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Positron two-dimensional angular correlation of annihilation radiation (2D ACAR), i.e., the 2D pro-
jection of the electron momentum densities sampled by positron, in Si is employed to verify the prediction
of the density functional theory within the local-density approximation (LDA). Carefully conducted test
shows that the LDA introduces small but definite discrepancies to the 2D-ACAR anisotropies. Self-energy
calculation using the GW method indicates that density-fluctuation contributes anisotropic momentum-
density correction and thus improves the agreement between theory and experiment. These results provide
valuable annotations to the arguments concerning the accuracy and validity of the LDA and GW schemes.
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Electron momentum-density (EMD) distribution repre-
sents the many-body wave function in momentum space
and is a fundamental property of an interacting many-
electron system. Therefore, the studies of EMD distribu-
tion provide valuable information about the nature of the
many-electron interactions in solids. Density functional
theory (DFT) [1] describes well the many-body interaction
in the ground state of solids when the exact electron
exchange-correlation potential is available. Practical com-
putational schemes based on the DFT—using either local-
density approximation (LDA) or generalized gradient ap-
proximation (GGA) to the exact exchange-correlation po-
tential—are greatly successful in electronic-structure
studies of realistic materials.

Nevertheless, recent EMD distributions in lithium ob-
tained by Compton scattering technique exhibit significant
departure from the LDA calculations [2]. Various reasons
that may account for the discrepancies, such as electron
correlation [3,4], thermal effect [5], etc., have been exten-
sively discussed. Quantum Monte Carlo simulations [6,7]
show that the correlation effect may not be the dominant
source of the discrepancies; instead, the uncertainties as-
sociated with the experimental technique in probing the
EMD must be invoked, because the Compton scattering
accesses the EMD in an indirect way only [6]. So far,
fundamentally important problems arising from the recent
high-resolution EMD measurements, such as the validity
and accuracy of the LDA scheme for the EMD studies and
the significance of the electron correlation, are still very
controversial [2–8].

This Letter addresses these controversial issues by using
an alternative momentum-density technique, the positron
angular correlation of annihilation radiation (ACAR).
Thermalized positron in solids annihilates with an electron
into (mostly) two � photons; due to the momentum con-
servation, the angle of the emitted � photons deviated from
the exact antiparallelism gives directly the electron’s mo-
mentum. Thus, by using a pair of position-sensitive �-ray
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detectors, the positron 2D-ACAR technique measures the
momentum-density distributions of the positron-sampled
electrons (i.e., ACAR distribution) projected on a 2D plane
[9]. We here focus on the ACAR distribution in Si, one of
the best understood solids. Through carefully conducted
experiments and calculations based on both the LDA and
GW schemes, we show that there are small but definite
discrepancies between the LDA calculation and experi-
ment and that the discrepancies can be decently corrected
by the self-energy effect.

The 2D-ACAR distributions in a floating-zone grown Si
sample were measured at room temperature by using a
state-of-the-art Anger-camera-type 2D-ACAR set recently
installed in the Oarai Center, IMR, Tohoku University. The
results were compared with our previous experiments done
in the National Institute for Materials Science, Japan, using
different facilities and sample [10], and high reproducibil-
ity of the experiments is observed (as shown later in Fig. 2).

The 2D ACAR [N�px; py�] is the 2D projection of the
3D momentum-density distributions of the positron-
electron pairs [	�p�] along a chosen axis (pz), i.e.,
N�px; py� /

R
	�p�dpz. Based on the two-component den-

sity functional theory [11], 	�p� can be calculated as

	�p� �
X
i

n0i

��������
Z
e�ipr �0�r� i�r�

���������
g�r�

q
dr
��������

2
; (1)

where  i is the wave function of single-particle state within
the LDA or GGA with i standing for its state label (con-
taining both band index i and crystal momentum ki), n0i the
occupation number of the ith single-particle state (�1 for
the valence states and � 0 for the conduction states),  �0

