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integral kernel of the Schrödinger semigroup and

to the heat kernel of the Dirichlet Laplacian

By Takashi Ichinose at Kanazawa and Hideo Tamura at Okayama

Abstract. We know by the studies for the last decade that the norm convergence of
the exponential product formula holds true even for a class of unbounded operators. As a
natural development of this recent research, we study how the product formula approxi-
mates integral kernels of Schrödinger semigroups. Our emphasis is placed on the case of
singular potentials. The Dirichlet Laplacian is regarded as a special case of Schrödinger
operators with singular potentials. We also discuss the approximation to the heat kernel
generated by the Dirichlet Laplacian through the product formula.

1. Introduction

It is known as the Trotter-Kato product formula [13], [19] that the semigroup
expð�tZÞ, tf 0, generated by the sum Z ¼ X þ Y of two operators X and Y acting on a
Hilbert space is approximated by the exponential product formula

expð�tZÞ ¼ s � lim
N!y

�
exp

�
�ðt=NÞY

�
exp

�
�ðt=NÞX

��N

in the strong sense under suitable conditions on the pair ðX ;YÞ. If X and Y are bounded,
the norm convergence follows from the Baker-Campbell-Hausdor¤ formula. Then we
know that

ke�tZ � ðe�ðt=NÞY e�ðt=NÞX ÞNk ¼ OðN�1Þð1:1Þ

for the approximation of the nonsymmetric form and that

ke�tZ � ðe�ðt=2NÞX e�ðt=NÞY e�ðt=2NÞX ÞNk ¼ OðN�2Þð1:2Þ

for the approximation of the symmetric form, where k k denotes the operator norm of
bounded operators. We note that the error bounds OðN�1Þ and OðN�2Þ on the right-hand
sides are optimal (see [12] for details). The norm convergence has been extended to a wide



class of pairs of self-adjoint operators not necessarily bounded since it was first established
by Hel¤er [7] and Rogava [15] independently. After the works, various kinds of improve-
ments have been done by many authors (see [8], [9], [10], [20] for extensive references and
related subjects). Among a lot of literatures, the work [12] together with [10] has established
that the convergence holds true with error bound OðN�1Þ for both the symmetric and non-
symmetric approximations under the general assumption that Z ¼ X þ Y is self-adjoint
with domain DðZÞ ¼ DðXÞXDðY Þ for two self-adjoint operators X and Y bounded
from below. In particular, OðN�1Þ is the optimal error bound even for the symmetric ap-
proximation, which is di¤erent from the case of bounded operators. This has been shown
by constructing an example of pair ðX ;Y Þ for which (1.2) is estimated by ctN

�1, ct > 0,
from below for t > 0. The original idea of construction is due to [18].

As stated at the beginning, our aim is to analyze how the exponential product
formula approximates the kernel Eðx; y; tÞ of the semigroup expð�tHÞ generated by the
Schrödinger operator H ¼ H0 þ V , H0 ¼ �D, acting on L2ðRnÞ. The present work is a
continuation to our recent work [11] where the same problem has been studied for a class
of smooth potentials. A special emphasis here is placed on the case that potentials admit
singularities. The Dirichlet Laplacian is regarded as a special case of Schrödinger operators
with singular potentials. We also discuss the approximation to the heat kernel generated by
the Dirichlet Laplacian through the product formula.

We begin by summarizing the results obtained in [11] which show how sharp the ker-
nel of the Schrödinger semigroup is approximated through the product formula. We there
have assumed that VðxÞ A CyðRnÞ is a nonnegative smooth function and satisfies

VðxÞfChxir; jqa
xVðxÞjeCahxir�djajð1:3Þ

for some constants C > 0, rf 0 and d, 0 < de 1 (d ¼ 0 is allowed if r ¼ 0), where
hxi ¼ ð1 þ jxj2Þ1=2. We define the symmetric approximation KNðtÞ by

KNðtÞ ¼
�
exp

�
�ðt=2NÞH0

�
exp

�
�ðt=NÞV

�
exp

�
�ðt=2NÞH0

��Nð1:4Þ

and the nonsymmetric approximation GNðtÞ by

GNðtÞ ¼
�
exp

�
�ðt=NÞV

�
exp

�
�ðt=NÞH0

��N
:ð1:5Þ

We also denote by KNðx; y; tÞ and GNðx; y; tÞ the kernels of operators KNðtÞ and GNðtÞ re-
spectively. Then we have proved that jKNðx; y; tÞ � Eðx; y; tÞj ¼ OðN�2Þ and that

jGNðx; y; tÞ � Eðx; y; tÞ � ðt=2NÞE1ðx; y; tÞj ¼ OðN�2Þ

and
���GNðx; y; tÞ þ GNðy; x; tÞ

�
=2 � Eðx; y; tÞ

�� ¼ OðN�2Þ as N ! y, where

E1ðx; y; tÞ ¼ Eðx; y; tÞVðyÞ � VðxÞEðx; y; tÞ

is the kernel of the commutator ½H0; expð�tHÞ� ¼ ½expð�tHÞ;V � and all the error bounds
are uniform in ðx; yÞ A Rn � Rn and locally in t > 0 ðt A ½1=c; c�; c > 1Þ. The convergence is
still true for all derivatives in x and y. We note that GNðy; x; tÞ is the kernel of the adjoint
operator
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GNðtÞ� ¼
�
exp

�
�ðt=NÞH0

�
exp

�
�ðt=NÞV

��N
:

The proof is based on the pseudodi¤erential calculus, and it relies on the regularity assump-
tion of potentials in an essential way.

The above results have an important application to the theory on the finite dimen-
sional approximation to path integrals. Let dW t

x;y be the conditional Wiener measure over
the set

W t
x;y ¼ frðsÞ A Cð½0; t� ! RnÞ : rð0Þ ¼ x; rðtÞ ¼ yg

of continuous paths which take the values x and y at their endpoints 0 and t respectively.
According to the Feynman-Kac formula ([6], [14]), Eðx; y; tÞ has the representation

Eðx; y; tÞ ¼
Ð

exp

�
�
Ðt
0

V
�
rðsÞ

�
ds

�
dW t

x;y;

while KNðx; y; tÞ, GNðx; y; tÞ and GNðy; x; tÞ are represented as follows:

KNðx; y; tÞ ¼
Ð

exp

�
�ðt=NÞ

PN�1

k¼0

V
�
rðskÞ

��
dW t

x;y

with sk ¼ ðk þ 1=2Þt=N, and

GNðx; y; tÞ ¼
Ð

exp

�
�ðt=NÞ

PN�1

k¼0

V
�
rðtkÞ

��
dW t

x;y;

GNðy; x; tÞ ¼
Ð

exp

�
�ðt=NÞ

PN�1

k¼0

V
�
rðtkþ1Þ

��
dW t

x;y

with tk ¼ kt=N. Thus we obtain the error bound of a time-sliced approximation to the
kernel of expð�tHÞ. The work [17] has also studied the convergence of time-sliced ap-
proximation by estimating directly the di¤erence between two kernels represented by the
Feynman-Kac formula to show that the error bound is of order OðN�kÞ for a class of C2

smooth potentials satisfying (1.3) for jaje 2, where k ¼ 1 for 0e re 2d and k ¼ 2d=r for
r > 2d. The proof is based on a probabilistic idea and still requires regularity assumption
(although not necessarily Cy smoothness) of potentials.

