∗a−1q−2) = 0,

where we understand ε∗a−1 = 0 if (ε, ε∗) = (1, 0) and a = 0.

The remainder of this section is devoted to the proof of Proposition 6.1. Without loss of
generality, we can assume that W is irreducible as a T -submodule, since we may replace W
by a minimal T -submodule contained in W . Let

Ṽ =
d+1⊕
i=0

Ũi,

W =
r+d′⊕
i=r

Ui(W ) (Ui(W ) ⊆ Ũi)

denote the weight-space decompositions of Ṽ , W respectively, where d′ is the diameter of
W . Since W is irreducible, the highest weight space Ur(W ) has dimension 1 by Theorem 1.8
and so is spanned by a nonzero vector w0:

Ur(W ) = 〈w0〉.

Since W + Ũ0, we have r ≥ 1. Since xUi(W ) ⊆ Ui+1(W ) and y Ui(W ) ⊆ Ui−1(W ), where
ur−1(W ) = 0, Ur+d′+1(W ) = 0, we have

y w0 = 0, (30)

yixiw0 = σi(W )w0 (31)

for i = 0, 1, 2, · · · . Let

V =
d⊕

i=0

Ui

denote the weight space decomposition of V and let

V (1, a) = 〈v0, v1〉
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be a standard basis of V (1, a). Then

Ũi = Ui ⊗ 〈v0〉 + Ui−1 ⊗ 〈v1〉

for 0 ≤ i ≤ d + 1, where U−1 = Ud+1 = 0. In particular

w0 = ur ⊗ v0 + ur−1 ⊗ v1 (32)

for some ur ∈ Ur, ur−1 ∈ Ur−1.

Lemma 6.2 For i, m ∈ Z, set

ci(m) = a s qi+2m−d−1 + ε s−1q−i−2m+d+1,

c∗i (m) = ε∗a−1s q−i+2m−d+1 + s−1qi−2m+d−1.

Then for 1 ≤ i, the following (i) ∼ (v) hold.

(i) y ur−1 = 0,
y ur = −c∗1(r − 1) ur−1.

(ii) σi(W ) ur−1 = yixiur−1 + α q [ i ] ci(r) yixi−1ur.

(iii) σi(W ) ur = yixiur + α q [ i ]2ci(r) c∗−i(r − 1) yi−1xi−1ur + [ i ] c∗−i(r − 1) yi−1xiur−1.

(iv) yi+1xiur = −[i + 1] c∗−(i−1)(r − 1) σi(W )ur−1.

(v) yixiur−1 = σi(W )ur−1 + α q [ i ]2ci(r) c∗−(i−2)(r − 1) σi−1(W ) ur−1.

Proof. By Lemma 5.4, we have for w0 = ur ⊗ v0 + ur−1 ⊗ v1,

y w0 = (y ur) ⊗ v0 + (y ur−1) ⊗ v1 + c∗1(r − 1) ur−1 ⊗ v0.

Since y w0 = 0 and y ur ∈ Ur−1, we obtain y ur + c∗1(r−1) ur−1 = 0, y ur−1 = 0 and (i) holds.
Again by Lemma 5.4, we have

xiw0 = (xiur) ⊗ v0 + α q [ i ] ci(r) (xi−1ur) ⊗ v1 + (xiur−1) ⊗ v1,

yixiw0 = (yixiur) ⊗ v0

+α q [ i ] ci(r)
(
(yixi−1ur) ⊗ v1 + [ i ] c∗i (r + i − 1) (yi−1xi−1ur) ⊗ v0

)
+(yixiur−1) ⊗ v1 + [ i ] c∗i (r + i − 1) (yi−1xiur−1) ⊗ v0.

Since yixiw0 = σi(W )w0 and yixiur, yi−1xi−1ur, yi−1xiur−1 ∈ Ur, yixi−1ur, yixiur−1 ∈ Ur−1,
we obtain

σi(W ) ur = yixiur + α q [ i ]2ci(r) c∗i (r + i − 1) yi−1xi−1ur

+[ i ] c∗i (r + i − 1) yi−1xiur−1,

σi(W ) ur−1 = α q [ i ] ci(r) yixi−1ur + yixiur−1.

Since c∗i (r + i − 1) = c∗−i(r − 1), (ii) and (iii) hold.
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By (ii) and (iii) we obtain

σi(W ) y ur − [ i ] c∗−i(r − 1) σi(W ) ur−1 = yi+1xiur.

Since y ur = −c∗1(r − 1) ur−1 by (i) and c∗1(r − 1) + [ i ] c∗−i(r − 1) = [i + 1] c∗−(i−1)(r − 1), we

have (iv). Observe yixi−1ur = −[ i ] c∗−(i−2)(r − 1) σi−1(W ) ur−1 is valid for i ≥ 1 by (iv), (i)

and put this identity into (ii) to obtain (v). 2

Lemma 6.3 It holds that (i) ur−1 6= 0, (ii) ur 6= 0 and (iii) r = 1.

Proof. Suppose ur−1 = 0. Then by Lemma 6.2 (iii),

yixiur = −α q [ i ]2ci(r) c∗−i(r − 1) yi−1xi−1ur + σi(W ) ur

for 1 ≤ i, so we have yixiur ∈ 〈ur〉 for 0 ≤ i by induction on i. Moreover y ur = 0 by Lemma
6.2 (i). Since T is spanned by knωλ(x, y) (n ∈ Z, λ ∈ Λirr) by Theorem 2.2, it follows from
yixiur ∈ 〈ur〉 (0 ≤ i) and y ur = 0 that

T ur ⊆
⊕
r≤i

Ui.

Since 1 ≤ r, T ur is a proper T -submodule of V . This contradicts the irreducibility of V .
Thus (i) holds.

Suppose ur = 0. Then by Lemma 6.2 (ii),

yixiur−1 = σi(W )ur−1.

Since T is spanned by knωλ(x, y) (n ∈ Z, λ ∈ Λirr), it follows from yixiur−1 ∈ 〈ur−1〉 (0 ≤ i)
and y ur−1 = 0 that

T ur−1 ⊆
⊕

r−1≤i

Ui.

So V has a nonzero T -submodule contained in
⊕

r−1≤i Ui. Since V is irreducible, we obtain
r − 1 = 0, i.e., w0 = u0 ⊗ v1 (u0 6= 0, u1 = 0). By Lemma 6.2 (i), y u1 = −c∗1(0) u0 and
so c∗1(0) = 0. By Lemma 6.2 (iii) with i = 1, c∗−1(0) xu0 = 0. Note xu0 6= 0, otherwise
σd(V ) = 0, which contradicts the assumption that V is irreducible as a T -module. Thus
c∗−1(0) = 0. From c∗1(0) = 0 and c∗−1(0) = 0, we have

ε∗a−1s q−d + s−1qd = 0,

ε∗a−1s q−d+2 + s−1qd−2 = 0.

This implies ε∗ = 1, a = −s2q−2d = −s2q4−2d and we have q4 = 1. This contradicts the
assumption that q is not a root of unity. Hence (ii) holds.

