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Abstract

We introduce A-hypergeometric differential-difference equation HA and prove that
its holonomic rank is equal to the normalized volume of A with the Gröbner basis
theory and giving a set of convergent series solutions.
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1 Introduction

In this paper, we introduce A-hypergeometric differential-difference equation
HA and study its series solutions and holonomic rank.

Let A = (aij)i=1,...,d,j=1,...,n be a d× n-matrix whose elements are integers. We
suppose that the set of the column vectors of A spans Zd and there is no zero
column vector. Let ai be the i-th column vector of the matrix A and F (β, x)
the integral

F (β, x) =
∫

C
exp

(
n∑

i=1

xit
ai

)
t−β−1dt, t = (t1, . . . , td), β = (β1, . . . , βd).

The integral F (β, x) satisfies the A-hypergeometric differential system associ-
ated to A and β “formally”. We use the word “formally” because, there is no
general and rigorous description about the cycle C ([11, p.222]).
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takayama@math.kobe-u.ac.jp (Nobuki Takayama).
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We will regard the parameters β as variables. Then, the function F (s, x) on
the (s, x) space satisfies differential-difference equations “formally”, which will
be our A-hypergeometric differential-difference system defined in Section 3.

Rank theories of A-hypergeometric differential system have been developed
since Gel’fand, Zelevinsky and Kapranov [4]. In the end of 1980’s, under the
condition that the points lie on a same hyperplane, they proved that the rank
of A-hypergeometric differential system HA(β) agrees with the normalized
volume of A for any parameter β ∈ Cd if the toric ideal IA has the Cohen-
Macaulay property. After their result had been gotten, many people have
studied on conditions such that the rank equals the normalized volume. In
particular, Matusevich, Miller and Walther proved that IA has the Cohen-
Macaulay property if the rank of HA(β) agrees with the normalized volume
of A for any β ∈ Cd ([5]).

In this paper, we will introduce A-hypergeometric differential-difference sys-
tem, which can be regarded as a generalization of difference equation for the
Γ-function, the Beta function, and the Gauss hypergeometric difference equa-
tions. As the first step on this differential-difference system, we will prove
our main Theorem 3 (rank=volume) utilizing the Gröbner basis, theorems
on A-hypergeometric differential equations, construction of convergent se-
ries solutions with a homogenization technique, uniform convergence of series
solutions, and Mutsumi Saito’s results for contiguity relations [9], [10], [11,
Chapter 4]. The existence theorem 2 on a fundamental set of convergent se-
ries solutions for A-hypergeometric differential equation for generic β is the
second main theorem of our paper. Finally, we note that, for studying our
A-hypergeometric differential-difference system, we wrote a program “yang”
(Yet another non-commutative Gröbner package) ([6], [8]) on a computer alge-
bra system Risa/Asir and did several experiments on computers to conjecture
and prove our theorems.

2 Holonomic rank

Let D be the ring of differential-difference operators

C〈x1, . . . , xn, s1, . . . , sd, ∂1, . . . , ∂n, S1, . . . , Sd, S
−1
1 , . . . , S−1

d 〉

where the following (non-commutative) product rules are assumed

Sisi = (si + 1)Si, S−1
i si = (si − 1)S−1

i , ∂ixi = xi∂i + 1

and the other types of the product of two generators commute.

Holonomic rank of a system of differential-difference equations will be defined
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by using the following ring of differential-difference operators with rational
function coefficients

U = C(s1, . . . , sd, x1, . . . , xn)〈S1, . . . , Sd, S
−1
1 , . . . , S−1

d , ∂1, . . . , ∂n〉

It is a C-algebra generated by rational functions in s1, . . . , sd, x1, . . . , xn and
differential operators ∂1, . . . , ∂n and difference operators S1, . . . , Sd, S

−1
1 , . . . , S−1

d .
The commutation relations are defined by ∂ic(s, x) = c(s, x)∂i+

∂c
∂xi

, Sic(s, x) =

c(s1, . . . , si + 1, . . . , sd, x)Si, S−1
i c(s, x) = c(s1, . . . , si − 1, . . . , sd, x)S−1

i .

Let I be a left ideal in D. The holonomic rank of I is the number

rank(I) = dimC(s,x)U/(UI).

In case of the ring of differential operators (d = 0), the definition of the
holonomic rank agrees with the standard definition of holonomic rank in the
ring of differential operators.

