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Abstract. We know by the studies for the last decade that the norm convergence of
the exponential product formula holds true even for a class of unbounded operators. As a
natural development of this recent research, we study how the product formula approxi-
mates integral kernels of Schrodinger semigroups. Our emphasis is placed on the case of
singular potentials. The Dirichlet Laplacian is regarded as a special case of Schrodinger
operators with singular potentials. We also discuss the approximation to the heat kernel
generated by the Dirichlet Laplacian through the product formula.

1. Introduction

It is known as the Trotter-Kato product formula [13], [19] that the semigroup
exp(—tZ), t = 0, generated by the sum Z = X + Y of two operators X and Y acting on a
Hilbert space is approximated by the exponential product formula

exp(~1Z) = s — lim (exp(~(1/N)Y) exp(~(1/N)X))"

in the strong sense under suitable conditions on the pair (X, Y). If X and Y are bounded,
the norm convergence follows from the Baker-Campbell-Hausdorff formula. Then we
know that

(1.1) le™% — (7MY WMD) N = (N )
for the approximation of the nonsymmetric form and that
(1.2) le% — (7 1PNIX e WNIY = URNXNN || — O(N2)
for the approximation of the symmetric form, where || || denotes the operator norm of

bounded operators. We note that the error bounds O(N~!) and O(N~?) on the right-hand
sides are optimal (see [12] for details). The norm convergence has been extended to a wide
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class of pairs of self-adjoint operators not necessarily bounded since it was first established
by Helffer [7] and Rogava [15] independently. After the works, various kinds of improve-
ments have been done by many authors (see [8], [9], [10], [20] for extensive references and
related subjects). Among a lot of literatures, the work [12] together with [10] has established
that the convergence holds true with error bound O(N~!) for both the symmetric and non-
symmetric approximations under the general assumption that Z = X + Y is self-adjoint
with domain %(Z) = 2(X) n2(Y) for two self-adjoint operators X and Y bounded
from below. In particular, O(N~!) is the optimal error bound even for the symmetric ap-
proximation, which is different from the case of bounded operators. This has been shown
by constructing an example of pair (X, Y) for which (1.2) is estimated by ¢,N~!, ¢, > 0,
from below for ¢ > 0. The original idea of construction is due to [18].

As stated at the beginning, our aim is to analyze how the exponential product
formula approximates the kernel E(x, y;¢) of the semigroup exp(—zH) generated by the
Schrodinger operator H = Hy + V, Hy = —A, acting on L*>(R"). The present work is a
continuation to our recent work [11] where the same problem has been studied for a class
of smooth potentials. A special emphasis here is placed on the case that potentials admit
singularities. The Dirichlet Laplacian is regarded as a special case of Schrodinger operators
with singular potentials. We also discuss the approximation to the heat kernel generated by
the Dirichlet Laplacian through the product formula.

We begin by summarizing the results obtained in [11] which show how sharp the ker-
nel of the Schrodinger semigroup is approximated through the product formula. We there
have assumed that V'(x) e C*(R") is a nonnegative smooth function and satisfies

(13) V(x) 2 Cxy, |02V ()] S Cuday? ™

for some constants C >0, p=0 and 6, 0 <o =1 (=0 is allowed if p=0), where
(x> = (1+ |x|*)"/%. We define the symmetric approximation Ky (z) by

(1.4)  Kn(1) = (exp(—(¢/2N)Hy) exp(—(t/N) V) exp(—(z/2N)Ho))N
and the nonsymmetric approximation Gy(¢) by
(1.5) Gn(t) = (exp(—=(¢/N)V) exp(—(t/N)Hy))"".

We also denote by Ky(x, y;¢) and Gy(x, y;t) the kernels of operators Ky () and Gy(¢) re-
spectively. Then we have proved that |Ky(x, y;¢) — E(x, y;1)| = O(N~?) and that

|G (x, y31) = E(x, y;1) = (1/2N)E1(x, y; 1)] = O(N?)
and | (Gy(x, y;1) + Gy (y,x;1)) /2 — E(x, y; 1)| = O(N~2) as N — oo, where
Ei(x,y;0) = E(x, y; ) V(y) = V(X E(x, ;1)
is the kernel of the commutator [Hy,exp(—tH )] = [exp(—tH), V] and all the error bounds
are uniform in (x, y) € R" x R" and locally in # > 0 (z € [1/c, c|,c¢ > 1). The convergence is

still true for all derivatives in x and y. We note that Gy(y, x; 7) is the kernel of the adjoint
operator
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Gn ()" = (exp(—(t/N)Hy) exp(—(1/N) V) .

The proof is based on the pseudodifferential calculus, and it relies on the regularity assump-
tion of potentials in an essential way.

The above results have an important application to the theory on the finite dimen-
sional approximation to path integrals. Let dIW’, be the conditional Wiener measure over
the set '

W, ={r(s) e C([0,1] — R") : r(0) = x, (1) = y}

of continuous paths which take the values x and y at their endpoints 0 and ¢ respectively.
According to the Feynman-Kac formula ([6], [14]), E(x, y; ) has the representation

E(x,y;t) = [exp (_Ef V(r(s)) ds> awy/,,

while Ky (x, y; 1), Gy(x, y;t) and Gy(y, x; ) are represented as follows:

Ky (x, yi1) = [oxp (—(z/N) Niv(msk))) !,

k=0

with s = (k+1/2)¢/N, and

Gy xi0) = [ exp (—(t/N)Zzol V(r(tkm)) aw,

with 7 = kt/N. Thus we obtain the error bound of a time-sliced approximation to the
kernel of exp(—tH). The work [17] has also studied the convergence of time-sliced ap-
proximation by estimating directly the difference between two kernels represented by the
Feynman-Kac formula to show that the error bound is of order O(N~") for a class of C?
smooth potentials satisfying (1.3) for || < 2, where x = 1 for 0 < p < 26 and k = 2J/p for
p > 20. The proof is based on a probabilistic idea and still requires regularity assumption
(although not necessarily C* smoothness) of potentials.

The main results obtained in this work are formulated as the two theorems below. As
stated above, a special attention is paid to the case when V/(x) has singularities. Let

(16) Hy=-A, A=H;+1,
be self-adjoint operators on L? = L?*(R") with domain H?(R"), where H*(R") denotes the
Sobolev space of order s. We make the following assumption on the potential V(x) : (V)

V(x) = 0 is nonnegative and

(1.7) VA~ : L* — L?
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is bounded for some «, 0 < « < 1, as the multiplication operator by ¥'(x). The assumption
V=0 is only for notational brevity. We have only to assume that V(x) > —c¢, ¢ >0,
is bounded from below. Under assumption (¥), we have that ||V (Hy+4)"'|| — 0 as
A — o0, and hence it follows from Kato-Rellich theorem that H = Hy + V' becomes self-
adjoint with the same domain H2(R") as Hoy. We also have that A(H + 1)"" as well as
(H +1)47" is bounded as an operator acting on L. If, for example, n = 3, then (1.7) is
easily seen to be fulfilled for V(x) admitting the decomposition ¥ e L>(R*) + L™ (R?).
The positive Coulomb potential V' (x) = ¢/|x|, ¢ > 0, is a typical example. The first theorem
is formulated as follows.

Theorem 1.1. Suppose that V(x) fulfills (V). Denote by E(x,y;t) the kernel of
exp(—tH) and by Ky(x,y;t) and Gy(x, y;t) the kernels of Ky(t) and Gy(t) defined by
(1.4) and (1.5) respectively. Let (p,q) € R" x R" be fixed. If V(x) is C* smooth around
both points p and q, then

\Kn(p,q;1) — E(p,q; 1) = O(N™"),  |Gn(p.q;1) — E(p.g;1)] = O(N")

as N — oo, and the convergence is true in the sense of C* topology in a neighborhood of
(p,q) € R" x R", where the order estimate is locally uniform in t >0 (t € [1/c,c],c > 1).