By Lemma 6.2 (i), (v), we have y ur−1 = 0 and yixiur−1 ∈ 〈ur−1〉 (0 ≤ i). The same
argument of the previous paragraph is valid and V has a nonzero T -submodule T ur−1

contained in
⊕

r−1≤i Ui. Hence we obtain r − 1 = 0, i.e., (iii) holds. 2
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Lemma 6.4 For 0 ≤ i,
σi(W ) = fi σi−1(W ) + σi(V ),

where
fi = (qi − q−i)2

(
εs−2q2(d−i) + ε∗s2q−2(d−i) + a q2 + ε ε∗a−1q−2

)
.

Proof. Since r = 1, we have yixiur−1 = σi(V ) ur−1. By Lemma 6.3, ur−1 6= 0. By Lemma
6.2 (v), we obtain

σi(V ) = σi(W ) + α q [ i ]2ci(1) c∗−(i−2)(0) σi−1(W )

= σi(W ) − fi σi−1(W ).

2

Lemma 6.5 It holds that d′ = d − 1, where d, d′ are the diameters of V , W respectively.

Proof. Obviously σi(W ) = σi−1(W ) = 0 for d′+2 ≤ i. So we have σi(V ) = 0 for d′+2 ≤ i by
Lemma 6.4. This implies d ≤ d′ + 1, since σd(V ) 6= 0. On the other hand, the weight-space

decompositions of Ṽ , W are Ṽ = Ũ0 + · · · + Ũd+1, W = Ur(W ) + · · · + Ur+d′(W ) (r = 1)

with Ui(W ) ⊆ Ũi. So r + d′ ≤ d + 1, i.e., d′ ≤ d. Therefore either d = d′ + 1 or d = d′.

Suppose d = d′. Then 0 6= Ud+1(W ) ⊆ Ũd+1. Since Ṽ is a tensor product of evaluation

modules, we generally have dim Ũ0 = dim Ũd+1 = 1. So Ud+1(W ) = Ũd+1, in particular

T Ũd+1 is contained in W . On the other hand, we assumed σd+1(Ṽ ) 6= 0 for Proposition 6.1.

This implies T Ũd+1 ⊇ Ũ0. Therefore W contains Ũ0, which is a contradiction. 2

Proof of Proposition 6.1. Set σi = σi(V ). Using Lemma 6.4 repeatedly, we have for 0 ≤ i

σi(W ) = (fi fi−1 · · · f1) σ0 + (fi fi−1 · · · f2) σ1 + · · · + fi σi−1 + σi.

By Lemma 6.5, d′ = d − 1. So σd(W ) = 0. Thus

d∑
j=0

fd fd−1 · · · fj+1 σj = 0. (33)

Define the polynomial fi(λ) of degree 1 in λ by

fi(λ) = (qi − q−i)2(εs−2q2(d−i) + ε∗s2q−2(d−i) − λ)

for 1 ≤ i. Then by definition

PV (λ) = Q−1

d∑
i=0

σi fi+1(λ) · · · fd(λ),

where Q = (−1)d(q − q−1)
2
(q2 − q−2)

2 · · · (qd − q−d)
2
. Since fi = fi(−a q2 − ε ε∗a−1q−2), we

have by (33)
PV (−a q2 − ε ε∗a−1q−2) = 0.

This completes the proof of Proposition 6.1. 2
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7 Construction of finite-dimensional irreducible

T -modules via ϕs

In this section, we prove Theorem 1.15, Theorem 1.18, Theorem 1.21. Each theorem consists
of three parts (i), (ii), (iii). The second part (ii) immediately follows from the first part (i)
together with Theorem 1.9’ and Lemma 1.14. We only prove (i) and (iii) for each of the the-
orems. The Drinfel’d polynomials PV (λ) in the first part (i) are obtained straightforward by
Theorem 5.2. Throughout this section, s stands for a nonzero scalar of C chosen arbitrarily.

For the augmented TD-algebra T = T (ε,ε∗)
q , we consider the following T -module V via

ϕs (see Section 1.4): if (ε, ε∗) = (1, 1) or (0, 0),

V = V (`1, a1) ⊗ · · · ⊗ V (`n, an),

where 1 ≤ n, 1 ≤ `i, ai 6= 0 (1 ≤ i ≤ n), and if (ε, ε∗) = (1, 0),

V = V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n, an),

where 0 ≤ n, 0 ≤ `, 1 ≤ `i, ai 6= 0 (1 ≤ i ≤ n). With such a T -module V via ϕs, we
associate the multi-set {S(`i, ai)}n

i=1 of q-strings, where

S(`i, ai) = {aiq
−`i+1, aiq

−`i+3, · · · , aiq
`i−1}.

Consider a T -module V ′ via ϕs of the same kind:

V ′ = V (`′1, a
′
1) ⊗ · · · ⊗ V (`′m, a′

m) if (ε, ε∗) = (1, 1), (0, 0),

V ′ = V (`′) ⊗ V (`′1, a
′
1) ⊗ · · · ⊗ V (`′m, a′

m) if (ε, ε∗) = (1, 0).

For (ε, ε∗) = (1, 1), such T -modules V, V ′ via ϕs are said to be equivalant if the associated
multi-sets of q-strings are equvalent, i.e., m = n and there exist εi ∈ {1,−1} (1 ≤ i ≤ n)
such that S(`′i, a

′
i) = S(`i, a

εi
i ) (1 ≤ i ≤ n) with a suitable rearrangement of the ordering

of S(`′1, a
′
1), · · · , S(`′n, a

′
n). For (ε, ε∗) = (0, 0), such T -modules V, V ′ via ϕs are said to be

equivalent if m = n and S(`′i, a
′
i) = S(`i, ai) (1 ≤ i ≤ n) with a suitable rearrangement of

the ordering of S(`′1, a
′
1), · · · , S(`′n, a

′
n). For (ε, ε∗) = (1, 0), such T -modules V, V ′ via ϕs are

said to be equivalent if ` = `′, m = n and S(`′i, a
′
i) = S(`i, ai) (1 ≤ i ≤ n) with a suitable

rearrangement of the ordering of S(`′1, a
′
1), · · · , S(`′n, a

′
n).

Lemma 7.1 If a T -module V via ϕs is irreducible, then every T -module V ′ via ϕs that is
equivalent to V is isomorphic to V as T -modules via ϕs, in particular irreducible.

Proof. Since V and V ′ are equivalent, V and V ′ have the same Drinfel’d polynomial by
Theorem 5.2. In particular σd(V ) = σd(V

′), where d is the diameter of the T -modules V ,
V ′. Let U ′

0 denote the highest weight space of the T -module V ′ via ϕs. Set W = T U ′
0 and let

M be a maximal T -submodule of W . Then V ′ and W/M have the same Drinfel’d polynomial
by Lemma 5.1. Hence V and W/M have the same Drinfel’d polynomial. By Theorem 1.9′,
the irreducible T -modules V , W/M are isomorphic, in particular dim V = dim W/M . But
V and V ′ are equivalent, in particular dim V = dim V ′. Thus dim V ′ = dim W/M and we
have V ′ = W, M = 0. This means that V and V ′ are isomorphic as T -modules via ϕs. 2
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Proof of the ‘only if’ part of (i). The ‘only if’ part of Theorem 1.15 (i) follows from
Lemma 7.1. Suppose −s2 ∈ S(`i, ai) ∪ S(`i, a