For a given left ideal I, the holonomic rank can be evaluated by a Gröbner
basis computation in U.

3 A-hypergeometric differential-difference equations

Let A = (aij)i=1,...,d,j=1,...,n be an integer d × n matrix of rank d. We assume
that the column vectors {ai} of A generates Zd and there is no zero vector. The
A-hypergeometric differential-difference system HA is the following system of
differential-difference equations




n∑

j=1

aijxj∂j − si


 • f = 0 for i = 1, . . . , d and

(
∂j −

n∏

i=1

S
−aij

i

)
• f = 0 for j = 1, . . . , n.

Note that HA contains the toric ideal IA. (use [12, Algorithm 4.5] to prove
it.)

Definition 1 Define the unit volume in Rd as the volume of the unit simplex
{0, e1, . . . , ed}. For a given set of pointsA = {a1, . . . , an} in Rd, the normalized
volume vol(A) is the volume of the convex hull of the origin and A.

Theorem 1 A-hypergeometric differential-difference system HA has linearly
independent vol(A) series solutions.
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The proof of this theorem is divided into two parts. The matrix A is called
homogeneous when it contains a row of the form (1, . . . , 1). If A is homoge-
neous, then the associated toric ideal IA is homogeneous ideal [12]. The first
part is the case that A is homogeneous. The second part is the case that A is
not homogeneous.

Proof. (A is homogeneous.) We will prove the theorem with the homogeneity
assumption of A. In other words, we suppose that A is written as follows:

A =




1 · · · 1

∗


 .

Gel’fand, Kapranov, Zelevinski gave a method to construct m = vol(A) lin-
early independent solutions of HA(β) with the homogeneity condition of A
([4]). They suppose that β is fixed as a generic C-vector. Let us denote their
series solutions by f1(β; x), . . . , fm(β; x). It is easy to see that the functions
fi(s; x) are solutions of the differential-difference equations HA. We can show,
by carefully checking the estimates of their convergence proof, that there exists
an open set in the (s, x) space such that fi(s; x) is locally uniformly conver-
gent with respect to s and x. Let us sketch their proof to see that their series
converge as solutions of HA. The discussion is given in [4], but we need to
rediscuss it in a suitable form to apply it to the case of inhomogeneous A.

Let B be a matrix of which the set of column vectors is a basis of Ker(A :
Qn → Qd) and is normalized as follows:

B =




1
. . .

1

∗




∈ M(n, n− d,Q).

We denote by b(i) the i-th column vector of B and by bij the j-th element of
b(i). Then the homogeneity of A implies

n∑

j=1

bij = 0.

Let us fix a regular triangulation ∆ of A = {a1, . . . , an} following the construc-
tion by Gel’fand, Kapranov, Zelevinsky. Take a d-simplex τ in the triangula-
tion ∆. If λ ∈ Cn is admissible for a d-simplex τ of {1, 2, . . . , n} (admissible
⇔ for all j 6∈ τ , λj ∈ Z), and Aλ = s holds, then HA has a formal series
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solution

φτ (λ; x) =
∑

l∈L

xλ+l

Γ(λ + l + 1)
,

where L = Ker(A : Zn → Zd) and Γ(λ + l + 1) =
∏n

i=1 Γ(λi + li + 1) and when
a factor of the denominator of a term in the sum, we regard the term is zero.
Put #τ = n′. Note that there exists an open set U in the s space such that
λi, i ∈ τ lie in a compact set in Cn′ \ Zn′ . Moreover, this open set U can be
taken as a common open set for all d-simplices in the triangulation ∆ and the
associated admissible λ’s when the integral values λj (j 6∈ τ) are fixed for all
τ ∈ ∆.