The main results obtained in this work are formulated as the two theorems below. As
stated above, a special attention is paid to the case when VðxÞ has singularities. Let

H0 ¼ �D; A ¼ H0 þ 1;ð1:6Þ

be self-adjoint operators on L2 ¼ L2ðRnÞ with domain H 2ðRnÞ, where H sðRnÞ denotes the
Sobolev space of order s. We make the following assumption on the potential VðxÞ : ðVÞ
VðxÞf 0 is nonnegative and

VA�a : L2 ! L2ð1:7Þ
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is bounded for some a, 0 < a < 1, as the multiplication operator by VðxÞ. The assumption
V f 0 is only for notational brevity. We have only to assume that VðxÞ > �c, c > 0,
is bounded from below. Under assumption ðVÞ, we have that kVðH0 þ lÞ�1k ! 0 as
l ! y, and hence it follows from Kato-Rellich theorem that H ¼ H0 þ V becomes self-
adjoint with the same domain H 2ðRnÞ as H0. We also have that AðH þ 1Þ�1 as well as
ðH þ 1ÞA�1 is bounded as an operator acting on L2. If, for example, n ¼ 3, then (1.7) is
easily seen to be fulfilled for VðxÞ admitting the decomposition V A L2ðR3Þ þ LyðR3Þ.
The positive Coulomb potential VðxÞ ¼ c=jxj, c > 0, is a typical example. The first theorem
is formulated as follows.

Theorem 1.1. Suppose that VðxÞ fulfills ðVÞ. Denote by Eðx; y; tÞ the kernel of

expð�tHÞ and by KNðx; y; tÞ and GNðx; y; tÞ the kernels of KNðtÞ and GNðtÞ defined by

(1.4) and (1.5) respectively. Let ðp; qÞ A Rn � Rn be fixed. If VðxÞ is Cy smooth around

both points p and q, then

jKNðp; q; tÞ � Eðp; q; tÞj ¼ OðN�1Þ; jGNðp; q; tÞ � Eðp; q; tÞj ¼ OðN�1Þ

as N ! y, and the convergence is true in the sense of Cy topology in a neighborhood of

ðp; qÞ A Rn � Rn, where the order estimate is locally uniform in t > 0 ðt A ½1=c; c�; c > 1Þ.

We make an important comment on the convergence at singular points where VðxÞ
is divergent. This seems to be a subtle problem. For example, we consider the positive
Coulomb potential VðxÞ ¼ c=jxj, c > 0, in three dimensions. We know the convergence
kGNðtÞ � expð�tHÞk ¼ OðN�1Þ in the operator norm. However, the convergence of
the kernel GNðx; y; tÞ at the origin is not true. In fact, GNðx; y; tÞ takes the value
GNð0; y; tÞ ¼ 0 at x ¼ 0 for all N, because Vð0Þ ¼ þy. On the other hand, we can explic-
itly calculate the value

Eð0; 0; tÞ ¼ ðc=4pÞ
Ðy
0

e�tlðecp=
ffiffi
l

p
� 1Þ�1

dl > 0ð1:8Þ

for VðxÞ ¼ c=jxj, c > 0. Thus the convergence at singular points is not expected in general.
The relation (1.8) itself is interesting. We prove it in the appendix at the end of the paper.

We move to the problem on the approximation for the heat kernel generated by the
Dirichlet Laplacian. Let expð�tHDÞ be the semigroup generated by the Dirichlet Laplacian
HD ¼ �D over a domain W in Rn. If we define the potential VðxÞ as VðxÞ = 0 on W and
VðxÞ ¼ þy on the complement Wc of W, then we have

expð�tHDÞ@ exp
�
�tðH0 þ VÞ

�

in a formal way. The operator expð�tVÞ, t > 0, acts as the multiplication by the character-
istic function wW of W, and the exponential product formula takes the form

expð�tHDÞ@ lim
N!y

�
exp

�
�ðt=NÞV

�
exp

�
�ðt=NÞH0

��N
wWð1:9Þ

¼ lim
N!y

�
wW exp

�
�ðt=NÞH0

�
wW

�N
:
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The strong convergence follows from the abstract theory due to Kato [13] (see Friedman
[5], Theorem 2, also). The product

�
wW exp

�
�iðt=NÞH0

�
wW

�Nð1:10Þ

with t > 0 replaced by it is often called the Zeno product formula. This kind of product
appears in the problem on the position measurement in quantum systems (Zeno quantum
e¤ect). In fact, the product (1.10) describes the frequent measurement to check whether a
particle localized in W at t ¼ 0 is still in W. If (1.10) is strongly convergent to the propagator
expð�itHDÞ as N ! y, this means that continuous observations hinder transitions to
states di¤erent from the initial one and that a quantum particle can not move to where it
is not. It corresponds to Zeno’s paradox denying the possibility of motion to a flying arrow.
This is the reason why (1.10) is called the Zeno product formula. The strong convergence of
the Zeno product formula has been discussed in the physical literatures (for example see [4]
and references there). However the rigorous proof does not seem to have been done, and it
remains as an interesting mathematical problem.

We shall formulate the second main theorem. Let

HD ¼ �D; DðHDÞ ¼ H 2ðWÞXH 1
0 ðWÞ;

be the Dirichlet Laplacian over a bounded domain WHRn with smooth boundary qW. The
operator HD is self-adjoint in L2ðWÞ. We denote by expð�tHDÞ, tf 0, the semigroup
generated by HD and by EDðx; y; tÞ the integral kernel of expð�tHDÞ. We also denote by
GNDðx; y; tÞ the integral kernel of the operator

GNDðtÞ ¼
�
J exp

�
�ðt=NÞH0

�
J ��N

: L2ðWÞ ! L2ðWÞ;ð1:11Þ

where J : L2ðRnÞ ! L2ðWÞ denotes the restriction. The kernel GNDðx; y; tÞ takes a simple
form

GNDðx; y; tÞ ¼
Ð
W

� � �
Ð
W

� QN�1

j¼0

E0ðzj; zjþ1; t=NÞ
�

dz

for ðx; yÞ ¼ ðz0; zNÞ A W�W, where z ¼ ðz1; . . . ; zN�1Þ and

E0ðx; y; tÞ ¼ ð4ptÞ�n=2 expð�jx � yj2=4tÞ

is the heat kernel of expð�tH0Þ. Then the second theorem is stated as follows.

Theorem 1.2. Let the notation be as above. Then

jGNDðx; y; tÞ � EDðx; y; tÞj ¼ OðN�sÞ; N ! y;

for any s, 0 < s < 1=6, and the error bound is locally uniform in ðx; yÞ A W�W and in t > 0.

We add two comments to the above theorem. (1) We note that the theorem implies
the strong convergence in (1.9). In fact, the weak convergence follows from the theorem at
once, and the semigroup property yields
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kGNDðtÞ f k2 ¼
�
GNDðtÞGNDðtÞ f ; f

�
!

�
expð�2tHDÞ f ; f

�
¼ kexpð�tHDÞ f k2

for f A L2ðWÞ, where ð ; Þ denotes the L2 scalar product in L2ðWÞ. This proves the strong
convergence. (2) The error bound OðN�sÞ with 0 < s < 1=6 is not sharp. The proof of the
theorem is based on the large coupling approximation to the Dirichlet Laplacian, where
an essential role is played by Theorem 3.3 due to Demuth, Kirsch and McGillivray [3].
According to their theorem, it is anticipated that the optimal error bound is OðN�sÞ with
0 < s < 1=2 (see Proposition 5.1 also).

The proof of both the theorems is based on the convergence of exponential product
formula in the operator norm on the Sobolev spaces. We denote by k km the norm of
bounded operators when considered as an operator from L2 into H mðRnÞ for mf 0 (not
necessarily integer). If, in particular, m ¼ 0, then we simply write k k for k k0. For example,
the following proposition plays an essential role in proving Theorem 1.1.