−1
i ) for some i (1 ≤ i ≤ n). Then PV (εs−2 +

ε∗s2) = 0 by Theorem 5.2, which contradicts the irreducibility of V by Theorem 1.9′. Suppose
the multi-set {S(`i, ai)}n

i=1 of q-strings is not strongly in general position. Then there exists
a multi-set {S(`′i, a

′
i)}

m
i=1 of q-strings that is eqivalent to {S(`i, ai)}n

i=1 and not in general
position. Set V ′ = V (`′1, a

′
1)⊗· · ·⊗V (`′m, a′

m). Since {S(`′i, a
′
i)}

m
i=1 is not in general position,

V ′ is not irreducible as an L-module, consequently as a T -module via ϕs. Sine {S(`′i, a
′
i)}

m
i=1

is eqivalent to {S(`i, ai)}n
i=1 and V is irreducible as a T -module via ϕs, V ′ is also irreducible

as a T -module via ϕs by Lemma 7.1. Thus we get a contradiction. The ‘only if’ part of
Theorem 1.18 (i), Theorem 1.21 (i) can be proved similarly. 2

7.1 Proof of the ‘if ’ part of Theorem 1.15 (i)

We start with an observation of the Uq(sl2)-loop algebra L.

Lemma 7.2 There exists an algebra anti-homomorphism of L that sends e+
i , e−i ki, ki, k−1

i

to e−i ki, e+
i , ki, k−1

i , respectively (i = 0, 1). Such an anti-homomorphism is unique and we
denote it by τ :

τ : L −→ L (e+
i , e−i ki, k±1

i 7→ e−i ki, e+
i , k±1

i respectively).

It holds that τ 2 = 1 and (τ ⊗ τ) ∆ = ∆ τ , where ∆ : L −→ L⊗ L is the coproduct of L.

The assertions of Lemma 7.2 can be checked by straightforward calculations.

For an L-module V , the dual vector space of V

Hom (V, C) = {f : V −→ C | f is a linear mapping}

becomes an L-module by

(Xf) (v) = f (τ(X) v) (v ∈ V )

for f ∈ Hom (V, C), X ∈ L. For L-modules V , V ′, we identify Hom (V ⊗ V ′, C) with
Hom (V, C) ⊗ Hom (V ′, C) as vector spaces by

(f ⊗ g) (v ⊗ v′) = f(v) g(v′).

It can be easily checked by the relation (τ ⊗ τ) ∆ = ∆ τ that this identification gives an
L-module isomophism

Hom (V ⊗ V ′, C) ' Hom (V, C) ⊗ Hom (V ′, C),

where L acts on V ⊗ V ′ and Hom (V, C) ⊗ Hom (V ′, C) via the coproduct ∆.

Lemma 7.3 For evaluation modules, we have the following isomorphisms as L-modules.

(i) Hom (V (`, a), C) ' V (`, a−1).

(ii) Hom
(
V (`1, a1) ⊗ · · · ⊗ V (`n, an), C

)
' V (`1, a

−1
i ) ⊗ · · · ⊗ V (`n, a

−1
n ).
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Proof. Let V (`, a) = 〈v0, v1, · · · , v`〉 be a standard basis and Hom (V (`, a), C) = 〈f0, f1, · · · , fl〉
the dual basis: fi (vj) = δij. Set

gi = q−i(`−i+1)

(
`

i

)
fi,

where
(

`
i

)
= [`]!/[`−1]! [ i ]!, the q-binomial coefficient. Then we have e+

0 gi = a−1q [i+1] gi+1,
e−0 gi = a q−1[` − i + 1] gi−1, e+

1 gi = [` − i + 1] gi−1, e−1 gi = [i + 1] gi+1, k0gi = q2i−`gi, where
g−1 = g`+1 = 0. So if V (`, a−1) = 〈w0, w1, · · · , w`〉 is a standard basis, then Hom (V (`, a), C)
is isomorphic to V (`, a−1) as L -modules by the correspondence of gi to wi (0 ≤ i ≤ `).
Part (ii) follows from part (i) and the fact Hom (V ⊗ V ′, C) ' Hom (V, C) ⊗ Hom (V ′, C) as
L-modules. 2

We now prove the ‘if’ part of Theorem 1.15 (i). Namely, we are in the case of (ε, ε∗) =
(1, 1) and given a T -module

V = V (`1, a1) ⊗ · · · ⊗ V (`n, an)

via ϕs such that −s2 /∈ S(`i, ai) ∪ S(`i, a
−1
i ) (1 ≤ i ≤ n) and the multi-set {S(`i, ai)}n

i=1

of q-strings is strongly in general position. We want to show that V is irreducible as a
T -module via ϕs. Observe that the ordering of the tensor product does not change the
isomorphism class of V as an L-module and consequently as a T -module via ϕs, since the
multiset {S(`i, ai)}n

i=1 of q-strings is in general position. First we show

Lemma 7.4 For any choice of εi ∈ {1,−1} (1 ≤ i ≤ n), V is isomorphic to

V (`1, a
ε1
1 ) ⊗ · · · ⊗ V (`n, a

εn
n )

as T -modules via ϕs.

Proof. We proceed by induction on n. First let n = 1. Then V (`1, a1), V (`1, a
−1
1 ) have the

same Drinfel’d polynomial by Theorem 5.2 and the Drinfel’d polynomial does not vanish
at s2 + s−2, since −s2 /∈ S(`1, a1) ∪ S(`1, a

−1
1 ). So V (`1, a1), V (`1, a

−1
1 ) have nonzero σ`1

by Remark 1.10. In the case of evaluation modules, the property σ`1 6= 0 implies the
irreducibility of the T -modules via ϕs. Thus V (`1, a1), V (`1, a

−1
1 ) are irreducible as T -

modules via ϕs and have the same Drinfel’d polynomial that does not vanish at s2 + s−2.
By Theorem 1.9′, V (`1, a1), V (`1, a

−1
1 ) are isomorphic as T -modules via ϕs.

For n ≥ 2, set V ′ = V (`1, a1) ⊗ · · · ⊗ V (`n−1, an−1). Then by induction on n, V ′ is
isomorphic to V ′′ = V (`1, a

ε1
1 )⊗· · ·⊗V (`n−1, a

εn−1

n−1 ) as T -modules via ϕs. Let ψ : V ′ −→ V ′′

denote an isomorphism between the T -modules V ′, V ′′ via ϕs. The generators x, y, k, k−1

of T are mapped by ϕs to x(s) = α(s e+
0 + s−1e−1 k1), y(s) = s e−0 k0 + s−1e+

1 , sk0, s−1k1,
respectively, and those elements of L are mapped by ∆ to

∆
(
x(s)

)
= x(s) ⊗ 1 + α s k0 ⊗ e+

0 + α s−1k1 ⊗ e−1 k1,

∆
(
y(s)

)
= y(s) ⊗ 1 + s k0 ⊗ e−0 k0 + s−1k1 ⊗ e+

1 ,

∆ (s k0) = s k0 ⊗ k0,

∆(s−1k1) = s−1k1 ⊗ k1,
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respectively. It can be easily checked that the vector-space isomorphism

ψ ⊗ id : V ′ ⊗ V (`n, an) −→ V ′′ ⊗ V (`n, an)

commutes with the action of each of the elements ∆
(
x(s)

)
, ∆

(
y(s)