Put L′ = {(k1, . . . , kn−d) ∈ Zn−d | ∑n−d
i=1 kib

(i) ∈ Zn}. Then, L′ is Z-submodule
of Zn−d and L = {∑n−d

i=1 kib
(i) | k ∈ L′}. In other words, L can be parametrized

with L′. Without loss of the generality, we may suppose that τ = {n − d +
1, . . . , n}. Then, we have

φτ (λ; x) =
∑

l∈L

xλ+l

Γ(λ + l + 1)
=

∑

k∈L′

xλ+
∑n−d

i=1
kib

(i)

Γ(λ +
∑n−d

i=1 kib(i) + 1)

Note that the first n− d rows of B are normalized. Then, we have

λj +
n−d∑

i=1

kibij + 1 = λj + kj + 1 ∈ Z (j = 1, . . . , n− d)

Since 1/Γ(0) = 1/Γ(−1) = 1/Γ(−2) = · · · = 0, the sum can be written as

φτ (λ; x) =
∑

k∈L′
λj+kj+1∈Z>0

(j=1,...,n−d)

xλ+
∑n−d

i=1
kib

(i)

Γ(λ +
∑n−d

i=1 kib(i) + 1)

Moreover, when we put

k′j = λj + kj, (j = 1, . . . , n− d)

λ′ = λ−
n−d∑

i=1

λib
(i)

λ̂ = (λ1, . . . , λn−d)

we have
n−d∑

i=1

kib
(i) = −

n−d∑

i=1

λib
(i) +

n−d∑

i=1

k′ib
(i)

Hence, the sum φτ (λ; x) can be written as
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φτ (λ; x) =
∑

k′∈L′+λ̂
k′∈Zn−d

≥0

xλ−
∑n−d

i=1
λib

(i) · x
∑n−d

i=1
k′ib

(i)

Γ(λ−∑n−d
i=1 λib(i) +

∑n−d
i=1 k′ib(i) + 1)

= xλ′ ∑

k′∈L′+λ̂
k′∈Zn−d

≥0

(xb(1))k′1 · · · (xb(n−d)
)k′n−d

Γ(λ′ +
∑n−d

i=1 k′ib(i) + 1)

Note that our series with the coefficients in terms of Gamma functions agree
with those in [11, §3.4], which do not contain Gamma functions, by multiplying
suitable constants. Hence we will apply some results on series solutions in [11]
to our discussions in the sequel.

Lemma 1 Let (ki) ∈ (Z≥0)
m and (bij) ∈ M(m,n,Q). Suppose that

m∑

i=1

kibij ∈ Z,
n∑

j=1

bij = 0

and parameters λ = (λ1, . . . , λn) belongs to a compact set K. Then there exists
a positive number r, which is independent of λ, such that the power series

∑

k′∈L′+λ̂
k′∈Zn−d

≥0

(xb(1))k′1 · · · (xb(n−d)
)k′n−d

Γ(λ′ +
∑n−d

i=1 k′ib(i) + 1)

is convergent in |xb(1)|, · · · , |xb(n−d)| < r.

The proof of this lemma can be done by elementary estimates of Γ functions.
See [7, pp.18–21] if readers are interested in the details. Since

k′ ∈ L′ + λ̂ ⇐⇒
n−d∑

i=1

k′ib
(i) ∈ Zn

it follows from Lemma 1 that there exists a positive constant r such that the
series converge in

|xb(1)|, · · · , |xb(n−d) | < r (3.1)

for any s in the open set U . We may suppose r < 1. Take the log of (3.1).
Then we have

b(k) · (log |x1|, . . . , log |xn|) < log |r| < 0 ∀k ∈ {1, . . . , n− d} (3.2)

Following [4], for the simplex τ and r, we define the set C(A, τ, r) as follows.

C(A, τ, r) =



ψ ∈ Rn

∣∣∣∣∣∣
∃ϕ ∈ Rd, ψi − (ϕ, ai)





> − log |r|, i 6∈ τ,

= 0, i ∈ τ,
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The condition (3.2) and (− log |x1|, . . . ,− log |xn|) ∈ C(A, τ, r) is equivalent
(see [3, section 4] as to the proof).

Since ∆ is a regular triangulation of A,
⋂

τ∈∆ C(A, τ, r) is an open set. There-
fore, when s lies in the open set U and − log |x| lies in the above open set, the
vol(A) linearly independent solutions converge. 2

Let us proceed on the proof for the inhomogeneous case. We suppose that
A is not homogeneous and has only non-zero column vectors. We define the
homogenized matrix as

Ã =




1 · · · 1 1

a11 · · · a1n 0
...

...
...

ad1 · · · adn 0




∈ M(d + 1, n + 1,Z).