Proposition 1.1. Assume the same assumptions and keep the same notation as in The-

orem 1.1. Let cp;cq A Cy
0 ðRn ! RÞ be smooth real functions with support around p and q

respectively. Assume that VðxÞ is Cy smooth on the support of cp and cq. Then

��cp

�
expð�tHÞ � KNðtÞ

�
cq

��
m
¼ OðN�1Þ

and ��cp

�
expð�tHÞ � GNðtÞ

�
cq

��
m
þ
��cp

�
expð�tHÞ � GNðtÞ�

�
cq

��
m
¼ OðN�1Þ

as N ! y for any mf 0, where the order estimate is locally uniform in t > 0.

Theorem 1.1 is obtained as a consequence of the celebrated kernel theorem due to
Agmon [1], Theorem 3.1.

Lemma 1.1. Let T : L2 ! L2 be a bounded operator. Assume that the range of T is

contained in H mðRnÞ for some m > n and that the range of the adjoint operator T � is also

contained in H mðRnÞ. Then T is an integral operator with a continuous and bounded kernel

Tðx; yÞ, ðx; yÞ A Rn � Rn, and the kernel obeys the bound

jTðx; yÞje cðkTkm þ kT �kmÞ
n=mkTk1�n=m

for some c > 0 independent of T.

We end the section by proving Theorem 1.1, accepting Proposition 1.1 as proved.
This proposition is proved in sections 2, 3 and 4, and Theorem 1.2 is proved in sections 5
and 6.

Proof of Theorem 1.1. Let A be as in (1.6). We apply Lemma 1.1 to

T ¼ cp

�
expð�tHÞ � KNðtÞ

�
cq;

where cpðxÞ ¼ 1 and cqðxÞ ¼ 1 around p and q respectively. Then it follows from
Proposition 1.1 that kAmTk þ kAmT �k ¼ OðN�1Þ for any mf 0. Hence we have
kTAmk þ kT �Amk ¼ OðN�1Þ by adjoint, and
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kAm=2TAm=2k þ kAm=2T �Am=2k ¼ OðN�1Þ

by interpolation. This yields the desired bound OðN�1Þ on the di¤erence between
KNðp; q; tÞ and Eðp; q; tÞ in the sense of Cy topology. Similarly the bound on the di¤erence
between GNðp; q; tÞ and Eðp; q; tÞ is obtained by making use of Lemma 1.1 for
T ¼ cp

�
expð�tHÞ � GNðtÞ

�
cq. r

2. Approximation to kernels of Schrödinger semigroups

In this section we complete the proof of Theorem 1.1 by proving Proposition 1.1. For
two smooth functions c; h A Cy

0 ðRn ! RÞ with compact support, we use the notation

c � h;ð2:1Þ

provided that both cV and hV are Cy smooth and that

ch ¼ c; distðsuppc; supp wÞ > 0

for wðxÞ ¼ 1 � hðxÞ, where distðS1;S2Þ denotes the distance between two sets S1 and S2.
For brevity, we prove Proposition 1.1 for the case t ¼ 1 only. We set

T0ðsÞ ¼ expð�sH0Þ; TðsÞ ¼ expð�sHÞ

and we define

KðtÞ ¼ T0ðt=2Þ expð�tVÞT0ðt=2Þ; t ¼ 1=N:ð2:2Þ

Then KNð1Þ ¼ KðtÞN for KNðtÞ defined by (1.4) with t ¼ 1.

We accept three preliminary lemmas below as proved to prove the proposition.
Throughout the statements of these lemmas, mf 0 is nonnegative (not necessarily integer),
and two real smooth functions c A Cy

0 ðRnÞ and o A CyðRnÞ are assumed to satisfy the
relation

c � y; o ¼ 1 � y:ð2:3Þ

Lemma 2.1. The operator TðsÞ ¼ expð�sHÞ has the following properties:

(1) AmcTðsÞoA, AmcTðsÞcA�m : L2 ! L2 are bounded uniformly in s A ½0; 1�.

(2) kAmcTðsÞk ¼ Oðs�mÞ and kAmcTðsÞAk ¼ Oðs�m�1Þ.

Lemma 2.2. The operator DðtÞ defined by

DðtÞ ¼ TðtÞ � KðtÞð2:4Þ

has the following properties:
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(1) kA�1DðtÞA�1k ¼ Oðt2Þ, t ! 0.

(2) kAmcDðtÞok ¼ Oðt2Þ.

(3) kAmcDðtÞA�mk ¼ Oðt2Þ, and in particular, kcDðtÞk ¼ Oðt2Þ.

Lemma 2.3. The operator KðtÞ defined by (2.2) has the following properties:

(1) AoKðtÞkc : L2 ! L2 is bounded uniformly in t and k, 0e k eN.

(2) kAmcKðtÞkk ¼ k�mOðt�mÞ uniformly in k, 1e k eN.

Lemma 2.1 is proved at the end of this section, and Lemmas 2.2 and 2.3 are proved in
sections 3 and 4 respectively. We note that the statements of the lemmas remain true for the
adjoint operators. Throughout the entire discussion, we use such a simple consequence
without further references, and also we often use the notation OpðtnÞ to denote the class
of bounded operators of which the norm obeys the bound OðtnÞ as t ! 0. In particular,
Opð1Þ denotes the class of operators bounded uniformly in t, and OpðtyÞ the class of oper-
ators with bound OðtLÞ for any Lg 1. We sometimes denote by Opð1Þ a class of bounded
operators independent of parameter t also.

Proof of Proposition 1.1. The proof is rather long and is divided into four steps.

(1) According to notation (2.1), we take fhjg, 0e j e 1, in such a way that

cp � h0 � h1; cq � h0 � h1ð2:5Þ

and we set wj ¼ 1 � hj. The first three steps are devoted to proving that

��Amcp

�
Tð1Þ � KðtÞN

�
cq

�� ¼ OðtÞ;ð2:6Þ

which implies the statement for the symmetric product KNð1Þ in the proposition. To prove

(2.6), we represent the di¤erence Tð1Þ � KðtÞN as

Tð1Þ � KðtÞN ¼ TðtÞN � KðtÞN ¼
PN
k¼1

T
�
ðk � 1Þt

�
DðtÞKðtÞN�k:

We evaluate the norm of the operator

XkðtÞ ¼ AmcpT
�
ðk � 1Þt

�
DðtÞKðtÞN�kcq; 1e k eN;

to show that
PN
k¼1

kXkðtÞk ¼ OðtÞ. This yields (2.6).

(2) We decompose XkðtÞ into the sum

XkðtÞ ¼ AmcpT
�
ðk � 1Þt

�
ðh0 þ w0ÞDðtÞKðtÞN�kcq ¼ YkðtÞ þ ZkðtÞ:

We first consider YkðtÞ. We further decompose YkðtÞ into the sum
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YkðtÞ ¼ AmcpT
�
ðk � 1Þt

�
h0DðtÞðh1 þ w1ÞKðtÞN�kcq ¼ Yk1ðtÞ þ Yk2ðtÞ:

By Lemma 2.1 (1) with c ¼ h1,

AmcpT
�
ðk � 1Þt

�
h1A�m ¼ AmcpA�m

�
Amh1T

�
ðk � 1Þt

�
h1A�m

�
: L2 ! L2

is uniformly bounded, and also by Lemma 2.2 (2), Amh0DðtÞw1 ¼ Opðt2Þ. Hence we have

Yk2ðtÞ ¼
�
AmcpT

�
ðk � 1Þt

�
h1A�m

��
Amh0DðtÞw1

�
KðtÞN�kcq ¼ Opðt2Þ;

and
PN
k¼1

kYk2ðtÞk ¼ OðtÞ. We write Yk1ðtÞ as

Yk1ðtÞ ¼
�
AmcpT

�
ðk � 1Þt

�
h1A�m

��
Amh0DðtÞA�m

�
Amh1KðtÞN�kcq

for k with 1e k < ½N=2�, and Yk1ðtÞ as

Yk1ðtÞ ¼
�
AmcpT

�
ðk � 1Þt

���
h0DðtÞ

�
h1KðtÞN�kcq

for k with ½N=2�e k eN, where ½N=2� denotes the greatest integer not exceeding N=2.
Note that N=2eN � k eN, provided that 1e k < ½N=2�. We apply Lemmas 2.1 (1),
2.2 (3) and 2.3 (2) to Yk1ðtÞ with k, 1e k < ½N=2�, and Lemmas 2.1 (2) and 2.2 (3) to

Yk1ðtÞ with k, ½N=2�e k eN. Then we get
PN
k¼1

kYk1ðtÞk ¼ OðtÞ.