)
, ∆ (s k0), ∆(s−1k1). So

we get
V ′ ⊗ V (`n, an) ' V ′′ ⊗ V (`n, an)

as T -modules via ϕs. Since {S(`i, a
εi
i )}n−1

i=1 ∪ {S(`n, an)} is in general position,

V ′′ ⊗ V (`n, an) ' V (`n, an) ⊗ V ′′

as L-modules and consequently as T -modules via ϕs. By the same argument, we have

V (`n, an) ⊗ V ′′ ' V (`n, a
εn
n ) ⊗ V ′′

' V ′′ ⊗ V (`n, a
εn
n )

as T -modules via ϕs. Thus V ′⊗V (`n, an) ' V ′′⊗V (`n, a
εn
n ) as T -modules ϕs and the proof

is completed. 2

Next we intoroduce a partial ordering on C\{0} by

a ≤ b ⇔ b = a q2i for some integer i ≥ 0. (34)

Consider i0 (1 ≤ i0 ≤ n) such that ai0q
`i0

−1 or a−1
i0

q`i0
−1 is maximal with respect to the

partial ordering on the set of nonzero scalars aiq
`i−1, a−1

i q`i−1 (1 ≤ i ≤ n). Among such
i′0s, choose one for which `i0 is smallest. Since the ordering of the tensor product does not
matter about the isomorphism class of V as a T -module via ϕs, we may assume that i0 = n,
and by Lemma 7.4 that anq

`n−1 is maximal among a±
i q`i−1 (1 ≤ i ≤ n). So

anq
`n+1 /∈ S(`i, ai) ∪ S(`i, a

−1
i ) (1 ≤ i ≤ n), (35)

`n ≤ `i if anq
`n−1 ∈ S(`i, ai) ∪ S(`i, a

−1
i ). (36)

We proceed by induction on dim V to prove the ‘if’ part of Theorem 1.15 (i). Set

V ′ = V (`1, a1) ⊗ · · · ⊗ V (`n−1, an−1).

Then V = V ′ ⊗ V (`n, an). Since the L-module V (`n, an) is by Lemma 5.6 embedded in
the L-module V (`n − 1, anq

−1) ⊗ V (1, anq
`n−1) as the L-submodule spanned by the highest

weight space, the L-module V can be regarded as embedded in the L-module

Ṽ =
(
V ′ ⊗ V (`n − 1, anq

−1)
)
⊗ V (1, anq

`n−1).

We understand V ′⊗V (`n−1, anq
−1) = V ′ if `n = 1. Our strategy is to apply Proposition 6.1

to the T -module Ṽ via ϕs. To do so, we need to check the prerequisites for it, namely that
V ′ ⊗ V (`n − 1, anq

−1) is irreducible as a T -module via ϕs, and that σd(Ṽ ) 6= 0 holds, where

d = `1 + · · ·+`n, the diameter of the T -module Ṽ via ϕs. To show that V ′⊗V (`n−1, anq
−1)

is irreducible as a T -module via ϕs, it is enough to check the induction hypotheses for it, i.e.,
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the first induction hypothesis that −s2 is contained neither in S(`i, a
±1
i ) (1 ≤ i ≤ n−1) nor in

S(`n − 1, (anq
−1)±1), and the second induction hypothesis that the multi-set {S(`i, ai)}n−1

i=1 ∪
{S(`n − 1, anq

−1)} of q-strings associated with V ′ ⊗ V (`n − 1, anq
−1) is strongly in general

position. The first induction hypothesis is satisfied, since −s2 /∈ S(`i, a
±1
i ) (1 ≤ i ≤ n) was

assumed at the beginning and it generally holds that S(`n−1, anq
−1) = S(`n, an) \ {anq

`n−1}.
The second induction hypothesis is satisfied, since the multi-set {S(`i, ai)}n

i=1 was assumed
at the beginning to be strongly in general position and n was chosen to satisfy (35), (36).
Thus by induction on dimension, V ′ ⊗ V (`n − 1, anq

−1) is irreducible as a T -module via ϕs.

To show σd(Ṽ ) 6= 0, it is enough to check that P
eV (λ) does not vanish at λ = s−2 + s2 (see

Remark 1.10). Since −s2 /∈ S(`i, a
±1
i ) (1 ≤ i ≤ n), P

eV (s−2 + s2) 6= 0 by Theorem 5.2. We

are now ready to apply Proposition 6.1 to Ṽ .

Suppose that the T -module V via ϕs has a nonzero T -submodule W that does not contain
the highest weight space of V . Embed V into the T -module Ṽ via ϕs as a T -submodule in
such a way that V and Ṽ share the highest weight space in common (see the last pragragh).
Then by Proposition 6.1, the Drinfel’d polynomial of V ′ ⊗ V (`n − 1, anq

−1) vanishes at
−anq

`n+1 − a−1
n q−`n−1. This contradicts (35) by Theorem 5.2. Therefore we conclude that

every nonzero T -submodule W of the T -module V via ϕs contains the highest weight space
of V .

Finally consider the L-module Hom (V, C). By Lemma 7.3, Hom (V, C) is isomorphic to
V (`1, a

−1
1 )⊗· · ·⊗V (`n, a

−1
n ) as L-modules. So Hom (V, C) and V are isomorphic as T -modules

via ϕs by Lemma 7.4. For a subspace W of V , define the subspace W⊥ of Hom (V, C) by

W⊥ = {f ∈ Hom (V, C) | f(w) = 0 (w ∈ W )}.

If W is invariant by the action of T via ϕs, then so is W⊥, because the action of X ∈ L on
Hom (V, C) is defined by (Xf) (v) = f(τ(X) v) (f ∈ Hom (V, C), v ∈ V ) and τ(T ) = T holds
by τ (x(s)) = α y(s), τ(y(s)) = α−1 x(s), τ(k0) = k0. Moreover by the proof of Lemma 7.3,
the highest weight space of Hom (V, C) does not vanish on the highest weight space of V ,
i.e., f(v) 6= 0 for highest weight vectors f , v of Hom (V, C), V , respectively. Now let W be a
nonzero T -submodule of the T -module V via ϕs. Then W contains the highest weight space
of V as shown in the last paragraph. This implies that W⊥ is a T -submodule of Hom (V, C)
via ϕs and does not contain the highest weight space of Hom (V, C). Recall Hom (V, C) and
V are isomorphic as T -modules via ϕs. Thus W⊥ = 0. Therefore W=V and the proof of
the ‘if’ part of Theorem 1.15 (i) is completed.

7.2 Proof of the ‘if ’ part of Theorem 1.18 (i), Theorem 1.21 (i)

We start with observations about the quantum algebra Uq(sl2). The quantum algebra U =
Uq(sls) is the associative C-algebra with 1 genarated by X±, K± subject to the relations

KK−1 = K−1K = 1,

KX±K−1 = q±2X±,

[X+, X−] =
K − K−1

q − q−1
.
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V (`) denotes the (` + 1)-dimensional irreducible U -module: V (`) = 〈v0, v1, · · · , v`〉 and

K vi = q2i−` vi,

X+vi = [i + 1] vi+1,

X−vi = [` − i + 1] vi−1,

where v−1 = v`+1 = 0. We consider a finite-dimensional U -module V that has the following
weight-space decomposition:

V =
d⊕

i=0

Ui, K|Ui
= q2i−d (0 ≤ i ≤ d). (37)

Since V is completely reducible, we have

V =

[d/2]⊕
j=0

V (d−2j),

where V (`) denotes the homogeneous component that is a direct sum of irreducible U -modules
isomorphic to V (`); V (`) is allowed to be zero. Set

U
(d−2j)
i = Ui ∩ V (d−2j) (0 ≤ i ≤ d, 0 ≤ j ≤ [d/2]).