We make an important comment on the convergence at singular points where V'(x)
is divergent. This seems to be a subtle problem. For example, we consider the positive
Coulomb potential V' (x) = c¢/|x|, ¢ > 0, in three dimensions. We know the convergence
|Gy (1) —exp(—tH)|| = O(N~') in the operator norm. However, the convergence of
the kernel Gy(x,y;t) at the origin is not true. In fact, Gy(x, y;?) takes the value
Gy(0, y;t) =0 at x = 0 for all N, because V'(0) = +oco0. On the other hand, we can explic-
itly calculate the value

)

(1.8) E(0,0;7) = (c/4n) [ e (e  — 1) dA > 0

OHS

for V' (x) = ¢/|x|, ¢ > 0. Thus the convergence at singular points is not expected in general.
The relation (1.8) itself is interesting. We prove it in the appendix at the end of the paper.

We move to the problem on the approximation for the heat kernel generated by the
Dirichlet Laplacian. Let exp(—tHp) be the semigroup generated by the Dirichlet Laplacian

Hp = —A over a domain Q in R". If we define the potential V'(x) as V'(x) = 0 on Q and
V(x) = +00 on the complement Q° of Q, then we have

exp(—tHp) ~ exp(—1(Hy + V))

in a formal way. The operator exp(—¢V’), ¢t > 0, acts as the multiplication by the character-
istic function y of Q, and the exponential product formula takes the form

(19)  exp(~tHp) ~ lim (exp(~(t/N)V) exp(~(t/N)Ho))" 10

= lim (zq exp(~(1/N)Ho)za) "
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The strong convergence follows from the abstract theory due to Kato [13] (see Friedman
[5], Theorem 2, also). The product

(1.10) (zaexp(—i(t/N)Ho)za) "

with ¢ > 0 replaced by if is often called the Zeno product formula. This kind of product
appears in the problem on the position measurement in quantum systems (Zeno quantum
effect). In fact, the product (1.10) describes the frequent measurement to check whether a
particle localized in Q at ¢ = 0 is still in Q. If (1.10) is strongly convergent to the propagator
exp(—itHp) as N — oo, this means that continuous observations hinder transitions to
states different from the initial one and that a quantum particle can not move to where it
is not. It corresponds to Zeno’s paradox denying the possibility of motion to a flying arrow.
This is the reason why (1.10) is called the Zeno product formula. The strong convergence of
the Zeno product formula has been discussed in the physical literatures (for example see [4]
and references there). However the rigorous proof does not seem to have been done, and it
remains as an interesting mathematical problem.

We shall formulate the second main theorem. Let
Hp=—A, 9(Hp)=H*Q)nH}Q),
be the Dirichlet Laplacian over a bounded domain Q = R” with smooth boundary 0Q. The
operator Hp is self-adjoint in L*(Q). We denote by exp(—tHp), ¢t =0, the semigroup
generated by Hp and by Ep(x, y;t) the integral kernel of exp(—tHp). We also denote by
Gyp(x, y; 1) the integral kernel of the operator

(1.11) Gup(1) = (Jexp(—(t/N)Ho)J*) ™ : L}(Q) — LX(Q),

where J : L?(R") — L*(Q) denotes the restriction. The kernel Gyp(x, y; ) takes a simple
form

N-1
Gnp(x, y;1) = gj; - g{( _];%Eo(zj,sz; t/N)) dz

for (x,y) = (z0,2zn) € Q x Q, where z = (zy,...,zy_1) and
. _ —n/2 2
Eo(x, ;1) = (4mt) " exp(—|x — y|"/41)

is the heat kernel of exp(—tH)). Then the second theorem is stated as follows.

Theorem 1.2. Let the notation be as above. Then

|Gnp(x, y;t) — Ep(x, y;1)] = O(N7?), N — o0,

forany 6,0 < g < 1/6, and the error bound is locally uniform in (x, y) € Q x Qandin t > 0.

We add two comments to the above theorem. (1) We note that the theorem implies

the strong convergence in (1.9). In fact, the weak convergence follows from the theorem at
once, and the semigroup property yields
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IGno(O)f 11> = (Gup(t)Grp (D). f) — (exp(—2tHp)f, f) = |lexp(—tHp)f|*

for f e L?(Q), where (, ) denotes the L? scalar product in L?(Q). This proves the strong
convergence. (2) The error bound O(N~7) with 0 < ¢ < 1/6 is not sharp. The proof of the
theorem is based on the large coupling approximation to the Dirichlet Laplacian, where
an essential role is played by Theorem 3.3 due to Demuth, Kirsch and McGillivray [3].
According to their theorem, it is anticipated that the optimal error bound is O(N~?) with
0 < o < 1/2 (see Proposition 5.1 also).

The proof of both the theorems is based on the convergence of exponential product
formula in the operator norm on the Sobolev spaces. We denote by || ||,, the norm of
bounded operators when considered as an operator from L? into H"(R") for m = 0 (not
necessarily integer). If, in particular, m = 0, then we simply write || || for || ||,. For example,
the following proposition plays an essential role in proving Theorem 1.1.

Proposition 1.1.  Assume the same assumptions and keep the same notation as in The-
orem 1.1. Let ,,\, € C°(R" — R) be smooth real functions with support around p and q
respectively. Assume that V(x) is C* smooth on the support of s, and . Then

[, (exp(—tH) — Kn(1) ][, = ON )
and
1, (exp(=tH) = Gu (0) ||, + ¥, (exp(=tH) — Gx (1)), |, = OV )
as N — oo for any m = 0, where the order estimate is locally uniform in t > 0.

Theorem 1.1 is obtained as a consequence of the celebrated kernel theorem due to
Agmon [1], Theorem 3.1.

Lemma 1.1. Let T : L?> — L? be a bounded operator. Assume that the range of T is
contained in H™(R") for some m > n and that the range of the adjoint operator T* is also
contained in H™(R"). Then T is an integral operator with a continuous and bounded kernel
T(x,), (x,y) € R" x R", and the kernel obeys the bound

* n/m 1-n/m
76 9| < T, + 1770, N7
for some ¢ > 0 independent of T.

We end the section by proving Theorem 1.1, accepting Proposition 1.1 as proved.
This proposition is proved in sections 2, 3 and 4, and Theorem 1.2 is proved in sections 5
and 6.

Proof of Theorem 1.1. Let A be as in (1.6). We apply Lemma 1.1 to
T= lpp (CXp(—lH) - KN(Z))qu
where ,(x) =1 and y,(x) =1 around p and ¢ respectively. Then it follows from

Proposition 1.1 that ||A"T| + ||A"T*||= O(N~') for any m =0. Hence we have
|TA™|| + || T*A™| = O(N~!) by adjoint, and



Ichinose and Tamura, Exponential product formula 163
||Am/2TAm/2H + ||Am/2T*Am/2|| — O(N—l)
by interpolation. This yields the desired bound O(N~!) on the difference between

Kn(p,q;t) and E(p, g;t) in the sense of C* topology. Similarly the bound on the difference
between Gy(p,q;t) and E(p,q;t) is obtained by making use of Lemma 1.1 for

T =y, (exp(—tH) — GN(z))lpq. O
2. Approximation to kernels of Schrodinger semigroups

In this section we complete the proof of Theorem 1.1 by proving Proposition 1.1. For
two smooth functions , 5 € C;°(R" — R) with compact support, we use the notation

(2.1) Y=<,

provided that both V" and #V are C* smooth and that

Yy =, dist(suppy,suppy) >0

for y(x) =1 —n(x), where dist(X;,Z,) denotes the distance between two sets X; and X,.
For brevity, we prove Proposition 1.1 for the case £ = 1 only. We set

To(s) = exp(—sHy), T(s)=exp(—sH)
and we define
(2.2) K(7) = To(r/2) exp(—tV)Ty(z/2), t=1/N.
Then Ky (1) = K(z)" for Ky() defined by (1.4) with 7 = 1.
We accept three preliminary lemmas below as proved to prove the proposition.
Throughout the statements of these lemmas, m = 0 is nonnegative (not necessarily integer),

and two real smooth functions € C;°(R") and w € C*(R") are assumed to satisfy the
relation

(2.3) =<0, o=1-0.