(3) We proceed to operator ZkðtÞ. We decompose ZkðtÞ into the sum

ZkðtÞ ¼ AmcpT
�
ðk � 1Þt

�
w0DðtÞðh1 þ w1ÞKðtÞN�kcq ¼ Zk1ðtÞ þ Zk2ðtÞ:

If we write Zk1ðtÞ as

Zk1ðtÞ ¼
�
AmcpT

�
ðk � 1Þt

�
w0

��
DðtÞh1

�
KðtÞN�kcq;

then it follows from Lemmas 2.1 (1) and 2.2 (3) that Zk1ðtÞ ¼ Opðt2Þ, and if we write
Zk2ðtÞ as

Zk2ðtÞ ¼
�
AmcpT

�
ðk � 1Þt

�
w0A

��
A�1DðtÞA�1

�
Aw1KðtÞN�kcq;

then it follows from Lemmas 2.1 (1), 2.2 (1) and 2.3 (1) that Zk2ðtÞ ¼ Opðt2Þ. This yieldsPN
k¼1

kZkðtÞk ¼ OðtÞ, and hence (2.6) is obtained.

(4) We here introduce the new notation F @G. This means that two bounded oper-
ators F and G obey kF � Gk ¼ OðtÞ. We set

GðtÞ ¼ e�tV T0ðtÞ ¼ e�tV expð�tH0Þ; JðtÞ ¼ GðtÞ� ¼ T0ðtÞe�tV ;

and JNð1Þ ¼ GNð1Þ� for GNð1Þ defined by (1.5) with t ¼ 1. Then GNð1Þ ¼ GðtÞN and
JNð1Þ ¼ JðtÞN . According to the above notation, the aim in the final step is to show that
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GNðtÞ ¼ AmcpGNð1Þcq ¼ AmcpGðtÞNcq @AmcpKðtÞNcq;ð2:7Þ

LNðtÞ ¼ AmcpJNð1Þcq ¼ AmcpJðtÞNcq @AmcpKðtÞNcq;ð2:8Þ

which, together with (2.6), imply the statement for the nonsymmetric products GNð1Þ and
GNð1Þ� in the proposition. The proof of two relations (2.7) and (2.8) requires the following
lemma which is proved after completing the proof of the proposition.

Lemma 2.4. One has the following statements:

(1) AmcT0ðtÞo ¼ OpðtyÞ.

(2) Am½g;T0ðtÞ�A�m�1=2 ¼ OpðtÞ for g A Cy
0 ðRnÞ, where ½X ;Y � denotes the commuta-

tor ½X ;Y � ¼ XY � YX between two operators X and Y.

(3) ½AmcTðsÞ;T0ðtÞ� ¼ OpðtÞ uniformly in s A ½d; 1�, d > 0.

We now start by proving (2.7). Let fhjg, 0e j e 1, be as in (2.5) and we set
wj ¼ 1 � hj again. Then we obtain

AmhjT
�
ðN � 1Þt

�
hj @AmhjKðtÞN�1hjð2:9Þ

by (2.6). We write GNðtÞ as

GNðtÞ ¼ Amcpe�tV T0ðt=2ÞKðtÞN�1
T0ðt=2Þcq

¼ Amcpe�tV T0ðt=2Þðw0 þ h0ÞKðtÞN�1
T0ðt=2Þcq:

Since Amcpe�tV T0ðt=2Þw0 ¼ OpðtyÞ by Lemma 2.4 (1), it follows that

GNðtÞ@Amcpe�tV T0ðt=2Þh0KðtÞN�1
T0ðt=2Þcq:

The operator Amh0KðtÞN�1 is bounded uniformly in t by Lemma 2.3 (2), and also
w0T0ðt=2Þcq is of class OpðtyÞ. Hence

GNðtÞ@
�
Amcpe�tV T0ðt=2ÞA�m

��
Amh0KðtÞN�1�h0T0ðt=2Þcq

@
�
Amcpe�tV T0ðt=2ÞA�m

��
Amh0T

�
ðN � 1Þt

�
h0

�
T0ðt=2Þcq

by (2.9). Note that cph0 ¼ cp and h0h1 ¼ h0. Since Amh0T
�
ðN � 1Þt

�
is uniformly bounded

by Lemma 2.1 (2), we further have

GNðtÞ@
�
Amcph1e�tV T0ðt=2ÞA�m�1=2

��
Amþ1=2h0T

�
ðN � 1Þt

��
T0ðt=2Þcq:

We here use Lemma 2.4 (2) with g ¼ h1e�tV A Cy
0 ðRnÞ to obtain that

GNðtÞ@AmcpT0ðt=2Þh1e�tVh0T
�
ðN � 1Þt

�
T0ðt=2Þcq

¼
�
AmcpT0ðt=2Þe�tVh0A�m

��
Amh1T

�
ðN � 1Þt

�
T0ðt=2Þ

�
cq:
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Hence Lemma 2.4 (3) and (2.9) yield that

GNðtÞ@
�
AmcpT0ðt=2Þe�tVh0A�m

�
T0ðt=2Þ

�
Amh1T

�
ðN � 1Þt

��
cq

@
�
AmcpT0ðt=2Þe�tVh0A�mT0ðt=2Þ

�
Amh1KðtÞN�1cq:

We further have

GNðtÞ@
�
AmcpT0ðt=2Þe�tVh1A�m

��
Amh0T0ðt=2Þh1

�
KðtÞN�1cq

@
�
AmcpT0ðt=2Þh0

�
e�tV T0ðt=2ÞKðtÞN�1cq

@AmcpT0ðt=2Þe�tV T0ðt=2ÞKðtÞN�1cq ¼ AmcpKðtÞNcq;

because Amh0T0ðt=2Þw1 and AmcpT0ðt=2Þw0 are both of class OpðtyÞ. This proves (2.7).