For s = (s1, . . . , sn) ∈ Cd and a generic complex number s0, we put s̃ =
(s0, s1, . . . , sd). We suppose that τ = {n−d+1, . . . , d, d+1} is a (d+1)-simplex.
Let us take an admissible λ for τ such that Ãλ̃ = s̃ and λ̃ = (λ1, . . . , λn+1) ∈
Rn+1 as in the proof of the homogeneous case. Put λ = (λ1, . . . , λn). Consider
the solution of the hypergeometric system for Ã

φ̃τ (λ̃; x̃) =
∑

k′∈L′∩S

x̃λ+
∑n−d

i=1
k′ib

(i)

Γ(λ +
∑n−d

i=1 k′ib(i) + 1)

and the series

φτ (λ; x) =
∑

k′∈L′∩S

∏n
j=1 x

λ+
∑n−d

i=1
k′ibij

j∏n
j=1 Γ(λj +

∑n−d
i=1 k′ibij + 1)

(x̃ = (x1, . . . , xn+1), x = (x1, . . . , xn)). Here, the set S is a subset of L′ such
that an integer in Z≤0 does not appear in the arguments of the Gamma func-
tions in the denominator. We note that L′ for Ã and L′ for A agree, which can
be proved as follows. Let (k1, . . . , kn+1) be in the kernel of Ã in Qn+1. Since
Ã contains the row of the form (1, . . . , 1), then (k1, . . . , kn) ∈ Zn implies that
kn+1 is an integer. The conclusion follows from the definition of L′.

Definition 2 We call φτ (λ; x) the dehomogenization of φ̃τ (λ̃; x̃).

Intuitively speaking, the dehomogenization is defined by “forgetting” the last
variable xn+1 associated Γ factors. See Example 1.

Formal series solutions for the hypergeometric system for inhomogeneous A do
not converge in general. However, we can construct vol(A) convergent series

7



solutions as the dehomogenization of a set of series solutions for Ã hypergeo-
metric system associated to a regular triangulation on Ã induced by a “nice”
weight vector w̃(ε), which we will define. Put w̃ = (1, . . . , 1, 0) ∈ Rn+1. Since
the Gröbner fan for the toric variety IÃ is a polyhedral fan, the following fact
holds.

Lemma 2 For any ε > 0, there exists ṽ ∈ Rn+1 such that w̃(ε) := w̃ + εṽ lies
in the interior of a maximal dimensional Gröbner cone of IÃ. We may also
suppose ṽn+1 = 0.

Proof. Let us prove the lemma. The first part is a consequence of an elementary
property of the fan. When I is a homogeneous ideal in the ring of polynomials
of n + 1 variables, we have

inũ(I) = inũ+t(1,··· ,1)(I) (3.3)

for any t and any weight vector ũ. In other words, ũ and ũ + t(1, . . . , 1) lie in
the interior of the same Gröbner cone.

When the weight vector w̃(ε) = w̃+εṽ lies in the interior of the Gröbner cone,
we define a new ṽ by ṽ− ṽn+1(1, . . . , 1). Since the initial ideal does not change
with this change of weight, we may assume that ṽn+1 = 0 for the new ṽ. 2

Since the Gröbner fan is a refinement of the secondary fan and hence w̃(ε)
is an interior point of a maximal dimensional secondary cone, it induces a
regular triangulation ([12] p.71, Proposition 8.15). We denote by ∆ the regular
triangulation on Ã induced by w̃(ε). For a d-simplex τ ∈ ∆, we define b(i)

as in the proof of the homogeneous case. Since the weight for ãn+1 is the
lowest, n + 1 ∈ τ holds. We can change indices of ã1, . . . , ãn so that τ =
{n− d + 1, . . . , n + 1} without loss of generality.

Let us prove that the dehomogenized series φτ (λ; x) converge. It follows from
a characterization of the support of the series [11, Theorem 3.4.2] that we have

w̃(ε) ·
(

n−d∑

i=1

k′ib
(i) + λ

)
≥ w̃(ε) · λ, ∀k′ ∈ L′ ∩ S.

Here, S is a set such that Z≤0 does not appear in the denominator of the Γ
factors. Take the limit ε → 0 and we have

w̃ ·
n−d∑

i=1

k′ib
(i) ≥ 0, ∀k′ ∈ L′ ∩ S.

From Lemma 2, w̃(ε) ∈ C(Ã, τ) holds and then

w̃(ε) · b(i) ≥ 0.

8



Similarly, by taking the limit ε → 0, we have

w̃ · b(i) =
n∑

j=1

bij ≥ 0.