Then

V (d−2j) =

d−j⊕
i=j

U
(d−2j)
i (0 ≤ j ≤ [d/2]),

Ui =
i′⊕

j=0

U
(d−2j)
i (0 ≤ i ≤ d),

where i′ = min {i, d − i}. For j ≤ i < d − j, the mappings

X+ : U
(d−2j)
i −→ U

(d−2j)
i+1 ,

X− : U
(d−2j)
i+1 −→ U

(d−2j)
i

are inverses each other up to a nonzero scalar multiple and X+, X− vanish on U
(d−2j)
d−j , U

(d−2j)
j ,

respectively. In particular,

U
(d−2j)
j = ker (X+)

d−2j+1|Uj
(0 ≤ j ≤ [d/2]). (38)

Lemma 7.5 Let V be a finite-dimensional U-module that satisfies (37). Let W be a subspace
of V as a vector space. Assume W is invariant by the actions of X+ and K:

K W ⊆ W, X+ W ⊆ W.

If it holds that
dim (W ∩ Ui) = dim (W ∩ Ud−i) (0 ≤ i ≤ d),

then X− W ⊆ W , i.e., W is a U-submodule.
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Proof. Set Wi = W ∩ Ui (0 ≤ i ≤ d). Then since W is K-invariant, we have

W =
d⊕

i=0

Wi,

allowing Wi to be zero. Set W
(d−2j)
i = Wi ∩ U

(d−2j)
i (0 ≤ i ≤ d, 0 ≤ j ≤ [d/2]). We claim

Wi =
i⊕

j=0

W
(d−2j)
i (0 ≤ i ≤ [d/2]). (39)

The claim holds for i = 0, since W0 ⊆ U0 = U
(d)
0 . Suppose the claim holds up to i.

Observe the mapping

(X+)
d−2i

: Ui −→ Ud−i (0 ≤ i ≤ [d/2])

is a bijection. By X+W ⊆ W , the image of Wi by (X+)
d−2i

is included in Wd−i. Since
dimWi = dim Wd−i, the mapping

(X+)
d−2i

: Wi −→ Wd−i (0 ≤ i ≤ [d/2])

is a bijection. Consider the mapping

(X+)
d−2i−1

: Wi+1 −→ Wd−i.

The subspace X+Wi of Wi+1 is bijectively mapped onto Wd−i by (X+)
d−2i−1

. So we have

Wi+1 = X+Wi ⊕ ker (X+)
d−2i−1|Wi+1

. (40)

Since Wi =
⊕i

j=0 W
(d−2j)
i by the induction hypothesis for the claim (39) and X+W

(d−2j)
i ⊆

W
(d−2j)
i+1 , we have

X+Wi ⊆
i⊕

j=0

W
(d−2j)
i+1 .

On the other hand, since ker (X+)
d−2i−1|Ui+1

= U
(d−2i−2)
i+1 (i + 1 ≤ [d/2]) by (38), we have

ker (X+)
d−2i−1|Wi+1

= W
(d−2i−2)
i+1 .

Thus by (40), we obtain Wi+1 ⊆
⊕i+1

j=0 W
(d−2j)
i+1 . Since the opposite inclusion is obvious, the

claim holds for i + 1 and we finish the proof of the claim (39).

Since Wi is bijectively mapped onto Wd−i by (X+)
d−2i

(0 ≤ i ≤ [d/2]), it follows from
(39) that

Wd−i =
i⊕

j=0

W
(d−2j)
d−i (0 ≤ i ≤ [d/2]), (41)

W
(d−2j)
d−i = (X+)

d−2i
W

(d−2j)
i (0 ≤ j ≤ i ≤ [d/2]). (42)
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Define the subspace W (d−2j) by

W (d−2j) =

d−j⊕
i=j

W
(d−2j)
i (0 ≤ j ≤ [d/2]).

Then by (39), (41), we obtain

W =

[d/2]⊕
j=0

W (d−2j). (43)

For j ≤ i < d − j, the mappings X+ : U
(d−2j)
i −→ U

(d−2j)
i+1 and X− : U

(d−2j)
i+1 −→ U

(d−2j)
i

are inverses each other up to a nonzero scalar multiple. The image of W
(d−2j)
i by X+ is

contained in W
(d−2j)
i+1 , in particular dim W

(d−2j)
i ≤ dim W

(d−2j)
i+1 (j ≤ i < d− j). On the other

hand by (42), dim W
(d−2j)
i = dim W

(d−2j)
d−i (0 ≤ j ≤ i ≤ [d/2]). So dim W

(d−2j)
i = dim W

(d−2j)
i+1

(j ≤ i < d − j). Therefore the mapping

X+ : W
(d−2j)
i −→ W

(d−2j)
i+1

is a bijection for j ≤ i < d− j and the inverse of this mapping coincides with X−|
W

(d−2j)
i+1

up

to a nonzero scalar multiple. Thus we obtain X−W
(d−2j)
i+1 = W

(d−2j)
i (j < i+1 ≤ d−j). Since

X−W
(d−2j)
j ⊆ X−U

(d−2j)
j = 0, it holds that X−W

(d−2j)
i ⊆ W (0 ≤ j ≤ [d/2], j ≤ i ≤ d − j).

Hence X−W ⊆ W by (43) and the proof of Lemma 7.5 is completed. 2

Proof of Theorem 1.21 (i). Theorem 1.21 (i) is well-known but we give a brief proof as
a warm-up. We are in the case of (ε, ε∗) = (0, 0) and given a T -module

V = V (`1, a1) ⊗ · · · ⊗ V (`n, an)

via ϕs. To prove Theorem 1.21 (i), it is enough to show that every T -submodule W of V via
ϕs is L-invariant. The generators x, y, k, k−1 of T act on V via ϕs as αse+

0 , s−1e+
1 , s k0, s−1k1,

i.e., T is embedded in L via ϕs as the Borel subalgebra genarated by e+
0 , e+

1 , k±1
0 . V has

weight-space decomposition as in (37):

V =
d⊕

i=0

Ui (k0|Ui
= q2i−d),

where d = `1 + · · ·+ `n. For a T -submodule W of the T -module V via ϕs, set Wi = W ∩Ui.
Then

W =
d⊕

i=0

Wi.

Since the mapping (e+
0 )

d−2i
: Ui −→ Ud−i is a bijection and Wi is mapped into Wd−i by

(e+
0 )

d−2i
, we have dim Wi ≤ dim Wd−i (0 ≤ i ≤ [d/2]). Since the mapping (e+

1 )
d−2i

: Ud−i −→
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Ui is a bijection and Wd−i is mapped into Wi by (e+
1 )

d−2i
, we have dim Wd−i ≤ dim Wi (0 ≤

i ≤ [d/2]). Thus it holds that

dim Wi = dim Wd−i (0 ≤ i ≤ d).