We proceed to proving (2.8). This is verified in almost the same way as (2.7). We have

LNðtÞ@AmcpT0ðt=2Þh0KðtÞN�1h0T0ðt=2Þe�tVcq

@AmcpT0ðt=2Þh0T
�
ðN � 1Þt

�
h0T0ðt=2Þe�tVcq

@AmcpT0ðt=2Þh0T
�
ðN � 1Þt

�
T0ðt=2Þh0e�tVcq:

The operator Amh0T
�
ðN � 1Þt

�
A is uniformly bounded by Lemma 2.1 (2) and

kA�1½T0ðt=2Þ; h0e�tV �cqk ¼ OðtÞ

by Lemma 2.4 (2) with g ¼ h0e�tV A Cy
0 ðRnÞ. Thus we have

LNðtÞ@ ðAmcpA�mÞ
�
T0ðt=2ÞAmh0T

�
ðN � 1Þt

��
h0e�tV T0ðt=2Þcq:

We further use Lemmas 2.3 (2), 2.4 (3) and (2.9) to obtain that

LNðtÞ@AmcpT
�
ðN � 1Þt

�
T0ðt=2Þh0e�tV T0ðt=2Þcq

@AmcpT
�
ðN � 1Þt

�
h1T0ðt=2Þh0e�tV T0ðt=2Þcq

@AmcpKðtÞN�1h1T0ðt=2Þh0e�tV T0ðt=2Þcq

@AmcpKðtÞN�1
T0ðt=2Þe�tVh0T0ðt=2Þcq

@AmcpKðtÞN�1
T0ðt=2Þe�tV T0ðt=2Þcq ¼ AmcpKðtÞNcq:

This yields (2.8) and completes the proof of the proposition. r

We end the section by proving Lemmas 2.1 and 2.4.

Proof of Lemma 2.1. Throughout the proof, we often use the relation

½e�sX ;Y � ¼ e�sX Y � Ye�sX ¼
Ðs
0

e�tX ½Y ;X �e�ðs�tÞX dt:ð2:10Þ
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(1) We first deal with the operator FmðsÞ ¼ AmcTðsÞoA : L2 ! L2 with s A ½0; 1�.
The uniform boundedness is shown by induction on mf 0. We may assume that there
exists h A Cy

0 ðRnÞ such that

c � y � hð2:11Þ

for y ¼ 1 � o A Cy
0 ðRnÞ, and we set w ¼ 1 � h. By assumption, co ¼ 0. Hence FðsÞ is rep-

resented in the integral form

FmðsÞ ¼
Ðs
0

Tðs � tÞ½H;Amc�TðtÞoA dt

by making use of relation (2.10). The commutator in the integrand is calculated as

½H;Amc� ¼ Am½H0;c�hþ ½hV ;Amc�hþ wVAmc;

because cw ¼ 0. We note that the third operator on the right-hand side takes the form

wVAmc ¼ VA�1ðAwAmcALÞA�L ¼ Opð1ÞA�L

for any Lg 1. This follows by assumption ðVÞ and by pseudodi¤erential calculus. In fact,
the standard calculus of symbols shows that AwAmcAL is a pseudodi¤erential operator
with symbol of Hörmander class S�N

1;0 for any N g 1, and hence AwAmcAL ¼ Opð1Þ. If
we fix g as 1=2 < g < 1 and set d ¼ g� 1=2 > 0, then we have

½H;Amc� ¼ AgOpð1ÞAm�dhþ Opð1ÞA�L;ð2:12Þ

because Am½H0;c� and ½hV ;Amc� are pseudodi¤erential operators with symbol class S2m�1
1;0 .

As already stated in the previous section,

ðH þ 1Þ�1
A; A�1ðH þ 1Þ : L2 ! L2ð2:13Þ

are bounded. We have

Opð1ÞA�LTðtÞoA ¼ Opð1Þ
�
A�1ðH þ 1Þ

�
TðtÞ

�
ðH þ 1Þ�1

A
�
ðA�1oAÞ ¼ Opð1Þ

for the second operator Opð1ÞA�L on the right-hand side of (2.12). We use the inductive
assumption for the first operator AgOpð1ÞAm�dh to get

Ðs
0

kTðs � tÞAgOpð1ÞAm�dhTðtÞoAk dt ¼ Oð1Þ
Ðs
0

ðs � tÞ�g
dt ¼ Oð1Þ:

It remains to check the case m ¼ 0 in order that the induction goes well. To this end, we
have only to show that

kFðsÞk ¼
����Ð

s

0

Tðs � tÞ½H0;c�hTðtÞoA dt

���� ¼ Oð1Þ
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uniformly in s. By (2.11), supp hX suppo ¼ j. We take the commutator between h and
TðtÞ to obtain that

FðsÞ ¼
Ðs
0

Ðt
0

Tðs � tÞ½H0;c�Tðt � sÞ½H0; h�TðsÞoA ds dt:

Since ½H0;c� ¼ A1=2Opð1Þ and ½H0; h� ¼ A3=4Opð1ÞA�1=4, FðsÞ obeys

kFðsÞk ¼ Oð1Þ
Ðs
0

Ðt
0

ðs � tÞ�1=2ðt � sÞ�3=4s�3=4 ds dt ¼ Oð1Þ:

This enables us to push forward an inductive argument and we obtain the uniform bound-
edness of FmðsÞ ¼ AmcTðsÞoA.

We proceed to the other operator AmcTðsÞcA�m. By assumption, VðxÞ is smooth on
the support of c. Hence it follows by elliptic regularity and by interpolation that

AmcðH þ 1Þ�m; ðH þ 1ÞmcA�m : L2 ! L2

are bounded. This implies that

AmcTðsÞcA ¼
�
AmcðH þ 1Þ�m

�
TðsÞ

�
ðH þ 1ÞmcA�m

�

is also bounded uniformly in s A ½0; 1�. Thus the proof of (1) is complete.

(2) As already seen, AmcðH þ 1Þ�m : L2 ! L2 is bounded and hence

kAmcTðsÞk ¼ Oð1ÞkðH þ 1Þm expð�sHÞk ¼ Oðs�mÞ:

A similar argument applies to the second operator

AmcTðsÞA ¼ AmcðH þ 1Þ�m
�
ðH þ 1Þmþ1

TðsÞ
�
ðH þ 1Þ�1

A

and (2) is proved. r

Proof of Lemma 2.4. (1) Since c vanishes on the support of o, (1) is shown as an
immediate consequence of pseudodi¤erential calculus. This is also obtained by making re-
peated use of relation (2.10).

(2) The operator in (2) is represented as

Am½g;T0ðtÞ�A�m�1=2 ¼
Ðt
0

T0ðsÞðAm½H0; g�A�m�1=2ÞT0ðt� sÞ ds

by use of (2.10), and a pseudodi¤erential calculus shows that the integrand is uniformly
bounded. This proves (2).
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(3) We represent the commutator as

½AmcTðsÞ;T0ðtÞ� ¼
Ðt
0

T0ðtÞ½H0;A
mcTðsÞ�T0ðt� tÞ dt:

The commutator in the integrand is further calculated as

½H0;A
mcTðsÞ� ¼ Am½H0;c�TðsÞ þ AmcH0TðsÞ � AmcTðsÞH0:

If sf d > 0, then it follows from Lemma 2.1 (2) that the first and second operators on the
right-hand side are bounded, and the boundedness of the third operator also follows from
the relation

AmcTðsÞH0 ¼ AmcðH þ 1ÞTðsÞ
�
ðH þ 1Þ�1

H0

�
:

Thus (3) is proved. r

3. Properties of di¤erence operator D(t): Proof of Lemma 2.2

In this section we show some properties of operator DðtÞ defined by (2.4) through a
series of lemmas. Then Lemma 2.2 is obtained as a result of these lemmas. We use the con-
stant a, 0 < a < 1, with the meaning ascribed in (1.7) in the statement of the lemmas.

Lemma 3.1. The operator DðtÞ has the following properties:

(1) DðtÞA�a ¼ OpðtÞ.

(2) A�1DðtÞA�1 ¼ Opðt2Þ.

(3) ADðtÞA�a ¼ Opð1Þ.