Therefore, we have
∑n+1

j=1 bij = 0, the inequality bi,n+1 ≤ 0 holds for all i.

Since k′1 ≥ −λ1, . . . , k
′
n−d ≥ −λn−d, we have

n−d∑

i=1

k′ibi,n+1 ≤ −
n−d∑

i=1

λibi,n+1

Note that the right hand side is a non-negative number. Suppose that λn+1

is negative. In terms of the Pochhammer symbol we have Γ(λn+1 − m) =
Γ(λn+1)(−λn+1 + 1; m)−1(−1)m, then we can estimate the (n + 1)-th gamma
factors as

∣∣∣∣∣Γ(λn+1 +
n−d∑

i=1

k′ibi,n+1 + 1)

∣∣∣∣∣ = |Γ(λn+1 + 1)| ·
∣∣∣∣∣

(
−λn+1;−

n−d∑

i=1

k′ibi,n+1

)∣∣∣∣∣

−1

≤ c′|Γ(λn+1 + 1)| ·
∣∣∣∣∣

(
−λn+1;−

n−d∑

i=1

λibi,n+1

)∣∣∣∣∣

−1

= c (3.4)

Here, c′ and c are suitable constants.

When λn+1 ≥ 0, there exists only finite set of values such that λn+1 +∑n−d
i=1 k′ibi,n+1 ≥ 0. Then, we can show the inequality (3.4) in an analogous

way.

Now, by (3.4), we have

∣∣∣∣∣
1

∏n
j=1 Γ(λj +

∑n−d
i=1 k′ibij + 1)

∣∣∣∣∣ ≤ c

∣∣∣∣∣
1

Γ(λ +
∑n−d

i=1 k′ib(i) + 1)

∣∣∣∣∣

We note that the right hand side is the coefficient of the series solution for the
homogeneous system for Ã and the series converge for (− log |x1|, . . . ,− log |xn+1|) ∈
C(Ã, τ, r) (r < 1) uniformly with respect to s̃ in an open set.

Put xn+1 = 1. Since − log |xn+1| = 0 and w̃(ε) ∈ {y | yn+1 = 0}, we can see
that ⋂

τ∈∆

C(Ã, τ, r) ∩ {y | yn+1 = 0}

is a non-empty open set of Rn. Therefore the dehomogenized series φτ (λ; x)
converge in an open set in the (s, x) space.
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Theorem 2 The dehomogenized series φτ (λ; x) satisfies the hypergeometric
differential-difference system HA and they are linearly independent convergent
solutions of HA when λ runs over admissible exponents associated to the initial
system induced by the weight vector w̃(ε).

Proof. Since Aλ = s, it is easy to show that they are formal solutions of
the differential-difference system HA. We will prove that we can construct
m linearly independent solutions. We note that the weight vector w̃(ε) =
(1, . . . , 1, 0) + εv ∈ Rn+1 is in the neighborhood of (1, . . . , 1, 0) ∈ Rn+1 and in
the interior of a maximal dimensional Gröbner cone of IÃ.

It follows from [11, p.119] that the minimal generating set of in(1,...,1,0) IÃ does
not contain ∂n+1. Since

inw̃(ε) IÃ = inv(in(1,...,1,0) IÃ)

does not contain ∂n+1, we have

M = 〈inw̃(ε) IÃ〉 = 〈inw(ε) IA〉 in C[∂1, . . . , ∂n+1].

Here, we define w(ε) with w̃(ε) = (w(ε), 0). Put θ̃ = (θ1, . . . , θn+1). From
[11, Theorem 3.1.3], for generic β̃ = (β0, β), β ∈ Cd, the initial ideal
in(−w̃(ε),w̃(ε)) HÃ(β̃) is generated by inw̃(ε)(IÃ) and Ãθ̃ − β̃. Let us denote by
T (M) the standard pairs of M . From [11, Theorem 3.2.10], the initial ideal

〈inw̃(ε) IÃ, Ãθ̃ − β̃〉 (3.5)

has #T (M) = vol(Ã) linearly independent solutions of the form

{x̃λ̃ | (∂a, T ) ∈ T (M)}

Here, λ̃ is defined by λ̃i = ai ∈ Z≥0, ∀i 6∈ T and Ãλ̃ = β̃. Note that λ̃ is
admissible for the d-simplex T .