Lemma 2.1.  The operator T(s) = exp(—sH) has the following properties:

(1) A™YT(s)wA, A™YT(s)pA™™ : L> — L? are bounded uniformly in s € [0, 1].
@) 4™ T(s)|| = O(s™) and || A"y T (s)A|| = O(s~"").

Lemma 2.2. The operator D(t) defined by

(2.4) D(t) =T(r) — K(7)

has the following properties:
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(1) |[A7'D(1) 47| = O(«?), = — 0.

(2) [[A™yD(r)ol| = O(<).

(3) ||[A™yD(r)A~™|| = O(z?), and in particular, |y D(7)|| = O(z?).

Lemma 2.3. The operator K(7) defined by (2.2) has the following properties:

(1) AwK ()" : L? — L? is bounded uniformly in t and k, 0 < k < N.

Q) [|[A™yK()*|| = k=" O(x™™) uniformly ink, 1 <k < N.

Lemma 2.1 is proved at the end of this section, and Lemmas 2.2 and 2.3 are proved in
sections 3 and 4 respectively. We note that the statements of the lemmas remain true for the
adjoint operators. Throughout the entire discussion, we use such a simple consequence
without further references, and also we often use the notation O,(7") to denote the class
of bounded operators of which the norm obeys the bound O(z") as t — 0. In particular,
O,(1) denotes the class of operators bounded uniformly in 7, and O,(z*) the class of oper-
ators with bound O(z%) for any L > 1. We sometimes denote by O,(1) a class of bounded
operators independent of parameter 7 also.

Proof of Proposition 1.1.  The proof is rather long and is divided into four steps.

(1) According to notation (2.1), we take {#;}, 0 < j < 1, in such a way that

(25) lpp'<770'<’717 lpq_<’//0—<771
and we set y; = 1 — ;. The first three steps are devoted to proving that

(2.6) |4, (T(1) = K(2) ")y, || = O(x),

which implies the statement for the symmetric product Ky (1) in the proposition. To prove
(2.6), we represent the difference T'(1) — K(z)" as

T() - K@Y =T0)" — K@)V = kﬁl T((k — 1)) D(x)K(2)"*.

We evaluate the norm of the operator

Xi(t) = A"y, T((k — 1)) D(0)K(1)" ™y, 1<k <N,

N
to show that _ || Xi(7)|| = O(r). This yields (2.6).
=1

(2) We decompose X(7) into the sum
Xi(x) = A", T ((k = 1)7) (0 + £0) DK (2) ™9, = Yi(2) + Zu(x).

We first consider Y (7). We further decompose Y () into the sum
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Yi(z) = A", T ((k = De)neD(2)(my + 1)K (@)™, = Yia (z) + Yio(2).
By Lemma 2.1 (1) with ¢ = 7,
A", T ((k = 1)) A" = A™p, A" (A" T ((k — )t)mA™) : L — L?
is uniformly bounded, and also by Lemma 2.2 (2), 4"7,D(t)y, = O,(z?). Hence we have
Yio(t) = (A", T ((k = Dr)m A™") (A"noD(2)) K (1), = 0,(7),

N
and > || Yia(7)|| = O(r). We write Y (7) as
f=1

Y (x) = (A", T ((k = Do) A™") (A goD(x) 4" A" K ()" "y,
for k with 1 < k < [N/2], and Y} (7) as

Yia(e) = (4", T ((k = 1)7)) (noD(x))m K (x) "™y,
for k with [N/2] <k < N, where [N/2] denotes the greatest integer not exceeding N /2.

Note that N/2 < N —k < N, provided that 1 <k < [N/2]. We apply Lemmas 2.1 (1),
2.2 (3) and 2.3 (2) to Yii(r) with k, 1 <k < [N/2], and Lemmas 2.1 (2) and 2.2 (3) to

N
Yii(7) with k, [N/2] <k < N. Then we get > || Yki(7)|| = O(7).
k=1

(3) We proceed to operator Zi (7). We decompose Zi(7) into the sum
Zi(x) =A™, T ((k = 1D)7) 2 D(x) (11 + 100K (0) Yy = Zua (1) + Zia (1),
If we write Zj;(z) as
Zin(1) = (4", T ((k = 1)7)0) (DOm) K (1),

then it follows from Lemmas 2.1 (1) and 2.2 (3) that Zy (1) = O,(z?), and if we write
Zkz(‘[) as

Zia(7) = (4™, T ((k = 1)7) 104) (A7 D(1) A7) A, K (),
then it follows from Lemmas 2.1 (1), 2.2 (1) and 2.3 (1) that Zi»(z) = O,(z?). This yields
N
> 1Zk(7)|| = O(7), and hence (2.6) is obtained.
k=1

(4) We here introduce the new notation F ~ G. This means that two bounded oper-
ators F and G obey ||F — G| = O(1). We set
G(t) = e To(zr) = e exp(—tHp), J(z) = G(1)" = To(x)e ™",

and Jy(1) = Gy(1)* for Gy(1) defined by (1.5) with = 1. Then Gy(1) = G(r)" and
Jn(1) = J(r)". According to the above notation, the aim in the final step is to show that
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(27)  Tw(®) =A™, Gy(y, = A™,G(1) ", ~ A", K(D) ",

(28) AN(T) = AmlppJN(1>wq = Ampr(T)Nlpq ~ AmlppK(T)Nlpqa
which, together with (2.6), imply the statement for the nonsymmetric products Gy (1) and
Gy(1)" in the proposition. The proof of two relations (2.7) and (2.8) requires the following
lemma which is proved after completing the proof of the proposition.

Lemma 2.4. One has the following statements:

(1) A™YTo(r)w = Oy(t™).

(2) A™[g, To(z)]A™ 2 = O,(1) for g € CF (R"), where [X, Y] denotes the commuta-
tor [X,Y] = XY — YX between two operators X and Y.

(3) [A™T(s), To(t)] = Oy(7) uniformly in s € [6,1], 6 > 0.

We now start by proving (2.7). Let {r;}, 0= j=1, be as in (2.5) and we set
%; = 1 —n; again. Then we obtain

j
(2.9) A’"an((N — 1)1)171- ~ A’"iyjK(t)N_liyj
by (2.6). We write I'y(z) as
Tn(z) = A",e " To(x/2)K ()" To(x/2)y,
= A"Y,e” ™ To(2/2) (o + 1)K (1) ¥ To(2/2).
Since A",e"" To(t/2)5o = Op(z*) by Lemma 2.4 (1), it follows that

Ty (1) ~ A™ e To(t/2)neK (2) " ' To(z/2)y,.

The operator A™5,K(z)" "' is bounded uniformly in r by Lemma 2.3 (2), and also
xoTo(z/2)y, is of class O,(z*). Hence

T (2) ~ (A", To(2/2) A7) (A" noK ()" )mo To(2/2)¥,
~ (A"pe™ To(/2)A7") (A" 0o T (N = 1)7)no) To(/2)¥,

by (2.9). Note that v,y = ¥, and 5yn, = 7. Since A™5,T((N — 1)7) is uniformly bounded
by Lemma 2.1 (2), we further have

Ty (t) ~ (A™me ™ To(e/2)A™ ) (4™ P2y T ((N = 1)7)) To(r/2),,-
We here use Lemma 2.4 (2) with g = 7,7 € C* (R”") to obtain that