Proof. (1) We write DðtÞ as

DðtÞ ¼
�
TðtÞ � T0ðtÞ

�
þ
�
T0ðtÞ � KðtÞ

�
¼ F1ðtÞ þ F2ðtÞð3:1Þ

and we represent F1ðtÞ and F2ðtÞ in the integral form

F1ðtÞ ¼ �
Ðt
0

TðtÞVT0ðt� tÞ dt; F2ðtÞ ¼
Ðt
0

T0ðt=2Þ expð�tVÞVT0ðt=2Þ dt:

Then it follows from (1.7) that F1ðtÞA�a and F2ðtÞA�a are both of class OpðtÞ.

(2) If we decompose A�1TðtÞA�1 into the product of three operators

A�1TðtÞA�1 ¼
�
A�1ðH þ 1Þ

��
ðH þ 1Þ�1

TðtÞðH þ 1Þ�1��ðH þ 1ÞA�1
�
;

then it follows from (2.13) that
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A�1TðtÞA�1 ¼ A�1ð1 � tHÞA�1 þ Opðt2Þ

and also we have

A�1KðtÞA�1 ¼ A�1T0ðt=2Þð1 � tVÞT0ðt=2ÞA�1 þ Opðt2Þ

¼ A�1ð1 � tH0 � tVÞA�1 þ Opðt2Þ

by (1.7). The two relations above yield (2).

(3) Let F1ðtÞ and F2ðtÞ be as in (3.1). Since AT0ðt=2Þ ¼ Opðt�1Þ, it is easy to see that
AF2ðtÞA�a ¼ Opð1Þ. We decompose F1ðtÞ into the sum

F1ðtÞ ¼ �
� Ðt=2

0

þ
Ðt
t=2

�
TðtÞVT0ðt� tÞ dt ¼ F11ðtÞ þ F12ðtÞ:

For the same reason as above, we see that AF12ðtÞA�a ¼ Opð1Þ. On the other hand,
AF11ðtÞA�a takes the form

AF11ðtÞA�a ¼
�
AðH þ 1Þ�1� Ðt=2

0

T 0ðtÞVA�aT0ðt� tÞ dt þ OpðtÞ

¼ Opð1Þ
Ðt=2

0

TðtÞVA�aH0T0ðt� tÞ dt þ Opð1Þ

by partial integration. Since H0T0ðt� tÞ ¼ Opðt�1Þ for t, 0 < t < t=2, it follows that
AF11ðtÞA�a ¼ Opð1Þ. This proves (3). r

We here introduce some auxiliary operators. Let c, y and h be as in (2.11). We define

H1 ¼ H0 þ W ; W ¼ hV ;ð3:2Þ

where W ¼ hV A Cy
0 ðRn ! RÞ. We further set

T1ðsÞ ¼ expð�sH1Þ; K1ðtÞ ¼ T0ðt=2Þ expð�tWÞT0ðt=2Þ:ð3:3Þ

The semigroup T1ðtÞ enjoys the same properties as in Lemma 2.1, and DðtÞ is decomposed
into the sum

DðtÞ ¼ D1ðtÞ þ D2ðtÞ þ D3ðtÞ;ð3:4Þ

where

D1ðtÞ ¼ TðtÞ � T1ðtÞ; D2ðtÞ ¼ T1ðtÞ � K1ðtÞ; D3ðtÞ ¼ K1ðtÞ � KðtÞ:

Lemma 3.2.

AmcD1ðtÞ ¼ OpðtyÞ; AmcD3ðtÞ ¼ OpðtyÞ:
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Proof. Let h A Cy
0 ðRnÞ be as in (3.2). We set w ¼ 1 � h for h as above. Then cw ¼ 0.

We represent D1ðtÞ in the integral form

D1ðtÞ ¼ �
Ðt
0

T1ðsÞwVTðt� sÞ ds:ð3:5Þ

Since AmcT1ðsÞwA ¼ OpðtyÞ for s, 0e se t, by pseudodi¤erential calculus, it follows
from (1.7) that AmcD1ðtÞ is also of class OpðtyÞ. The operator D3ðtÞ is represented in the
integral form

D3ðtÞ ¼ T0ðt=2Þðe�tW � e�tV ÞT0ðt=2Þð3:6Þ

¼
Ðt
0

T0ðt=2Þe�sWwVe�ðt�sÞV T0ðt=2Þ ds:

Since AmcT0ðt=2Þe�sWwA ¼ OpðtyÞ, we have AmcD3ðtÞ ¼ OpðtyÞ. This completes the
proof. r

Lemma 3.3. Let D2ðtÞ be as in (3.4). Then one has:

(1) AmcD2ðtÞoA ¼ Opðt3Þ.

(2) AmD2ðtÞA�mþk ¼ Opðt2�kÞ for k, 0e ke 1, and if, in particular, m ¼ 0 and

k ¼ 0, then D2ðtÞ ¼ Opðt2Þ.

Proof. We first recall that W ¼ hV A Cy
0 ðRnÞ. The proof makes repeated use of re-

lation (2.10). We calculate K 0
1ðsÞ ¼ ðd=dsÞK1ðsÞ as

K 0
1ðsÞ ¼ �H1K1ðsÞ þ R1ðsÞ þ R2ðsÞ;

where

R1ðsÞ ¼ �½T0ðs=2Þ;W �e�sW T0ðs=2Þ; R2ðsÞ ¼ �T0ðs=2Þ½e�sW ;H0=2�T0ðs=2Þ:

We can further calculate the remainder terms as follows:

R1ðsÞ ¼ R0ðsÞ þ R10ðsÞ; R2ðsÞ ¼ �R0ðsÞ þ R20ðsÞ;

where R0ðsÞ ¼ sT0ðs=2Þ½H0=2;W �e�sW T0ðs=2Þ, and

R10ðsÞ ¼
Ðs
0

Ðt
0

T0

�
ðs � sÞ=2

�
½H0=2; ½H0=2;W ��T0ðs=2Þe�sW T0ðs=2Þ ds dt;

R20ðsÞ ¼ �
Ðs
0

Ðt
0

T0ðs=2Þe�sW ½W ; ½W ;H0=2��e�ðs�sÞW T0ðs=2Þ ds dt:

Hence the Duhamel principle yields

D2ðtÞ ¼ �
Ðt
0

T1ðt� sÞ
�
R10ðsÞ þ R20ðsÞ

�
ds:ð3:7Þ
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(1) Note that c A Cy
0 ðRnÞ vanishes on the support of o. We see by pseudodi¤erential

calculus that the two operators

AmcT1ðt� sÞT0

�
ðs � sÞ=2

�
½H0=2; ½H0=2;W ��T0ðs=2Þe�sW T0ðs=2ÞoA : L2 ! L2

and

AmcT1ðt� sÞT0ðs=2Þe�sW ½W ; ½W ;H0=2��e�ðs�sÞW T0ðs=2ÞoA : L2 ! L2

are bounded uniformly in s, t and s. This yields the desired relation.

(2) The two double commutators in the integrand satisfy

½H0; ½H0;W �� ¼ A�mþ1=2Opð1ÞAmþ1=2; ½W ; ½W ;H0�� ¼ A�mOpð1ÞAm

by pseudodi¤erential calculus, and also it is easy to see that AmT1ðsÞA�m and Ame�sW A�m

are bounded uniformly in s A ½0; t�. Hence we have

kAmD2ðtÞA�mþkk ¼ Oð1Þ
Ðt
0

Ðs
0

Ðt
0

ðt� sÞ�1=2
s�ð1=2þkÞ ds dt ds

¼ Oð1Þ
Ðt
0

ðt� sÞ�1=2
s3=2�k ds ¼ Oðt2�kÞ:

This proves (2). r

Lemma 2.2 is obtained as an immediate consequence of Lemmas 3.1, 3.2 and 3.3.