the wave function of the thermalized positron, and g is the
enhancement factor describing the increase of the contact
electron density to positron due to the positron-electron
correlation and is calculated within the LDA in the present
study [11]. We employ the plane-wave basis set with a
cutoff kinetic energy of 10.0 a.u. to expand the wave func-
2-1  2005 The American Physical Society
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FIG. 1 (color). Experimental (upper) and LDA-calculational
(lower) anisotropies of normalized total 2D ACAR projected
along the �001� direction in Si. The calculations are convoluted
with the experimental resolution of 0.12 a.u. The contour spacing
is the same for both plottings (0.005 arbitrary unit). Red, green,
and blue lines denote positive, zero, and negative values, re-
spectively. Black lines denote the Jones-zone outline.
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FIG. 2 (color). Cross sections of 2D-ACAR anisotropies
(�001� projection) along the �110� and �100� directions in Si.
Black solid (open) circles denote the present (previous) experi-
ments. Blue, green, and red colors denote LDA, GGA, and GW
calculations, respectively.
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tions of the electrons and positron. The electron-ion and
positron-ion interactions are represented by, respectively,
the pseudopotential [12,13] and the full potential using
the frozen core approximation (details of the method can
be found in our previous publication [10]). In this work,
	�p� is evaluated at a dense momentum mesh contain-
ing 119 164 k points in the first Brillouin zone (FBZ), and
the electron wave functions are calculated within the LDA
[14] first and then within the GGA [15] for comparison
(the GGA calculation uses the ultrasoft pseudopoten-
tial [16]).

Although the state-of-the-art facilities and the dense k
points are employed in this work, the achieved agreement
is found to be similar to our previous work [10]. Namely, as
observed in the Compton profiles, the calculation over-
estimates the momentum densities at low momenta but
underestimates at high momenta, and, in the present
case, the ACAR density at � point is overestimated by
about 8%. Nevertheless, this discrepancy is not necessarily
the intrinsic error of the LDA, because in the pseudo-
potential scheme it is difficult to estimate accurately the
momentum-density contributions of the positron-electron
pairs around the core regions.

To perform reliable and stringent tests, we choose a
strategy to focus on the 2D-ACAR anisotropies. The an-
isotropies are defined as the differences between the
2D-ACAR densities and their cylindrical average [10];
because the momentum-density anisotropies caused by
the positron-electron annihilations around the core regions
are very small [17], the anisotropies can be regarded as
fully arising from the positron-valence-electron annihila-
tions, and furthermore, the downside effect of using the
pseudo-wave-functions is also suppressed to be negligible.

Figure 1 presents the anisotropies of the experimental
and calculational (LDA) 2D ACAR for Si projected along
the �001� direction. General features of the experiment,
such as the positive (negative) peaks along the �110�
(�100�) and equivalent directions, are well reproduced by
the calculation, and their physical origin had been attrib-
uted to the occupation of single-electron states at the Jones-
zone corners [10]. However, the experimental anisotropies
are considerably weaker than the calculated ones. This fact
is more explicitly exhibited by the anisotropy cross sec-
tions shown in Fig. 2. As seen from Fig. 2, the calculation
indeed overestimates the anisotropy peaks, although the
differences between the experimental and theoretical an-
isotropies relative to the peak of the total 2D ACAR are
small (less than 2.5%). We have investigated various rea-
sons that may result in the discrepancies. For instance,
taking into account the temperature effect by replacing
the step function (n0i ) in Eq. (1) by the Fermi-Dirac distri-
bution, the achieved correction is very small. Actually, the
discrepancies are very steady; even using the GGA scheme
and a very different type of pseudopotential, quite similar
results are obtained and the agreement between theory and
experiment is improved only marginally (Fig. 2).
10640
Are the discrepancies originated from the LDA or GGA
to the exact exchange-correlation potential in the DFT?
We investigate this interesting issue by calculating the
momentum-density correction due to the electron self-
energy using the perturbation method of the quantum field
2-2
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FIG. 3. Self-energy (upper) and spectral-density (lower) func-
tions for the quasiparticle states �250 and �15 in Si.
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theory within the GW approximation [13,18–22]. The
frequency-dependent, nonlocal exchange-correlation inter-
action among the LDA single-particle states are introduced
through the inverse dielectric matrix, whose plasmon-pole-
model form is adopted in the present study [18,19]. The
perturbation expansion of the self-energy (�) truncated in
the first order (i.e., the GW approximation) reads (only the
!-dependent part, namely, the correlation energy, is given)

�i�!� �
2�
v

Xj
GG0

�2
GG0 �q�

!0
GG0 �q�

	ij�G�	ji�G0�

jq�Gjjq�G0j

�

� n0j
!� "0j �!0

GG0 �q� � i�

�
1� n0j

!� "0j �!0
GG0 �q� � i�

�
; (2)

where v is the volume of the unit cell, � the chemical
potential, "0 the LDA eigenenergy, G (G0) the reciprocal
lattice vector,� a positive infinitesimal, q ( 2 the FBZ) the
reduced momentum transfer of ki � kj, � and !0 the
plasmon-pole parameters determined by the matrix ele-
ments of the inverse dielectric functions directly calculated
at two frequencies, and 	ij�G� �

R
e�i�q�G�r 

i �r� j�r�dr.
The real and imaginary parts of the above self-energy

[Eq. (2)] give the spectral-density function as

Ai�!� �
1

�
jIm�i�!�j

j!� "0i � Re�i�!�j
2 � jIm�i�!�j

2 ; (3)

(only the diagonal part is presented and the nondiagonal
parts are omitted), whose frequency integral is the occu-
pation probability of the single-particle state,

ni �
Z �

�1
Ai�!�d!: (4)

By treating the positron-electron interaction still within the
LDA, the momentum density 	�p� can then be calculated
in a fashion analogous to Eq. (1) with the occupation
number replaced by the above Eq. (4) [23].

We performed the GW calculations for the single-
particle states of 32 bands at 2048 k points in the FBZ.
For each state, the real and imaginary parts of the self-
energy function are directly evaluated at 181! points from
�3 to 3 a.u. (a small damping of � � 0:01 a:u: is intro-
duced in numerical calculations to describe the single-
particle states coupling with the plasmons [24]). The re-
sulting occupation probabilities are then interpolated to the
whole FBZ to calculate 	�p� at the dense momentum
mesh. Special attention is paid to the numerical accuracy;
for instance, the sum rule of

R
�1
�1 Ai�!�d! � 1 is fulfilled

with an error less than 0.5%.
As an example, Fig. 3 presents the calculated self-energy

functions for the quasiparticle states �250 (valence) and �15
10640
(conduction), together with the corresponding spectral-
density functions. The quasiparticle’s energy is determined
by the pole of the Green’s function, which is the cross point
of Re��!� with the straight line of !� "0. From Fig. 3, it
is found that the excitation energy of the �250 (�15) quasi-
particle state is shifted by �0:22 (0.38) eV from its LDA
eigenenergy, which enlarges the theoretical energy gap at �
from 2.54 (LDA) to 3.14 eV (GW), in good agreement with
the experiment (3.4 eV) and other GW calculations
(3.35 eV) [19].

Since no individual electron-hole-pair excitation is
taken into account in the present plasmon-pole dielectric
function, the single-particle state does not couple with the
low-energy elementary excitations, so that Im� is zero and
the spectral density is a � function around the quasiparticle
energy [its spectral weight is determined by the renormal-
ized factor defined as ZF � 1=�1� @Re�=@!� and the
values are marked in Fig. 3]. However, the single-particle
states indeed couple with the plasmons, the high-energy
density-fluctuation excitations, which results in broad
peaks in Im��!�, and consequently, two sidebands in
A�!� in addition to the quasiparticle peak. As a result,
the occupation probability n after the self-energy correc-
tion [Eq. (4)] is less (larger) than one (0) for the valence
(conduction) states (Fig. 3). Anyhow, the maximum cor-
rection to n0 (i.e., the deviation from the step function) is
found to be less than 0.06, demonstrating the LDA is
indeed reasonable enough. As shown in Fig. 4, this self-
energy effect decreases (increases) the momentum den-
sities inside (outside) the Jones zone, which can be intui-
tively viewed as the result of that the fully filled Jones zone
is shifted following the momentum of the density fluctua-
tion so that a bunch of electron-hole pairs are collectively
created. Especially, this effect is anisotropic (Fig. 4), i.e.,
the decrease of the momentum-density along the �110�
2-3



FIG. 4 (color). Self-energy correction, defined as the differ-
ence between the normalized GW and LDA calculations, to the
2D-ACAR distribution in Si (�001� projection).
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direction is larger, which significantly improves the agree-
ment between theory and experiment as shown in Fig. 2.

Good agreement between our GW calculation and ex-
periment indicates that the electron-electron correlation
has more significant effect than the positron-electron cor-
relation in the ACAR distribution. However, it is noticed
that there are still some discrepancies outside the Jones
zone (Fig. 2), which may be due to the positron self-energy
effect [25] or the conventional position-dependent en-
hancement factor within the LDA [g�r� in Eq. (1)]. Thus,
the positron self-energy correction or a state-dependent
enhancement factor [26] is expected to further improve
the agreement between theory and experiment and de-
serves more studies in the future.

In short summary, positron 2D ACAR in Si is em-
ployed to test the accuracy and validity of the LDA and
GW approximation for the momentum-density studies.
Carefully conducted experiments and calculations show
that there are small but definite discrepancies between
the LDA calculation and experiment and that the dis-
crepancies can be decently corrected by the self-energy
effect.
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