Iy(t) ~ AmlﬂpTo(T/z)ﬂleirV’?oT((N - l)f) To(z/2)y,

= (A", To(t/2)e " ngA™) (A", T((N — 1)7) To(1/2)) ¥,
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Hence Lemma 2.4 (3) and (2.9) yield that
T (®) ~ (4", To(e/2)e oA To(w/2) (A" T((N — D))o,
~ (4™, To(z/2)e " ngd " To(x/2)) A" K (1) Y.
We further have
T (z) ~ (4™, To(z/2)e™" A7) (A" o To(x/2)m ) K (x) ¥y,
~ (A", Toe/2m0)e™ To(x/DK(2) ¥y,
~ A", To(x/2)e™ " To(x/2)K (1) ¥ 'y, = 4™, K (1) Y,
because 4", To(z/2)y, and 4™, To(z/2)y, are both of class O,(z™). This proves (2.7).
We proceed to proving (2.8). This is verified in almost the same way as (2.7). We have
A (D) ~ A", To(z/2noK ()™ g Tole/2)e™ "y,
~ A", To(x/2)nT (N — 1)7)neTo(t/2)e ",
~ A", To(t/2)ne T (N = 1)7) To(t/2)mee™"" .
The operator A5, T ((N — 1)7) A is uniformly bounded by Lemma 2.1 (2) and
147 [ To(z/2), moe™™ Tl = O(2)
by Lemma 2.4 (2) with g = 575¢e="" € C5°(R"). Thus we have
An(7) ~ (A", A7) (To(7/2)A" o T ((N = 1)7))10e ™" To(2/2)¥,
We further use Lemmas 2.3 (2), 2.4 (3) and (2.9) to obtain that
An(t) ~ 4™, T((N — 1)7) To(z/2)npe " To(z/2)y,
~ A", T((N = 1)t)m To(z/2)mpe" To(z/2)¥,
~ A", K (@) To(e/2)mee ™ To(x/2),
~ AmleK(T)N_l To(t/2)e " 0o To(t/2)y,
~ A", K ()N To(1/2)e " To(z/2)0, = 4™, K(2) VY,
This yields (2.8) and completes the proof of the proposition. []

We end the section by proving Lemmas 2.1 and 2.4.

Proof of Lemma 2.1. Throughout the proof, we often use the relation

(2.10) Y, Y] = XY — Yeo¥ = [ ¥y, X]e ¥ a1,
0
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(1) We first deal with the operator ®,,(s) = A"y T(s)wA : L*> — L? with s e [0, 1].
The uniform boundedness is shown by induction on m = 0. We may assume that there
exists # € Cy°(R") such that

(2.11) <0<y

for 0 =1—we C{(R"), and we set y = 1 — #. By assumption, Y = 0. Hence ®(s) is rep-
resented in the integral form

Opu(s) = [ T(s — 0)[H, A" T (DA dt
0

by making use of relation (2.10). The commutator in the integrand is calculated as
[H, A™] = A" [Ho, bln + [nV, A™W]n + xVA™,
because yy = 0. We note that the third operator on the right-hand side takes the form
2VA™ = VA (Aya™pA") A = 0,(1)4F

for any L > 1. This follows by assumption () and by pseudodifferential calculus. In fact,
the standard calculus of symbols shows that Ay4™y A" is a pseudodifferential operator
with symbol of Hormander class S; for any N > 1, and hence AyA™pAr = 0,(1). If
wefixyas1/2<y<landsetd = y7— 1/2 > 0, then we have

(2.12) [H,A™)] = 470,(1) 4"y + 0,(1) 4",

because A™[Hy, ] and [V, A™y] are pseudodifferential operators with symbol class Sfﬁ}‘l.

As already stated in the previous section,
(2.13) (H+1)'4, A" (H+1):L> - L?
are bounded. We have
0,(NA LT (DA = 0,(1) (A7 (H + 1) T(0) (H + 1) 4) (47 w0A) = 0,(1)

for the second operator O,(1)4~" on the right-hand side of (2.12). We use the inductive
assumption for the first operator 470,(1)A™ y to get

TIT(s = 0)470,(1) A" “p T (H)eoA| di = O(1) [(s — 1) dt = O(1).
0 0

It remains to check the case m = 0 in order that the induction goes well. To this end, we
have only to show that

N

({ T(s— t)[Ho, YInT (t)wA dt

Jo(s)] = o)
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uniformly in s. By (2.11), suppy nsuppw = . We take the commutator between # and
T'(¢) to obtain that

T (s — t)[Ho, Y] T(t — o)[Ho,n|T(0)wAdo dt.

0]

O%N

Since [Hy, ] = AY20,(1) and [Hy,n] = 43/40,(1) A7/, ®(s) obeys
st
|D(s)|| = O [ [(s — 1) "2 (t — o) 67 * da dr = O(1).
00

This enables us to push forward an inductive argument and we obtain the uniform bound-
edness of @,,(s) = A™YT(s)wA

We proceed to the other operator AT (s)yyA~"". By assumption, ¥'(x) is smooth on
the support of Y. Hence it follows by elliptic regularity and by interpolation that

A"(H -+, (H+1)"pA™ L — L?
are bounded. This implies that
AMYT(WA = (A™Y(H + 1)) T(s) ((H + 1)"pA™")
is also bounded uniformly in s € [0, 1]. Thus the proof of (1) is complete.
(2) As already seen, A™y/(H + 1) : L?> — L? is bounded and hence
AT (s)]| = O(D)[(H + 1) exp(—sH)|| = O(s ™).
A similar argument applies to the second operator
AMYT () A = A™Y(H + 1) (H + 1) T(s))(H +1)"'4
and (2) is proved. []
Proof of Lemma 2.4. (1) Since y vanishes on the support of w, (1) is shown as an
immediate consequence of pseudodifferential calculus. This is also obtained by making re-
peated use of relation (2.10).

(2) The operator in (2) is represented as
A"g, To(x)] 4™ = fT "[Ho,g]A™" ") To(z — 5) ds

by use of (2.10), and a pseudodifferential calculus shows that the integrand is uniformly
bounded. This proves (2).
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(3) We represent the commutator as
[A™ T (s), To()] = | To(1)[Ho, A™Y T (5)] To(r — 1) dt.
0
The commutator in the integrand is further calculated as
[Ho, AW T(s)] = A” [Ho, Y] T(s) + A™WHyT(s) — A™ T (s)Ho.
If s = 0 > 0, then it follows from Lemma 2.1 (2) that the first and second operators on the

right-hand side are bounded, and the boundedness of the third operator also follows from
the relation

A™YT(s)Ho = A™W(H + )T (s)((H + 1) Hy).

Thus (3) is proved. [

3. Properties of difference operator D(z): Proof of Lemma 2.2

In this section we show some properties of operator D(7) defined by (2.4) through a
series of lemmas. Then Lemma 2.2 is obtained as a result of these lemmas. We use the con-
stant o, 0 < o < 1, with the meaning ascribed in (1.7) in the statement of the lemmas.

Lemma 3.1.  The operator D(t) has the following properties:

(1) D(1)A™* = Op(7).

(2) A7'D(1)A7! = 0,(z?).

(3) AD(1)A™* = O,(1).

Proof. (1) We write D(7) as

(3.1) D(t) = (T(1) — To(r)) + (To(r) — K(v)) = Fi(z) + F>(7)
and we represent Fi(7) and F>(7) in the integral form

Fi(r) = —JT TWOVTo(c— 1) dt, Fr(t) = J To(t/2) exp(—tV) VTo(z/2) dt.

Then it follows from (1.7) that F(7)4™* and F>(7)A~* are both of class O,(7).
(2) If we decompose A~ !T ()4~ into the product of three operators
A T(@A = (AT H A D) (H+ )" TE)H+ 1)) (H+ 147,

then it follows from (2.13) that
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A T()A = A7 (1 —cH) A7 + 0,(7%)
and also we have
ATK(D) AT = A7 To(2/2)(1 — V) To(2/2) A7 4 0,(?)
= A1 —tHy — V)47 + 0,(¢?)
by (1.7). The two relations above yield (2).
(3) Let Fl( ) and F»(7) be as in (3.1). Since ATy(7/2) = O,(z7!), it is easy to see that

AF,(1)A™ = 0,(1). We decompose Fi(t) into the sum

7/2 T
(I + I) [)VTo(T—l)d[ Fll(T)—I—F]z(‘L').