Consider the algebra homomorphism from the quantum algebra U = Uq(sl2) to the
Uq(sl2)-loop algebra L that sends X+, X−, K±1 to e+

0 , e−0 , k±1
0 , respectively. Regard V

as a U -module via this algebra homomorphism. Then X+W ⊆ W, KW ⊆ W . Since
dim Wi = dim Wd−i (0 ≤ i ≤ d), we have by Lemma 7.5 X−W ⊆ W , i.e., e−0 W ⊆ W .
Similarly, consider the algebra homomorphism from U to L that sends X+, X−, K±1 to
e+
1 , e−1 , k±1

1 , respectively. Regard V as a U -module via this algebra homomorphism. Then
the weight-space decomposition of this U -module V is V =

⊕d
i=0 Ud−i (K|Ud−i

= q2i−d),

where V =
⊕d

i=0 Ui is the weight-space decomposition of the L-module V . Since dim Wd−i =
dim Wi (0 ≤ i ≤ d) and X+W ⊆ W, K W ⊆ W , we have by Lemma 7.5, X−W ⊆ W , i.e.,
e−1 W ⊆ W . Thus W is L-invariant and the proof of Theorem 1.21 (i) is completed. 2

We are now ready to prove the ‘if’ part of Theorem 1.18 (i).

Proof of the ‘if ’ part of Theorem 1.18 (i). We are in the case of (ε, ε∗) = (1, 0) and
given a T -module

V = V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n, an)

via ϕs such that −s−2 /∈ S(`i, ai) (1 ≤ i ≤ n) and the multi-set {S(`i, ai)}n
i=1 is in general

position. We want to show that the T -module V is irreducible. Note that PV (`)(s
−2) 6=

0, PV (`i,ai)(s
−2) 6= 0 by Theorem 5.2, so

σd(V ) 6= 0 (44)

by Remark 1.10, where d = ` + `1 + · · · + `n. We may assume n ≥ 1, otherwise V = V (`)
is obviously irreducible as a T -module, since σ`(V ) 6= 0. Consider i0 such that ai0q

`i0
−1

is maximal in the set of scalars aiq
`i−1 (1 ≤ i ≤ n) with respect to the partial ordering

introduced in (34) in Section 7.1. Among such i′0s, choose one that has the smallest `i0 .
Since {S(`i, ai)}n

i=1 is in general position, the ordering of V (`i, ai) (1 ≤ i ≤ n) in the
tensor product of V does not matter about the isomorphism class of V as an L′-module and
consequently as a T -module via ϕs. So we may assume i0 = n. Then

anq
`n+1 /∈ S(`i, ai) (1 ≤ i ≤ n), (45)

`n ≤ `i if anq
`n−1 ∈ S(`i, ai). (46)

We proceed by induction on dimV to prove that V is irreducible as a T -module. Set

V ′ = V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n−1, an−1).

Then V = V ′ ⊗ V (`n, an). Since the L-module V (`n, an) is by Lemma 5.6 embedded in
the L-module V (`n − 1, anq

−1) ⊗ V (1, anq
`n−1) as the L-submodule spanned by the highest

weight space, the L′-module V can be regarded as embedded in the L′-module

Ṽ =
(
V ′ ⊗ V (`n − 1, anq

−1)
)
⊗ V (1, anq

`n−1),

60



sharing the highest weight space in common. We understand V ′ ⊗ V (`n − 1, anq
−1) = V ′

if `n = 1. To apply Proposition 6.1 to Ṽ , we check the prerequisites for it, namely that
V ′ ⊗ V (`n − 1, anq

−1) is irreducible as a T -module via ϕs, and that σd(Ṽ ) 6= 0 holds,

where d = ` + `1 + · · · + `n is the diameter of the T -module Ṽ via ϕs. Observe that
S(`n − 1, anq

−1) = S(`n, an) \ {anq
`n−1}. So −s−2 /∈ S(`i, ai) (1 ≤ i ≤ n − 1) and −s−2 /∈

S(`n − 1, anq
−1). Moreover the multi-set {S(`n, an)}n−1

i=1 ∪ {S(`n − 1, anq
−1)} of q-strings

associated with V ′ ⊗ V (`n − 1, anq
−1) is in general position by (45), (46). Therefore by

induction on dimension, V ′ ⊗ V (`n − 1, anq
−1) is irreducible as a T -module via ϕs. Since

PV (s−2) 6= 0 as we observed before, and since P
eV (λ) = PV (λ) by Theorem 5.2, we have

P
eV (s−2) 6= 0, i.e., σd(Ṽ ) 6= 0. Thus the prerequisites are satisfied for Proposition 6.1 to be

applied to Ṽ . On the other hand, the conclusion of Proposition 6.1

PV ′⊗V (`n−1,anq−1)(−anq
`n+1) = 0

fails by Theorem 5.2, since anq
`n+1 /∈ S(`i, ai) (1 ≤ i ≤ n) by (45). This implies that any

nonzero T -submodules W of Ṽ via ϕs contains the highest weight space of Ṽ . Since the
T -module V via ϕs is embedded in the T -module Ṽ via ϕs, sharing the highest weight space
in common, we conclude that any nonzero T -submodule W of V contains the highest weight
space of V .

Let W be a minimal T -submodule of the T -module V via ϕs. Note that W is irreducible
as a T -module. Let V =

⊕d
i=0 Ui denote the weight-space decomposition of the T -module

V via ϕs. Then

W =
d⊕

i=0

Wi, Wi = W ∩ Ui (1 ≤ i ≤ n).

By what we just proved in the last paragraph, we have W0 6= 0. Moreover Wd 6= 0 by (44).
Since dim U0 = dim Ud = 1, we obtain W0 = U0, Wd = Ud. We claim

dim Wi = dim Wd−i (0 ≤ i ≤ d). (47)

Let A denote the TD-algebra for (ε, ε∗) = (1, 0). Consider ϕs ◦ ιt : A −→ L′ and regard V as
an A-module via ϕs ◦ ιt. By Theorem 1.11 and (13), the generators z, z∗, of A act on W as
a TD-pair, if we choose t suitably. The split decomposition of W for the TD-pair coincides
with the weight-space decomposition of W . Thus we obtain (47) by [3, Corollary 5.7].

The generators x, y, k, k−1 of T act on V via ϕs as α(se+
0 + s−1e−1 k1), s−1e+

1 , sk0, s−1k1

respectively. Consider the algebra homomorphism from U to L′ that sends X+, X−, K±1 to
e+
1 , e−1 , k±1

1 . Regard V as a U -module via this algebra homomorphism. Then the weight-space
decomposition of this U -module V is V =

⊕d
i=0 Ud−i (K|Ud−i

= q2i−d), where V =
⊕d

i=0 Ui

is the weight space-decomposition of the T -module V via ϕs. Since dimWd−i = dim Wi

(0 ≤ i ≤ d) by (47) and X+W ⊆ W, K W ⊆ W , we have by Lemma 7.5 X−W ⊆ W ,
i.e., e−1 W ⊆ W . Since xW ⊆ W , i.e., (se+

0 + s−1e−1 k1)W ⊆ W , we obtrain e+
0 W ⊆ W by

e−1 k1W ⊆ W . Thus W is L′-invariant. Recall that we have already shown that W cantains
the highest weight space U0 of the T -module V via ϕs. By the following lemma, we obtain
W = V and the ‘if’ part of Theorem 1.18 (i) is completed.
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Lemma 7.6 Assume that a multi-set {S(`i, ai)}n
i=1 of q-strings is in general position. Con-

sider the L′-module
V = V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n, an)

and let

V =
d⊕

i=0

Ui, k0|Ui
= q2i−d

be the eigenspace decomposition of k0, where d = ` + `1 + · · · + `n. If W is an L′-submodule
of V and contains U0, then W = V .