Since we have
〈inw̃(ε) IÃ〉 = 〈inw(ε) IA〉

the difference between
〈inw(ε) IA, Aθ − β〉 (3.6)

and (3.5) is only
θ1 + · · ·+ θn + θn+1 − β0

and other equations do not contain xn+1, ∂n+1.

For any (∂a, T ) ∈ T (M), we have n+1 ∈ T . Therefore, the two solution spaces
(3.6) and (3.5) are isomorphic under the correspondence

xλ 7→ x̃λ̃ (3.7)
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Here, we put λ̃ = (λ, λn+1) and λn+1 is defined by

n∑

i=1

λi + λn+1 − β0 = 0

It follows from [11, Theorem 2.3.11 and Theorem 3.2.10] that

{x̃λ̃ | (∂a, T ) ∈ T (M)}

are C-linearly independent. Therefore, from the correspondence (3.7), the
functions

{xλ | (∂a, T ) ∈ T (M)},
of which cardinality is vol(A), are C-linearly independent. Hence, series solu-
tions with the initial terms

{
xλ

Γ(λ + 1)
| (∂a, T ) ∈ T (M)

}

are C linearly independent, which implies the linear independence of series
solutions with these starting terms [11]. We have completed the proof of the
theorem and also that of Theorem 1. 2

Theorem 3 The holonomic rank of HA is equal to the normalized volume of
A.

Proof. First we will prove rank(HA) ≤ vol(A). It follows from the Adolphson’s
theorem ([1]) that the holonomic rank of A-hypergeometric system HA(β) is
equal to the normalized volume of A for generic parameters β. It implies that
the standard monomials for a Gröbner basis of the A-hypergeometric system
HA(s) in C(s, x)〈∂1, . . . , ∂n〉 consists of vol(A) elements. We note that elements
in the Gröbner basis can be regarded as an element in the ring of differential-
difference operators with rational function coefficients U. We denote by ∂j and
rj the creation and annihilation operators. The existence of them are proved
in [10, Chapter 4]. Then, we have

Hj = ∂j −
n∏

i=1

S
−aij

i ∈ HA

and

Bj = rj −
n∏

i=1

S
aij

i ∈ HA, rj ∈ C(s, x)〈∂1, . . . , ∂n〉.

Since the column vectors of A generate the lattice Zd, we obtain from Bj’s
and Hj’s elements of the form Si−p(s, x, ∂), S−1

i −q(s, x, ∂) ∈ HA. It implies
the number of standard monomials of a Gröbner basis of HA with respect to
a block order such that S1, . . . , Sn > S−1

1 , . . . , S−1
n > ∂1, . . . , ∂n is less than or

equal to vol(A).
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Second, we will prove rank(HA) ≥ vol(A). We suppose that rank(HA) <
vol(A) and will induce a contradiction. For the block order S1, · · · , Sd >
S−1

1 , · · · , S−1
d > ∂1, · · · , ∂n, we can show that the standard monomials T of a

Gröbner basis of HA in U contains only differential terms and #T < vol(A)
by the assumption. Let T ′ be the standard monomials of Gröbner basis G(s)
of HA(s) in the ring of differential operators with rational function coefficients
D(s). Note that #T ′ = vol(A). Then T is a proper subset of the set T ′. For
r ∈ T ′ \ T , it follows that

∂r ≡ ∑

α∈T

cα(x, s)∂α mod HA.

From Theorem 2, we have convergent series solutions f1(s, x), · · · , fm(s, x) of
HA, where m = vol(A). So,

∂r • fi =
∑

α∈T

cα(x, s)∂α • fi (3.8)

Since f1(s, x), . . . , fm(s, x) are linearly independent, the Wronskian standing
for T ′

W (T ′; f)(x, s) =

∣∣∣∣∣∣∣∣∣∣∣

f1(s; x) · · · fm(β; x)

∂δf1(s; x) · · · ∂δfm(β; x)
... · · · ...

∣∣∣∣∣∣∣∣∣∣∣

(∂δ ∈ T ′ \ {1})

is non-zero for generic number s. However r ∈ T ′ and (3.8) induce the Wron-
skian W (T ′; f)(s, x) is equal to zero.

Finally, by rank(HA) ≤ vol(A) and rank(HA) ≥ vol(A), the theorem is
proved. 2

Example 1 Put A =
(
1 2 3

)
and Ã =




1 1 1 1

1 2 3 0


. This is Airy type inte-

gral ([11, p.223]).