0 7/2

For the same reason as above, we see that 4Fj>(7)4™* = O,(1). On the other hand,
AFy (1) A™* takes the form

AF (1) A~ = (A(H +1)7") szT’(t) VA*To(t — 1) dt + 0,(1)
0

= 0,(1) szT(t) VA *HyTo(t — 1) dt + O,(1)
0

by partial integration. Since HoTo(t — 1) = O,(z!) for #, 0 << t/2, it follows that
AF11(t)A™" = O,(1). This proves (3). [
We here introduce some auxiliary operators. Let i, # and # be as in (2.11). We define
(3.2) Hi=Hy+W, W=nV,
where W =nV e Ci°(R" — R). We further set

(3.3) Ti(s) = exp(—sHy), Ki(tr) = To(r/2)exp(—tW)Ty(t/2).

The semigroup 7 (¢) enjoys the same properties as in Lemma 2.1, and D(7) is decomposed
into the sum

(3.4) D(t) = Di(7) + Da(7) + Ds(v),
where
Di(t) = T(r) — T1(x), Ds(z) =Ti(z) - Ki(z), Ds(r) = Ki(z) — K(1).
Lemma 3.2.

A"D\(7) = Op(t%),  A™D3(7) = Op(7”).
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Proof. Letne Cy°(R") beasin (3.2). We set y = 1 — # for # as above. Then yy = 0.
We represent Dj(7) in the integral form

(3.5) Di(t) = — [ Ti(s)x VT (x — 5) ds.
0

Since A™YTi(s)xA = O,(t™) for 5, 0 <5 < 7, by pseudodifferential calculus, it follows
from (1.7) that A™yD(7) is also of class O,(t™). The operator D3(7) is represented in the
integral form

(3.6) Ds(1) = To(7/2)(e™™" — ™) To(7/2)

To(z/2)e™* " y Ve =)V Ty(z/2) ds.

C—

Since A™YTo(z/2)e™" yA = 0,(t*), we have A™yD;(t) = O,(z™). This completes the
proof. []

Lemma 3.3. Let D;y(7) be as in (3.4). Then one has:
(1) A™pDs(t)wA = O,(7?).

(2) A™Ds (1) A" = 0,(x>7™) for k, 0 <k <1, and if, in particular, m =0 and
Kk = 0, then Dy(7) = O,(7?).

Proof.  We first recall that W = yV e C;°(R"). The proof makes repeated use of re-
lation (2.10). We calculate K{(s) = (d/ds)Ki(s) as

K{(s) = —H\Ki(s) + Ri(s) + Ra(s),
where
Ri(s) = —[To(s/2), W]e™" To(s/2),  Ra(s) = —To(s/2)[e", Ho/2]To(s/2).
We can further calculate the remainder terms as follows:
Ri(s) = Ro(s) + Rio(s), Ra(s) = —Ro(s) + Rao(s),

where Ry(s) = sTo(s/2)[Ho/2, W]e=" Ty(s/2), and

Rio(s) = ff To((s — 0)/2)[Ho/2, [Ho/2, W|To(a/2)e " To(s/2) da dt,
00
Ra(s) = —f f To(s/2)e " W, [W, Ho/2)Je” " Ty(s/2) do dt.
00

Hence the Duhamel principle yields

T

(3.7) Dz(‘[) = —f T (‘L’ — S) (R]()(S) + Rzo(s)) ds.
0
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(1) Note that y € C;°(R") vanishes on the support of w. We see by pseudodifferential
calculus that the two operators

A™Ti(x = 5)To((s — 0)/2) [Ho/2, [Ho /2, W||To(0/2)e*" To(s/2)wd : L* — L*
and
A™Y T (z — 8)To(s/2)e™ " [W,[W, Hy/2)le"“ W Ty(s/2)wA : L* — L?
are bounded uniformly in g, ¢ and s. This yields the desired relation.
(2) The two double commutators in the integrand satisfy
[Ho, [Ho, W] = AT 20,(1)A™ 12 (W, [W, Hol] = A7 0, (1)A™

by pseudodifferential calculus, and also it is easy to see that AT (s)4A~" and A"e™*" 4™
are bounded uniformly in s € [0, 7]. Hence we have

HAmDZ(T)AferKH —

o"ﬁn\

st
T (r — 5) 25 (2 g di ds
00

=0(1)[(x — )" V2" ds = O(r> ™).

O%»\

This proves (2). [
Lemma 2.2 is obtained as an immediate consequence of Lemmas 3.1, 3.2 and 3.3.

Proof of Lemma 2.2. (1) is nothing but Lemma 3.1 (2), and (2) and (3) follow from
Lemmas 3.2 and 3.3 at once. [

The lemma below is used for proving Lemma 2.3 in section 4.
Lemma 34. Let0=1—-we Cy(R"). Then AwD(7)0 = O,(1).

Proof. We decompose D(7) into the sum (3.4). The integral representation (3.5) of
D (7) admits the decomposition

7/2 T
{ |+ f} $)VyT\(t — s)ds = Dyi(z) + Dia(7).

0 7/2

We note that @ vanishes on the support of y =1 —#. Since AwT(s) = O,(z7") for s,
7/2 < s < 7, and since A"y T (1 — 5)0 = O,(r™), it follows that

(3.8) AwD(7)0 = 0,(z).

By partial integration, AwD;;(7)60 takes the form
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7/2
AwDy ()0 = (Adw(H +1)7") 6|" (T'(s) — T(5)) VxTi(z — 5)0ds

7/2
=0,(1) [ T(s)VyH\Ti(t — 5)0ds + O,(t%),
0

and hence AwDi;(7)0 = O,(t™). This, together with (3.8), implies that AwD;(7)0 is of
class O,(t™). We use Lemma 3.3 (2) with m = k = 1 to obtain that

AoDy(7)0 = (AwA™ ") AD,(1)0 = O0,().
We consider AwDs3(7)0. By (3.6), this is represented as

AwDs(7)0 = (AwTo(r/2))b]Ze(’S)V( VA™) (A% " To(2/2)0) ds.

We have AwTy(t/2) = O,(x7') and A%e " Ty(x/2)0 = O0,(z*), so that AwDs(7)0 is of
class O,(t*). Thus the proof is complete. []
4. Proof of Lemma 2.3
The section is devoted to proving Lemma 2.3.
Proof of Lemma 2.3. (1) We prove by induction on k, 0 < k < N, that
|l 4wk (@) | < M

for some constant M > 0 independent of 7 and k. The case k = 0 is obvious. We assume as
an inductive assumption that

(4.1) [AoK ()Y <M, 0<I<k-1,
for some M > 0. We may also assume that k& > 1 large enough. In fact, it can be seen from

the argument below that ||[AwK (f)llpH < M, for 0 £ < ko, My being independent of ,
provided that kj is fixed. We now write AwK (r)k Y as

AOK(2)}Y = AT (ko)) ~ 3 Ax(o)
=1
where
Aj(7) = AoT ((j = D) D@K (@) Ty, 1</ <k,
By Lemma 2.1 (1), we have

(4.2) | oT (ke = O(1)
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uniformly in k. We evaluate each operator Aj(7), and we show that there exists p,
0 < p < 1, such that

(4.3) 1Al € C+eM*+ pM

k
=1

J

for some constants ¢, C > 0 independent of k, M being as in (4.1). This, together with (4.2),
implies that

Aok (1) Y| < C + eM* + pM

for another C > 0. Hence we can take M > 0 so large that (4.1) is still true for j = k, and
hence the desired uniform boundedness is obtained.

We start with
A(1) = AwD(7)(0 4+ 0)K (1) 1y

By Lemmas 3.1 and 3.4, we have ||4D(7)4~*|| = O(1) and ||[AwD(z)0|| = O(1). Hence, by
interpolation, it follows from (4.1) that

(44)  [Ak@) = 0(1) + 0| 4*0K ()" | = 0(1) + O(1) M”.