Proof. Set
V ′ = V (`1, a1) ⊗ · · · ⊗ V (`n, an)

and let B denote the subalgebra of L′ generated by e+
0 , e+

1 , k±1
0 . Note that V ′ is irreducible

as an L′-module, since it is already irreducible as a B-module by Theorem 1.21 (i). We may
assume ` ≥ 1, since if ` = 0, then V = V ′ and the L′-module V is irreducible.

Let V (`) = 〈v0, v1, · · · , v`〉 be a standard basis as an L′-module: e+
0 vi = 0, e+

1 vi =
[` − i + 1]vi−1, e−1 vi = [i + 1] vi+1, k0vi = q2i−`vi (0 ≤ i ≤ `), where v−1 = v`+1 = 0. Then

V =
⊕̀
i=0

〈vi〉 ⊗ V ′.

We show W ⊇ 〈vi〉 ⊗ V ′ (0 ≤ i ≤ `) by induction on i. For i = 0, some element

v0 ⊗ v′ (V ′ 3 v′ 6= 0)

is containd in W by W ⊇ U0. Since e+
0 (v0 ⊗ v′) = q−`v0 ⊗ (e+

0 v′), e+
1 (v0 ⊗ v′) = q`v0 ⊗ (e+

1 v′)
and k±1

0 (v0 ⊗ v′) = q∓`v0 ⊗ (k±1
0 v′), it follows from BW ⊆ W that v0 ⊗ (e+

0 v′), v0 ⊗ (e+
1 v′),

v0 ⊗ (k±
0 v′) are contained in W . Since the elements e+

0 , e+
1 , k±1

0 generate B, we obtain

〈v0〉 ⊗ Bv′ ⊆ W.

Since V ′ is irreducible as a B-module by Theorem 1.21 (i), we have Bv′ = V ′ so v0⊗V ′ ⊆ W .
Suppose that 〈vi〉 ⊗ V ′ ⊆ W . Choose a nonzero element v′ from V ′. Then e−1 (vi ⊗ v′) =
[i + 1] vi+1 ⊗ (k−1

1 v′) + vi ⊗ (e−1 v′). Since e−1 (vi ⊗ v′) and vi ⊗ (e−1 v′) are contained in W , we
have

vi+1 ⊗ v′′ ∈ W,

where v′′ = k−1
1 v′ 6= 0. So e+

0 (vi+1 ⊗ v′′), e+
1 (vi+1 ⊗ v′′), k0(vi+1 ⊗ v′′) are contained in W .

Since e+
0 (vi+1 ⊗ v′′) = q2i+2−`vi+1 ⊗ (e+

0 v′′), e+
1 (vi+1 ⊗ v′′) = [` − i] vi ⊗ v′′ + q`−2i−2vi+1 ⊗

(e+
1 v′′), k0(vi+1 ⊗ v′′) = q2i+2−`vi+1 ⊗ (k0v

′′), it follows from vi ⊗ v′′ ∈ W that

vi+1 ⊗ (e+
0 v′′), vi+1 ⊗ (e+

1 v′′), vi+1 ⊗ (k0v
′′)

are all contained in W . So
〈vi+1〉 ⊗ Bv′′ ⊆ W.

Since Bv′′ = V ′, we have 〈vi+1〉 ⊗ V ′ ⊆ W . This completes the proof of Lemma 7.6. 2
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7.3 Proof of part (iii)

The part (iii) of Theorem 1.15, Theorem 1.18, Theorem 1.21 follows from the part (i) together
with Theorem 1.9′, Theorem 5.2, and some combinatorial observations as in Lemma 1.14; we
prove Lemma 1.14 at the end of this subsection separately. Let s and d be a nonzero scalar
and a positive integer respectively, chosen arbitrarily. We are given a polynomial P (λ) in
Ps

d , i.e., P (λ) is a monic polynomial of degree d such that P (εs−2 + ε∗s2) 6= 0. We want
to construct an irreducible T -module V via ϕs such that the Drinfel’d polynomial PV (λ)
coincides with P (λ). Let λ1, λ2, · · · , λd denote the roots of P (λ), allowing repetition.

If (ε, ε∗) = (1, 1), let Ωi denote the set of solutions of

λi + ζ + ζ−1 = 0

for ζ. We understand that Ωi is a multi-set if λi = ±2. So |Ωi| = 2 (1 ≤ i ≤ d). Set

Ω =
d⋃

i=1

Ωi

as a multi-set. Then |Ω| = 2d as a multi-set. By Lemma 1.14, there exists a multi-set
{S(`i, ai)}n

i=1 of q-strings strongly in general position such that

Ω =
n⋃

i=1

(
S(`i, ai) ∪ S(`i, a

−1
i )

)
as multi-sets. Since |S(`i, ai)| = `i, we have d = `1 + · · · + `n. The T -module

V = V (`1, a1) ⊗ · · · ⊗ V (`n, an)

via ϕs has Drinfel’d polynomial

PV (λ) =
n∏

i=1

PV (`i,ai)(λ)

by Theorem 5.2, where

PV (`i,ai)(λ) =
∏

ζ∈S(`i,ai)

(λ + ζ + ζ−1).

Thus PV (λ) = P (λ). Since P (s−2 + s2) 6= 0, we have −s2 /∈ S(`i, ai)∪S(`i, a
−1
i ) (1 ≤ i ≤ n).

So by Theorem 1.15 (i), the T -module V via ϕs is irreducible.

If (ε, ε∗) = (1, 0), set
Ω = {−λi | λi 6= 0, 1 ≤ i ≤ d}

as a multi-set. We may assume that Ω = {−λi | ` + 1 ≤ i ≤ d} and λ1 = · · · = λ` = 0,
allowing ` = 0 . It is well-known and easy to show that there exists a multi-set {S(`i, ai)}n

i=1

of q-strings in general position such that

Ω =
n⋃

i=1

S(`i, ai)
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as multi-sets. Since |S(`i, ai)| = `i, we have d − ` = `1 + · · · + `n. The T -module

V = V (`) ⊗ V (`1, a1) ⊗ · · · ⊗ V (`n, an)

via ϕs has Drinfel’d polynomial

PV (λ) = λ`

n∏
i=1

PV (`i,ai)(λ)

by Theorem 5.2, where

PV (`i,ai)(λ) =
∏

c∈S(`i,ai)

(λ + c).

Thus PV (λ) = P (λ). Since P (s−2) 6= 0, we have −s−2 /∈ S(`i, ai) (1 ≤ i ≤ n). So by
Theorem 1.18 (i), the T -module V via ϕs is irreducible.