The matrix Ã is homogeneous. For w̃(ε) = (1, 1, 1, 0) + 1
100

(1, 0, 0, 0), the ini-
tial ideal inw̃(ε)(IÃ) is generated by ∂2

1 , ∂1∂2, ∂1∂3, ∂
3
2 . Note that the initial ideal

does not contain ∂4. We solve the initial system
(
Ãθ̃ − s̃

)
•g = 0,

(
inw̃(ε)(IÃ)

)
•

g = 0. The standard pairs (∂a, T ) for inw̃(ε)(IÃ) are (∂0
1∂

1
2 , {3, 4}), (∂0

1∂
0
2 , {3, 4}),

(∂0
1∂

2
2 , {3, 4}). Hence, the solutions for the initial system are

x0
1x

1
2x

(s1−2)/3
3 x

s0−1−(s1−2)/3
4 , x0

1x
0
2x

s1/3
3 x

a0−s1/3
4 , x0

1x
2
2x

(s1−4)/3
3 x

s0−2−(s1−4)/3
4 ([11]).

Therefore, the A-hypergeometric differential-difference system H Ã has the
following series solutions.
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φ̃1(λ̃, x̃) = xs0
4

(
x2

x4

) (
x3

x4

) s1−2

3

· ∑

k1≥0, k2≥−1
(k1,k2)∈L′

(
x1x

−1/3
3 x

−2/3
4

)k1
(
x2x

−2/3
3 x

−1/3
4

)k2

k1!(k2 + 1)!Γ( s1−k1−2k2+1
3

)Γ(3s0−s1−2k1−k2+2
3

)

φ̃2(λ̃, x̃) = xs0
4

(
x3

x4

) s1
3

· ∑

k1≥0, k2≥0
(k1,k2)∈L′

(
x1x

−1/3
3 x

−2/3
4

)k1
(
x2x

−2/3
3 x

−1/3
4

)k2

k1!k2!Γ( s1−k1−2k2+3
3

)Γ(3s0−s1−2k1−k2+3
3

)

φ̃3(λ̃, x̃) = xs0
4

(
x2

x4

)2 (
x3

x4

) s1−4

3

· ∑

k1≥0, k2≥−2
(k1,k2)∈L′

(
x1x

−1/3
3 x

−2/3
4

)k1
(
x2x

−2/3
3 x

−1/3
4

)k2

k1!(k2 + 2)!Γ( s1−k1−2k2−1
3

)Γ(3s0−s1−2k1−k2+1
3

)

Here,

L′ = {(k1, k2) | k1 ≡ 0 mod 3, k2 ≡ 0 mod 3}∪{(k1, k2) | k1 ≡ 1 mod 3, k2 ≡ 1 mod 3}.

The matrix A is not homogeneous and by dehomogenizing the series solu-
tion for Ã we obtain the following series solutions for the A-hypergeometric
differential-difference system HA.

φ1(λ, x) = x2x
s1−2

3
3

∑

k1≥0, k2≥−1
(k1,k2)∈L′

(
x1x

−1/3
3

)k1
(
x2x

−2/3
3

)k2

k1!(k2 + 1)!Γ( s1−k1−2k2+1
3

)

φ2(λ, x) = x
s1
3

3

∑

k1≥0, k2≥0
(k1,k2)∈L′

(
x1x

−1/3
3

)k1
(
x2x

−2/3
3

)k2

k1!k2!Γ( s1−k1−2k2+3
3

)

φ3(λ, x) = x2
2x

s1−4

3
3

∑

k1≥0, k2≥−2
(k1,k2)∈L′

(
x1x

−1/3
3

)k1
(
x2x

−2/3
3

)k2

k1!(k2 + 2)!Γ( s1−k1−2k2−1
3

)

Here φk(x) is the dehomogenization of φ̃k(x).

Finally, let us present a difference Pfaffian system for A. It can be derived by
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using Gröbner bases of HA and has the following form:

S1




f

x3∂3 • f

S1 • f




=




0 0 1

− s1x1

6x2

3x1x3−4x2
2

6x2x3

2(s1−1)x2+x2
1

6x2

s1

2x2
− 3

2x2
− x1

2x2







f

x3∂3 • f

S1 • f




.
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