Next we evaluate Aj(7) with 2 < j < L < k, where L > 1 is determined later. We decom-
pose it into the sum

Aji(t) = ACUT((j - l)r)D(r)(w + O)K(T)k_jW = A (t) + Ajia (7).
Note that Lt < Nt = 1. Since AwT ((j — 1)7) is bounded by
4.5)  |JAoH+ D) x|[((H+DHT(G-))|=0G-1) "o

and since D(t)w = (D(1)A*) A% = O,(t)A%*w by Lemma 3.1, we have

L—-1 L—1 |
5 1w (@l = o) (£ G- 17 )ar* = o1y tog L x -
Jj=2 j=2

by interpolation again. On the other hand, the sum
-1
Z% [Aji2(7)[| = O(1)
=

is uniformly bounded, because D()0 = O,(z?) by Lemma 2.2. This, together with (4.4),
implies that

(4.6) LillnAjk(f)u = 0(1) + 0(1)log L x M*.
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We consider Aj(7) with L < j < k. We decompose it into the sum

Aj(t) = Ajs(t) + Ajea(t) + Ajes(2),
where
Au3(t) = AoT((j — 1)7)oD(1)wK (1) 7y,
Aja(t) = AoT((j — 1)7)oD(z)0K (7)* 7y,

Ajis(t) = AoT((j = 1)7)0D(1)K (1) 7y
Now let p be fixed as 0 < p < 1. We use the inductive assumption (4.1) for
Ajs(1) = (40T ((j = Dr)od) (47 D(0)A4™") (dwK(2)7y).
Since AwT ((j — 1)t)wA obeys
[40T ((j = De/2)T(( — De/2)od| = (- 1) 20

by (4.5) and since A7'D(1)4~! = O,(z?) by Lemma 2.2, we can take L > 1 so large that
k Koo,
47) > sl = o) L (- 1072 M = pi,
= =

o0
because Y j2 — 0 as L — co. Since D(7)0 = 0,(z?) by Lemma 2.2, we have
=L

k 1
(4.8) (1A (@I + 1 Ajis (D)) = (;(j -1 )0(7) = 0(1).

k
J=L
Thus we combine (4.6)~(4.8) to obtain (4.3) and the proof of (1) is complete.

(2) This is verified by induction on m = 0. The case m =0 is obvious. We write
A™K (7)" as

A"K (7)* = A" T (kt) — ir,-k(f),
=

where

Ti() = A" T((j — Do) D)K (), 1<k
By Lemma 2.1, the first operator on the right-hand side obeys

[ A" YT (kt)|| = k" O(=™).



Ichinose and Tamura, Exponential product formula 177

We assert that
k — —
(4.9) _21||ij(r)|\ =k"0(«™)
J:
uniformly in k&, 1 <k < N, which implies (2). We may assume that k > 1. By Lemma 3.1,
|A~'D(z)|| = O(z). If [k/2] < j £ k, then
A" T ((j—)7)4|| =k o)

by Lemma 2.1. This implies that ||T(z)|| = k~""!O(z™™), and hence

(4.10) S TR = k0.

Jj=[k/2]+1

Next we assume that 1 < j<[k/2]. Let ye C°(R") be as in (2.11) and let D;(t),
1 <j=<3, be as in (3.4). Recall that 0 <#, 0+w =1 and n+ y = 1. We decompose
I'jk(7) into the sum

Lj(7) = T (7) + iz () + Tira (1) + Tia(7),
where
Tt () = A™YT((j — 1)7) Dy ( )K(T)k_j,
[ika(7) ’”sz( j—1
Cis(t) = A™YT((j— 1)
Ciea(t) = A™YT((j— 1)

The two operators D;(7) and D;(7) are easily seen from the integral representation (3.5)
and (3.6) to obey 47Dy (1) = 0,(7) and A71D5(7) = O,(x). If we write [j(7) as

D (7) = ((B(@)wd) A7 Di(x) + (Bi(0)A™) (470D (2)) K (2)*

with Bj(t) = A™yT((j — 1)7), it follows by Lemmas 2.1 and 3.2 that I'jx; (t) = O,(t), and
hence

/2]

(4.11) Z T ()| = O(1) = k" 0(x™"),

because k < N = 1/7. A similar argument applies to I'j4(7), and we get

/2] o
(4.12) Zl ITika (D) = L O(™).
]:
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We can also show in a similar way that
[k/2] I
(4.13) > WD) = k7" O(™).
j=1

In fact, we write I'jx2(7) = Bj(7)D2(7)xK ()" and decompose Bj(t)D>(t)y into the sum
Bi(t)Da(7)y = (Bj(1)w) D2(1)y + (Bj(1)4™") A™OD:(1)1.

Then it follows from Lemmas 2.1 and 3.3 that Tja(t) = O,(?), and hence (4.13) is ob-
tained. The inductive assumption is used for

Tis(7) = (Bj(2) A7) (A" Dy (z) A~ Y/2) 4™V 2K ().
Then the third factor obeys

A" PR (@) ) = kRO R, 1S < k/2)
by inductive assumption. By Lemma 3.3 (2) with x = 1/2, A" D,(1)A™"1/2 = 0,(z%/?),
and hence we have

[k/2]
(4.14) > ITas ()| = k120" = k" O(x ™)
=1

by Lemma 2.1. We combine (4.10) and (4.11)~(4.14) to get (4.9), and the proof of (2) is
complete. []

5. Approximation to heat kernel generated by Dirichlet Laplacian

This section is devoted to proving Theorem 1.2. Recall that Ep(x, y; ¢) is the kernel of
the semigroup Tp(t) = exp(—tHp) : L>(Q) — L*(Q) generated by the Dirichlet Laplacian
Hp and that Gyp(x, ;1) is the integral kernel of the operator Gyp(z) defined by (1.11),
where Q is assumed to be a bounded domain with smooth boundary. It seems to be difficult
to evaluate directly the difference between two kernels Ep(x, y;¢) and Gyp(x, y;¢). The
strategy is to introduce the Schrodinger operator with confining potential with large cou-
pling constant as an auxiliary operator. We set t = ¢/N « 1 for ¢ > 0 fixed and we write
U for the multiplication by the characteristic function of the complement Q° of domain
Q. Then we define

H,=Hy+U,=Hy+1"U, Ts)=exp(—sH;)
and
I(7) = exp(—tU;) To(7) = exp(—7'! 7" U) exp(—tH))

with constant v, 0 < v < 1/2. These operators act on L?>(R") and the constant v is deter-
mined as v = 1/3 in the course of the proof of Theorem 1.2. For two real smooth functions
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Y, n € Cy(Q) with support in Q, we use the notation y < # with the meaning yn =y as-
cribed in (2.1) and we often regard a function with support in Q as a function over the
whole space R” in a natural way. The proof of Theorem 1.2 is based on the following two

propositions.

Proposition 5.1.  Let y € C;°(Q). Then

W (Tp(s) — Te(s))y|,, = O(7), 70,

Sfor any m = 0, where o satisfies 0 < o < v/2 and the error bound is locally uniform in s > 0
(se[l/e,c],e > 1).

Proposition 5.2. Let y € C3°(Q) and set Ty (t) = T(z)". Then
[ (T2(1) = (1)) W|| = O(z"/* " log )
and
[ (Te(e) = Ty (D), + ([ (T(0) = e (0) )], = OGT)
locally uniformly in t > 0.

We complete the proof of Theorem 1.2 before proving these propositions. Proposi-
tions 5.1 and 5.2 are proved at the end of this section and in the next section respectively.