If (ε, ε∗) = (0, 0), set
Ω = {−λ1, λ2, · · · ,−λd},

as a multi-set. Since P (εs−2 + ε∗s2) = P (0) 6= 0, we have λi 6= 0 (1 ≤ i ≤ n). There exists a
multi-set of q-strings {S(`i, ai)}n

i=1 in general position such that

Ω =
n⋃

i=1

S(`i, ai)

as multi-set. Since S|(`i, ai)| = `i, we have d = `1 + · · · + `n. The T -module

V = V (`1, a1) ⊗ · · · ⊗ V (`n, an)

via ϕs has Drinfel’d polynomial

PV (λ) =
n∏

i=1

PV (`i,ai)(λ)

by Theorem 5.2, where

PV (`i,ai)(λ) =
∏

c∈S(`i,ai)

(λ + c).

Thus PV (λ) = P (λ). By Theorem 1.21 (i), the T -module V via ϕs is irreducible. This
completes the proof of the part (iii) for Theorem 1.15, Theorem 1.18, Theorem 1.21.

Proof of Lemma 1.14. We proceed by induction on |Ω|, where |Ω| denotes the number
of elements in Ω, counting the multiplicities. Recall the partial ordering (34) on C \ {0}
introduced in Section 7.1:

a ≤ b ⇔ b = a q2i for some integer i ≥ 0.

Choose a maximal element c in Ω with respect to this partial ordering. Note that c−1 is
minimal in Ω. Set

Ω′ = Ω \ {c, c−1}
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as multi-sets of nonzero scalars. Then by induction, there exists a multi-set {S(`′i, a
′
i)}

n′

i=1 of
q-strings strongly in general position such that

Ω′ =
n′⋃

i=1

(
S(`′i, a

′
i) ∪ S(`′i, a

′
i
−1

)
)

as multi-sets of nonzero scalars. Moreover such a multi-set {S(`′i, a
′
i)}

n′

i=1 of q-strings is
uniquely determined by Ω′ up to equivalence. Observe that the union S(`′i, a

′
i) ∪ {c} (resp.

S(`′i, a
′
i) ∪ {c−1) ) as a multi-set of nonzero scalars is a q-string if and only if c = a′

iq
`′i+1

(resp. c−1 = a′
iq

−`′i−1), in which case

S(`′i, a
′
i) ∪ {c} = S(`′i + 1, a′

iq)
(
resp. S(`′i, a

′
i) ∪ {c−1} = S(`′i + 1, a′

iq
−1)

)
.

If there exist i’s such that either c = a′
iq

`′i+1 or c−1 = a′
iq

−`′i−1, choose one among such i’s
that has the largest `′i. By rearranging the ordering of the q-strings, we may assume i = n′.
By replacing a′

n′ by a′−1
n′ if c−1 = a′

n′q−`′
n′−1, we may assume c = a′

n′q`′
n′+1. Thus c = a′

n′q`′
n′+1

is maximal in Ω and if c = a′
iq

`′i+1 or c−1 = a′
iq

−`′i−1 holds for some i, then `′n ≥ `′i. In this
case, define q-strings S(`i, ai) (1 ≤ i ≤ n′) by

S(`i, ai) = S(`′i, a
′
i) (1 ≤ i ≤ n′ − 1), (48)

S(`n′ , an′) = S(`′n′ + 1, a′
n′q). (49)

Then the multi-set {S(`i, ai)}n′

i=1 of q-strings is strongly in general position and

Ω =
n′⋃

i=1

(
S(`i, ai) ∪ S(`i, a

−1
i )

)
as multi-set of nonzero scalars.

If there exist no i’s such that either c = a′
iq

`′i+1 or c−1 = a′
iq

−`′i−1, then define q-strings
S(`i, ai) (1 ≤ i ≤ n′ + 1) by

S(`i, ai) = S(`′i, a
′
i) (1 ≤ i ≤ n′), (50)

S(`n′+1, an′+1) = S(1, c). (51)

Then the multi-set {S(`i, ai)}n′+1
i=1 of q-strings is strongly in general position and

Ω =
n′+1⋃
i=1

(
S(`i, ai) ∪ S(`i, a

−1
i )

)
as multi-sets of nonzero scalars. In any case, there exists a desired multi-set of q-strings.

Next we show the uniqueness of such a multi-set of q-strings up to equivalence. Let
{S(mi, bi)}n

i=1 be a multi-set of q-strings strongly in general position such that

Ω =
n⋃

i=1

(
S(mi, bi) ∪ S(mi, b

−1
i )

)
.
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Then the maximal element c of Ω, which was chosen in the course of the construction of a
desired multi-sets of q-strings, belongs to either S(mi, bi) or S(mi, b

−1
i ) for some i. Among

such i’s, choose one that has the smallest mi. We many assume i = n and c ∈ S(mn, bn) by
rearranging the ordering of the q-strings and replacing bn by b−1

n if necessary. Thus bnq
mn−1 is

the maximal element c and mn ≤ mi holds if c ∈ S(mi, bi) or c ∈ S(mi, b
−1
i ), i.e., c = biq

mi−1

or c−1 = biq
−mi+1.

If mn ≥ 2, then the multi-set

{S(mi, bi)}n−1
i=1 ∪ {S(mn − 1, bnq

−1)}

of q-strings is strongly in general position and covers the multi-set Ω′ = Ω \ {c, c−1} of nonzero
scalars as the union of S(mi, bi), S(mi, b

−1
i ) (1 ≤ i ≤ n − 1) and S(mn − 1, bnq

−1), S(mn −
1, b−1

n q). Such a multi-set of q-strings is unique up to equivalence by induction. So the
multi-set {S(mi, bi)}n−1

i=1 ∪ {S(mn − 1, bnq
−1)} of q-strings is equivalent to {S(`′i, a

′
i)}n′

i=1, the
one which was chosen in the course of the construction of a desired multi-sets of q-strings.
Observe that c = (bnq

−1)q(mn−1)+1 and mn − 1 ≥ mi if c = biq
mi+1 or c−1 = biq

−mi−1 for
some i (1 ≤ i ≤ n − 1), since S(mn, bn) includes either S(mi, bi) or S(mi, b

−1
i ) for such an i.

Thus we have n = n′ and we may assume

S(mi, bi) = S(`′i, a
′
i) (1 ≤ i ≤ n − 1),

S(mn − 1, bnq
−1) = S(`′n, a

′
n).

By (48), (49), the multi-set {S(mi, bi)}n
i=1 of q-strings is equivalent to the one we constructed

by means of {S(`′i, a
′
i)}n′

i=1.

If mn = 1, then S(mn, bn) = {c} and the multi-set

{S(mi, bi)}n−1
i=1

of q-strings is strongly in general position and covers the multi-set Ω′ = Ω \ {c, c−1} as a
union of S(mi, bi), S(mi, b

−1
i ) (1 ≤ i ≤ n − 1). Such a multi-set of q-strings is unique up to

equivalence. Observe that there exist no i’s (1 ≤ i ≤ n − 1) such that either c = biq
mi+1 or

c−1 = biq
−mi−1, since otherwise S(mn, bn) ∪ S(mi, bi) or S(mn, b

−1
n ) ∪ S(mi, bi) would be a

q-string for such an i. Thus we have n′ = n − 1 and we may assume

S(mi, bi) = S(`′i, a
′
i) (1 ≤ i ≤ n − 1).

By (50), (51), the multi-set {S(mi, bi)}n
i=1 of q-strings is equivalent to the one we constructed

by means of {S(`′i, a
′
i)}n′

i=1. This completes the proof of Lemma 1.14. 2
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