Proof of Lemma 2.2. (1) is nothing but Lemma 3.1 (2), and (2) and (3) follow from
Lemmas 3.2 and 3.3 at once. r

The lemma below is used for proving Lemma 2.3 in section 4.

Lemma 3.4. Let y ¼ 1 � o A Cy
0 ðRnÞ. Then AoDðtÞy ¼ OpðtÞ.

Proof. We decompose DðtÞ into the sum (3.4). The integral representation (3.5) of
D1ðtÞ admits the decomposition

D1ðtÞ ¼ �
� Ðt=2

0

þ
Ðt
t=2

	
TðsÞVwT1ðt� sÞ ds ¼ D11ðtÞ þ D12ðtÞ:

We note that y vanishes on the support of w ¼ 1 � h. Since AoTðsÞ ¼ Opðt�1Þ for s,
t=2 < s < t, and since AawT1ðt� sÞy ¼ OpðtyÞ, it follows that

AoD12ðtÞy ¼ OpðtyÞ:ð3:8Þ

By partial integration, AoD11ðtÞy takes the form
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AoD11ðtÞy ¼
�
AoðH þ 1Þ�1� Ðt=2

0

�
T 0ðsÞ � TðsÞ

�
VwT1ðt� sÞy ds

¼ Opð1Þ
Ðt=2

0

TðsÞVwH1T1ðt� sÞy ds þ OpðtyÞ;

and hence AoD11ðtÞy ¼ OpðtyÞ. This, together with (3.8), implies that AoD1ðtÞy is of
class OpðtyÞ. We use Lemma 3.3 (2) with m ¼ k ¼ 1 to obtain that

AoD2ðtÞy ¼ ðAoA�1ÞAD2ðtÞy ¼ OpðtÞ:

We consider AoD3ðtÞy. By (3.6), this is represented as

AoD3ðtÞy ¼
�
AoT0ðt=2Þ

�Ðt
0

e�ðt�sÞV ðVA�aÞ
�
Aawe�sW T0ðt=2Þy

�
ds:

We have AoT0ðt=2Þ ¼ Opðt�1Þ and Aawe�sW T0ðt=2Þy ¼ OpðtyÞ, so that AoD3ðtÞy is of
class OpðtyÞ. Thus the proof is complete. r

4. Proof of Lemma 2.3

The section is devoted to proving Lemma 2.3.

Proof of Lemma 2.3. (1) We prove by induction on k, 0e k eN, that

kAoKðtÞkckeM

for some constant M > 0 independent of t and k. The case k ¼ 0 is obvious. We assume as
an inductive assumption that

kAoKðtÞ lckeM; 0e l e k � 1;ð4:1Þ

for some M > 0. We may also assume that k g 1 large enough. In fact, it can be seen from
the argument below that kAoKðtÞ lckeM0 for 0e l e k0, M0 being independent of t,
provided that k0 is fixed. We now write AoKðtÞkc as

AoKðtÞkc ¼ AoTðktÞc�
Pk

j¼1

L jkðtÞ;

where

L jkðtÞ ¼ AoT
�
ð j � 1Þt

�
DðtÞKðtÞk�jc; 1e j e k:

By Lemma 2.1 (1), we have

kAoTðktÞck ¼ Oð1Þð4:2Þ
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uniformly in k. We evaluate each operator L jkðtÞ, and we show that there exists r,
0 < r < 1, such that

Pk

j¼1

kL jkkeC þ cM a þ rMð4:3Þ

for some constants c, C > 0 independent of k, M being as in (4.1). This, together with (4.2),
implies that

kAoKðtÞkckeC þ cM a þ rM

for another C > 0. Hence we can take M > 0 so large that (4.1) is still true for j ¼ k, and
hence the desired uniform boundedness is obtained.

We start with

L1kðtÞ ¼ AoDðtÞðyþ oÞKðtÞk�1c:

By Lemmas 3.1 and 3.4, we have kADðtÞA�ak ¼ Oð1Þ and kAoDðtÞyk ¼ Oð1Þ. Hence, by
interpolation, it follows from (4.1) that

kL1kðtÞk ¼ Oð1Þ þ Oð1ÞkAaoKðtÞk�1ck ¼ Oð1Þ þ Oð1ÞM a:ð4:4Þ

Next we evaluate L jkðtÞ with 2e j < L < k, where Lg 1 is determined later. We decom-
pose it into the sum

L jkðtÞ ¼ AoT
�
ð j � 1Þt

�
DðtÞðoþ yÞKðtÞk�jc ¼ L jk1ðtÞ þL jk2ðtÞ:

Note that LteNt ¼ 1. Since AoT
�
ð j � 1Þt

�
is bounded by

kAoðH þ 1Þ�1k �
��ðH þ 1ÞT

�
ð j � 1Þt

��� ¼ ð j � 1Þ�1Oðt�1Þð4:5Þ

and since DðtÞo ¼
�
DðtÞA�a

�
Aao ¼ OpðtÞAao by Lemma 3.1, we have

PL�1

j¼2

kL jk1ðtÞk ¼ Oð1Þ
�PL�1

j¼2

ð j � 1Þ�1

�
M a ¼ Oð1Þ log L � M a

by interpolation again. On the other hand, the sum

PL�1

j¼2

kL jk2ðtÞk ¼ Oð1Þ

is uniformly bounded, because DðtÞy ¼ Opðt2Þ by Lemma 2.2. This, together with (4.4),
implies that

PL�1

j¼1

kL jkðtÞk ¼ Oð1Þ þ Oð1Þ log L � M a:ð4:6Þ
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We consider L jkðtÞ with Le j e k. We decompose it into the sum

L jkðtÞ ¼ L jk3ðtÞ þL jk4ðtÞ þL jk5ðtÞ;

where

L jk3ðtÞ ¼ AoT
�
ð j � 1Þt

�
oDðtÞoKðtÞk�jc;

L jk4ðtÞ ¼ AoT
�
ð j � 1Þt

�
oDðtÞyKðtÞk�jc;

L jk5ðtÞ ¼ AoT
�
ð j � 1Þt

�
yDðtÞKðtÞk�jc:

Now let r be fixed as 0 < r < 1. We use the inductive assumption (4.1) for

L jk3ðtÞ ¼
�
AoT

�
ð j � 1Þt

�
oA

��
A�1DðtÞA�1

��
AoKðtÞk�jc

�
:

Since AoT
�
ð j � 1Þt

�
oA obeys

��AoT
�
ð j � 1Þt=2

�
T
�
ð j � 1Þt=2

�
oA

�� ¼ ð j � 1Þ�2Oðt�2Þ

by (4.5) and since A�1DðtÞA�1 ¼ Opðt2Þ by Lemma 2.2, we can take Lg 1 so large that

Pk

j¼L

kL jk3ðtÞk ¼ Oð1Þ
�Pk

j¼L

ð j � 1Þ�2

�
M e rM;ð4:7Þ

because
Py
j¼L

j�2 ! 0 as L ! y. Since DðtÞy ¼ Opðt2Þ by Lemma 2.2, we have

Pk

j¼L

�
kL jk4ðtÞk þ kL jk5ðtÞk

�
¼

�Pk

j¼L

ð j � 1Þ�1

�
OðtÞ ¼ Oð1Þ:ð4:8Þ

Thus we combine (4.6)@(4.8) to obtain (4.3) and the proof of (1) is complete.