Proof of Theorem 1.2. We denote by E;(x, y;¢) and ITy.(x, y; ) the integral kernels
of operators exp(—tH,) and ITy,(¢) respectively. By the maximum principle, we know that

0 < Ep(x,y;5) < Eo(x, y;5), where Ep(x, y;s) is the heat kernel of Ty(s) = exp(—sHy).
Hence it follows that

0 < Ep(x, ;1) < Gyp(x, y;t) < Hye(x, p3 1)
over Q x Q. We estimate the difference Ep(x, y;¢) — Gyp(x, ;) in question as
(5.1) |Ep(x, y;t) — Gup(x, y3 1)
é HNT(xv Vs [) - ED(xa Vs Z)
= (HNT(X7 i t) - Er(x’ Vi Z)) + (Er(xu ) [) - ED(xa Vi [))

Let y € C;° (). By Proposition 5.1 and Lemma 1.1, we see that the second term on the
right-hand side of (5.1) obeys

’w(E‘c(xa Y [> - ED(X7 Y l))lﬁ‘ = O(TU)

for any o, 0 < ¢ < v/2, and Proposition 5.2 enables us to take m > 1 so large that the first
term satisfies

[ (T (x, y3 1) = Ec(x, yi 0))| = O(<*)



180 Ichinose and Tamura, Exponential product formula

forany 4, 0 < u < 1/2 —v. We now choose v =1/3. Then v/2 =1/2 — v =1/6 and we ob-
tain that Ep(x, y; 1) — Gyp(x, y; 1) obeys the desired bound O(z?), 0 <o < 1/6. []

Remark 5.1. We note that the convergence in Theorem 1.2 is still valid in the C*
sense. Roughly speaking, this is verified in the following way. By Theorem 1.2, it follows
that ||y (Tp(r) — Gap(1))¥|| = O(z°) for any o, 0 < ¢ < 1/6. We can also show that

|Hpw (Tp(r) — Gap(0)y]| = O(™")

for any m > 1 as an operator acting on L?(Q). This, together with Lemma 1.1, yields the
desired result. We are going to discuss the detailed matter elsewhere.

We end the section by proving Proposition 5.1.

Proof of Proposition 5.1. Recall that J : L?> = L*(R") — L*(Q) is the restriction de-
fined by (Jf)(x) = f(x) for x € Q. The proof relies on [3], Theorem 3.3 (see [2], Theorem
8.31 also). According to the theorem, JT:(s) — Tp(s)J satisfies

(5.2) [JT2(s) = To(s)J || < go(s)2%,  s>0,
as a bounded operator from L? to L?(Q), where ¢ > 0 is as in the proposition, and g, (s) is

locally integrable over [0, c0). It should be noted that g,(s) is integrable near s = 0. Let
¢,n € Cy(Q) with 0 < ¢, < 1. Then it follows from (5.2) that

(53) [(72(9) = To(s)) ]| = gols)e”.

We set w(t) = p(u(t) — v(r)), where u(t) = Tp(t)pf and v(r) = T.(t)pf with f € L?. Then

w solves

ow + How = [p, Hol(v —u), w(0)=0.
The solution w(?) is given by the Duhamel principle

t

w(t) = JTO(Z — 5)[p, Ho) (v(s) — u(s)) ds.

We may assume that iy < ¢ < . Then  vanishes and # = 1 on the support of Vp. Hence
A™yTo(s)[p, Ho) : L*> — L? is bounded uniformly in s = 0, and we obtain

[ 4™ (Tp(1) = Te(1)¥|| = OG")

by (5.3). This proves the proposition. []

6. Proof of Proposition 5.2

The proof of Proposition 5.2 is based on the idea from Rogava [15]. We begin by
stating a series of lemmas used in proving the proposition. Let 4 = Hy + 1 be as in (1.6).
We define
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A=A+ U, =A+7"U, S:(s)=exp(—s4-)
and
A7) = exp(—1U;)Sy(7) = exp(—fl_v U)So(7),

where Sy(s) = exp(—sA). According to the above notation, the difference 7% () — IT(z)" in

Proposition 5.2 is represented as
T.(t) — ()Y = e'(S:(r) — A(r) ™)
and hence it suffices to prove the proposition for S;(¢) — A(zr)".
Lemma 6.1. The operators A and A, satisfy the following relations:
(1) 4712412 = 0,(1).
(2) 4714 = 0,(z7"?).
(3) AV24712 = 0,(z7/?).

Lemma 6.2. Let m = 0. Suppose that y < 0, and set ® =1 — 0. Then S;(s) obeys the
following bounds uniformly in s € [0,1], t > 0 being fixed:

(1) A™S(s)pA™ = O,(1).
(2) A™YS: (o = Oy ™).
Lemma 6.3. Let ['(t) be defined by
[(z) = So(t/2) exp(—tUs)So(t/2) = Solr/2) exp(~'~"U)So(z/2),

and let E4(1), A >0, be the spectral resolution associated with A = Hy+ 1. Set
P.=E4((0,1/7)) and Q. = Id — P,. Then T'(v)’ takes the form

L)) = (247 2P + Q)Bi(r), 1N,
where B;(t) : L> — L? obeys the bound ||B;(7)|| = O(j~'/?) uniformly in .
Lemma 6.4. Let y € C;°(Q). Define
(6.1) R(7) = S:(7) = I'(7), R(z) = S:(7) — A(7).
Then these two operators have the following properties:
(1) A™yR(z) = O,(t*) and similarly for R(z).
(2) A7'R(7)A7V% = 0, (3.

(3) 47'R(x) = 0,(x').



182 Ichinose and Tamura, Exponential product formula

We prove these lemmas after completing the proof of Proposition 5.2. For brevity, we
prove the proposition and lemmas for the case = 1 only, so that t = 1/N.

Proof of Proposition 5.2. Let I'(t) be as in Lemma 6.3. We first prove that
(6.2) [¥(S:(1) = T(0) )= O("/*"[log ).

The difference is represented as
N
V(S =T W =w(S:(0)" =T = 2 Xel(o),

where Xj () = yS:((k — 1)T)R(T)F(T)N7k1p and R(7) is defined by (6.1). If k=1 or
N, then it follows from Lemma 6.4 that X;(7) = O,(z*) and Xy(7) = O,(t*). When
2 <k <N — 1, we decompose Xi(7) into the product
Xi(t) = (¥S:((k — 1)7)4.) (47" R(2)) (e 2 47V2P, + Q) By (0)Y
by Lemma 6.3. Hence X (7) obeys
1Xe(@)| = (k=1)'(V = k) 20E™)

by Lemmas 6.3 and 6.4. This implies (6.2). Once (6.2) is established, we can show in almost
the same way as in the proof of Proposition 1.1 that

[(S:(1) = A@) ™)y || = O/ "[log]).
We skip the details.
Next we shall show that
(6.3) 4™ (S:(1) = A(D)™)y|| = 0" )

for any m > 0. To prove this, we write

A™p(S.(1) — A@) )y = kﬁ Yi(2),

where  Yi(t) = A"YS ((k — 1)7)R(x)A(7) Nky and R(r) is as in Lemma 6.4. Let
W <0 <nandsetw=1-—0. Then Yi(r) admits the decomposition

Yi(2) = (A8, ((k — 1)7)w) R(x)A (D) *y
+ (A" ((k — 1)T)04™™) (A" R(2)) A(x) .

By Lemma 6.2, the first operator on the right-hand side obeys the bound O(7™"), and by
Lemmas 6.2 and 6.4, the second one obeys O(t*). Hence (6.3) is obtained. We can show
in a similar way that
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lamp (1) = (A@) | = o)
for any m > 0. Thus the proof of the proposition is complete. []
It remains to prove Lemmas 6.1~6.4.

Proof of Lemma 6.1. (1) Since A, = 4 and A, = v "U in the form sense, (1) follows
at once.

(2) Similarly we have
(6.4) UA;'? = 0,(2"?).
If we write A.'4 =1—1t7A.'U, then (2) follows from (6.4).
(3) We calculate
A A =14+77047" = 0,(z7).
Hence (3) is obtained by interpolation. []

Proof of Lemma 6.2. (1) Since  has support in Q, it follows by elliptic regularity
and by interpolation that

AMYS(s)pA™ = (A" Y A")So(s)(ATYA™™) = Op(1)

uniformly in s.

(2) We represent S;(s) as

Se(s) = So(s) — 77" [ So(1) US:(s — 1) dt.
0

As is easily seen, A"™yYSo(s)w = O,(1) and A"YSy(s)U = O,(1). Hence we have
A"MYS () = 0,(z7"). O

Proof of Lemma 6.3. We first note that

(6.5) 0<T(r) < So(e) < 1

in the form sense. We decompose I'(7)’ into the product

I(t) = E(z)(r 247" 2P, + 0,),

1/2

where Ej(t) = F;(t)L(t)Lo(t) with Fj(r) = T'(z)’(1 = ['(z)) ', and

L) = (1-T(@) (1= S(x) ",

Lo(x) = (1 - So(2)) (x4 2P, + 0,).
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It is easy to see that ||F(7)|| = O(j~"/?) uniformly in 7, and also it follows from (6.5)
that ||L(7)|| < 1. There exists ¢ >0 such that (1 —e¢4) Y212 <¢ for 0< 2 <1 and

(1— e*i)fl/2 < ¢ for 2 = 1. This implies that ||Lo(7)|| < ¢. If we put B;(r) = E;(t)", then
we combine these estimates to obtain the lemma. [
Proof of Lemma 6.4. (1) We decompose R(7) into the sum
R(7) = (S:(1) = So(2)) + (So(r) — ['(z)) = Ri(7) + Ra(7).

The first operator R;(7) is represented in the integral form

Ri(tr)=—1"" JTSO (5)US;(t — ) ds.
0

As is easily seen, A”YSy(s)U = O,(t™) uniformly in s € [0, 7], and hence A"y R, (1) is of
class O,(7*). The second operator R»(7) equals

Ra(z) = Sy(t/2)(1 — exp(—' =" U)) So(z/2).

Since 1 — exp(—1'~"U) vanishes over Q, we can easily see that 4™y Ry(t) = O,(z*). Thus
A™PR(t) = O,(t™). A similar argument applies to R(7).

(2) By definition, we have
A'R(1)A7V* = A7 (Si(x) = T(2)) 472
If we write 47'S,(t)47"/? as
A7'S (1) A7 = (A exp(—td,)A; 1) AP 4712,
then it follows from Lemma 6.1 (3) that
(6.6) A'S () A7V = AT —14) A7V 4 0,232,
On the other hand, A7'T'(r)4~'/? takes the form
A'T(2) A2 = A7 So(1/2) (1 = ' 77U + 0,(c2177)) So(z/2) 4712
= A" (So(r) — T So(2/2) USy(1/2)) A™V% + 0,(:217Y).
We obtain
A" So(0) A2 = A7 A(A71So(1)47V?) = AN (1 — 1) A7+ 0, ()

by Lemma 6.1 and we decompose A7'Sy(7/2) USy(r/2)A~"/? into the product

AV(ATPANY (A72S(2/2)) U (So(1/2)A713)
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to obtain that
AT S (1/2) USy(1/2) A7 = A7 U ATV 4 0,(37).
Thus it follows that
ATT() AT = 47N (1 = 24) 4712 + 0,(777),
which, together with (6.6), yields the desired bound.

(3) This is shown in almost the same way as (2). We have A;1S.(1) = 47! + 0,(7)
and

A7T(0) = 47" S0(2/2) (14 0p(c ) So(2/2) = A;' + 0,(=').

This proves (3). [

7. Appendix

We conclude the paper by proving (1.8). The Whittaker functions M, ,(z) and
Wi u(z), z € C, satisfy the equation

W'+ (=1/4+x/z+ (1* — (1/4)) /22 )W =0

as a pair of linearly independent solutions. The proof uses the functions with = 1/2 only.
We set M,(z) = M, 1)>(z) and W,(z) = W, 1)2(z), which solve

(7.1) W'+ (=1/4+k/z)W =0.
These functions are known to have the following asymptotic properties ([16]):
(7.2) M(z) =z+ 0(]z]*), |z| —0,
(7.3) We(z) ~e 22", |z| —» o0, —n < argz < =,
(74)  Mc(z) ~—(e ™ /T (1 + K))e_z/zzK + (1/T(1 - K))eZ/ZZ_K, |z| = o0,

along —n/2 < argz < 3n/2, where I'(p) is the gamma function. The Wronskian is calcu-
lated as

(7.5) WM., W,)=-1/T(1 — k)
by (7.3) and (7.4), provided that x is not a positive integer.

We now consider the Schrédinger operator H = Hy + V' with the positive Coulomb
potential V' (x) = ¢/|x|, ¢ > 0, in three dimensions. We work in the polar coordinate sys-
tem. Let U be the unitary operator defined by

(Uv)(r,0) = rv(rf) : Lz([RR3) — Lz(O, 0) ® L2(S2),
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where r = |x| € (0,0) and 0 = x/|x| € S>. Then the adjoint operator U* is defined by
(U*u)(x) = |x| u(]x|, x/|x]), and we have
UHU* = —d*/dr* + c/r + As/r?,

where Ag denotes the Laplace-Beltrami operator acting on L?(S?). As is well known, Ag
has eigenvalues /(/ + 1) with multiplicity 2/ + 1, / = 0 being a nonnegative integer, and
the normalized eigenfunction associated with zero eigenvalue is the constant function
(4n)” 12 The value E (0,0;¢) in (1.8) is determined only by a contribution from / = 0. We
denote by hy = —d?/dr* + ¢/r the self-adjoint operator in L?(0, c0) with the vanishing

boundary condition at r = 0 and by go(r, p; ), Im{ = 0, the Green function of the resolvent
(ho — {)~"'. Then the spectral function ey (r, p; A), 4 > 0, is defined by

eo(r,p; ) = (2711')71 (go(r,p; 2+ 1i0) — go(r,p; A — iO))

and the value E(0,0; 1) is given by
E(0,0;7) = [ e "so(2) d2,
0

1

where so(4) = (47) ' lim lim r~'eq(r, p; A)p~'. We assert that

p—0 r—

(7.6) so(2) = (c/an)(e™VE — 1)~

To show this, we calculate go(r, p; 4 + ie). If we take account of (7.1)~(7.5), then the stan-
dard way yields

golr.pii % ie) = (T(1 — K1) /32) My (051 ) Wi, (6:(rv )
after making a change of variables, where r A p = min(r, p), r v p = max(r, p), and
. . . N1/2 _ . . N—1/2
oy =04(e) =F2(A +ie) ", ki =14(e) =TFi(c/2)(A + ig)

with +Im(2 + ie)'/? > 0. If we further set o = 2i2"/? and - = (ic/2)2~"/?, then o (¢) — Fo
and k1 (¢) — Fx as ¢ — 0. Thus

go(r; p; 4 +i0) = F(T(1 £ 1) /0) Mg (Fo(r A p)) Wex (Fal(rv p)).
y (7.2), lim 1~ M+, (For) = Fo, and hence we have
lim reo(r, p; A) = () 'T(1 + )T(1 — k) Y (p; 2),
where
Y(p;2) = (1/T(1 = x)) W_(~ap) — (1/T(1 + 1)) W(ap).

y (7.3), Y(p; A) behaves like
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Y(pi ) ~ (1/T(1 = 1)) (~ap)™ — (1/T(1 + 1)) (op)"

as p — oo, and arg(—op) = arg(—i24."?p) must equal —7/2. Hence (—ap) " = ™™ (ap) ™",
and it follows from (7.4) that Y (p; A) = e™*M,.(ap). This yields

lim r~eo(r, p; 2) = (2ni) ' ie(m/sin )" My (op)

by the formula I'(1 + x)I'(1 — k) = k['(1)[(1 — k) = k(n/sinkn). Thus
so(2) = (&) (2ni) ko (r/sinkm)e™™ = (c/4n)(e™VF — 1)7!
by (7.2). We can get the desired relation (7.6). If we let ¢ — 0, then

E(0,0;) — (4n) " [ 2V d) = (4mr) 2.
0

The limit just coincides with the value corresponding to the free Hamiltonian H.
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