(2) This is verified by induction on mf 0. The case m ¼ 0 is obvious. We write
AmcKðtÞk as

AmcKðtÞk ¼ AmcTðktÞ �
Pk

j¼1

GjkðtÞ;

where

GjkðtÞ ¼ AmcT
�
ð j � 1Þt

�
DðtÞKðtÞk�j; 1e j e k:

By Lemma 2.1, the first operator on the right-hand side obeys

kAmcTðktÞk ¼ k�mOðt�mÞ:
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We assert that

Pk

j¼1

kGjkðtÞk ¼ k�mOðt�mÞð4:9Þ

uniformly in k, 1e k eN, which implies (2). We may assume that k g 1. By Lemma 3.1,
kA�1DðtÞk ¼ OðtÞ. If ½k=2� < j e k, then

��AmcT
�
ð j � 1Þt

�
A
�� ¼ k�m�1Oðt�m�1Þ

by Lemma 2.1. This implies that kGjkðtÞk ¼ k�m�1Oðt�mÞ, and hence

Pk

j¼½k=2�þ1

kGjkðtÞk ¼ k�mOðt�mÞ:ð4:10Þ

Next we assume that 1e j e ½k=2�. Let h A Cy
0 ðRnÞ be as in (2.11) and let DjðtÞ,

1e j e 3, be as in (3.4). Recall that y � h, yþ o ¼ 1 and hþ w ¼ 1. We decompose
GjkðtÞ into the sum

GjkðtÞ ¼ Gjk1ðtÞ þ Gjk2ðtÞ þ Gjk3ðtÞ þ Gjk4ðtÞ;

where

Gjk1ðtÞ ¼ AmcT
�
ð j � 1Þt

�
D1ðtÞKðtÞk�j;

Gjk2ðtÞ ¼ AmcT
�
ð j � 1Þt

�
D2ðtÞwKðtÞk�j;

Gjk3ðtÞ ¼ AmcT
�
ð j � 1Þt

�
D2ðtÞhKðtÞk�j;

Gjk4ðtÞ ¼ AmcT
�
ð j � 1Þt

�
D3ðtÞKðtÞk�j:

The two operators D1ðtÞ and D3ðtÞ are easily seen from the integral representation (3.5)
and (3.6) to obey A�1D1ðtÞ ¼ OpðtÞ and A�1D3ðtÞ ¼ OpðtÞ. If we write Gjk1ðtÞ as

Gjk1ðtÞ ¼
��

BjðtÞoA
�
A�1D1ðtÞ þ

�
BjðtÞA�m

��
AmyD1ðtÞ

��
KðtÞk�j

with BjðtÞ ¼ AmcT
�
ð j � 1Þt

�
, it follows by Lemmas 2.1 and 3.2 that Gjk1ðtÞ ¼ OpðtÞ, and

hence

P½k=2�

j¼1

kGjk1ðtÞk ¼ Oð1Þ ¼ k�mOðt�mÞ;ð4:11Þ

because k eN ¼ 1=t. A similar argument applies to Gjk4ðtÞ, and we get

P½k=2�

j¼1

kGjk4ðtÞk ¼ k�mOðt�mÞ:ð4:12Þ
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We can also show in a similar way that

P½k=2�

j¼1

kGjk2ðtÞk ¼ k�mOðt�mÞ:ð4:13Þ

In fact, we write Gjk2ðtÞ ¼ BjðtÞD2ðtÞwKðtÞk�j and decompose BjðtÞD2ðtÞw into the sum

BjðtÞD2ðtÞw ¼
�
BjðtÞo

�
D2ðtÞwþ

�
BjðtÞA�m

�
AmyD2ðtÞw:

Then it follows from Lemmas 2.1 and 3.3 that Gjk2ðtÞ ¼ Opðt2Þ, and hence (4.13) is ob-
tained. The inductive assumption is used for

Gjk3ðtÞ ¼
�
BjðtÞA�m

��
AmD2ðtÞA�mþ1=2

�
Am�1=2hKðtÞk�j:

Then the third factor obeys

kAm�1=2hKðtÞk�jk ¼ k�mþ1=2Oðt�mþ1=2Þ; 1e j e ½k=2�;

by inductive assumption. By Lemma 3.3 (2) with k ¼ 1=2, AmD2ðtÞA�mþ1=2 ¼ Opðt3=2Þ,
and hence we have

P½k=2�

j¼1

kGjk3ðtÞk ¼ k�mþ1=2Oðt�mþ1Þ ¼ k�mOðt�mÞð4:14Þ

by Lemma 2.1. We combine (4.10) and (4.11)@(4.14) to get (4.9), and the proof of (2) is
complete. r

5. Approximation to heat kernel generated by Dirichlet Laplacian

This section is devoted to proving Theorem 1.2. Recall that EDðx; y; tÞ is the kernel of
the semigroup TDðtÞ ¼ expð�tHDÞ : L2ðWÞ ! L2ðWÞ generated by the Dirichlet Laplacian
HD and that GNDðx; y; tÞ is the integral kernel of the operator GNDðtÞ defined by (1.11),
where W is assumed to be a bounded domain with smooth boundary. It seems to be di‰cult
to evaluate directly the di¤erence between two kernels EDðx; y; tÞ and GNDðx; y; tÞ. The
strategy is to introduce the Schrödinger operator with confining potential with large cou-
pling constant as an auxiliary operator. We set t ¼ t=N f 1 for t > 0 fixed and we write
U for the multiplication by the characteristic function of the complement Wc of domain
W. Then we define

Ht ¼ H0 þ Ut ¼ H0 þ t�nU ; TtðsÞ ¼ expð�sHtÞ

and

PðtÞ ¼ expð�tUtÞT0ðtÞ ¼ expð�t1�nUÞ expð�tH0Þ

with constant n, 0 < n < 1=2. These operators act on L2ðRnÞ and the constant n is deter-
mined as n ¼ 1=3 in the course of the proof of Theorem 1.2. For two real smooth functions
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c; h A Cy
0 ðWÞ with support in W, we use the notation c � h with the meaning ch ¼ c as-

cribed in (2.1) and we often regard a function with support in W as a function over the
whole space Rn in a natural way. The proof of Theorem 1.2 is based on the following two
propositions.

Proposition 5.1. Let c A Cy
0 ðWÞ. Then

��c�TDðsÞ � TtðsÞ
�
c
��

m
¼ OðtsÞ; t ! 0;

for any mf 0, where s satisfies 0 < s < n=2 and the error bound is locally uniform in s > 0
ðs A ½1=c; c�; c > 1Þ.

Proposition 5.2. Let c A Cy
0 ðWÞ and set PNtðtÞ ¼ PðtÞN . Then

��c�TtðtÞ �PNtðtÞ
�
c
�� ¼ Oðt1=2�njlog tjÞ

and

��c�TtðtÞ �PNtðtÞ
�
c
��

m
þ
��c�TtðtÞ �PNtðtÞ�

�
c
��

m
¼ Oðt�1�nÞ

locally uniformly in t > 0.

We complete the proof of Theorem 1.2 before proving these propositions. Proposi-
tions 5.1 and 5.2 are proved at the end of this section and in the next section respectively.

Proof of Theorem 1.2. We denote by Etðx; y; tÞ and PNtðx; y; tÞ the integral kernels
of operators expð�tHtÞ and PNtðtÞ respectively. By the maximum principle, we know that
0eEDðx; y; sÞeE0ðx; y; sÞ, where E0ðx; y; sÞ is the heat kernel of T0ðsÞ ¼ expð�sH0Þ.
Hence it follows that

0eEDðx; y; tÞeGNDðx; y; tÞePNtðx; y; tÞ

over W�W. We estimate the di¤erence EDðx; y; tÞ � GNDðx; y; tÞ in question as

jEDðx; y; tÞ � GNDðx; y; tÞjð5:1Þ

ePNtðx; y; tÞ � EDðx; y; tÞ

¼
�
PNtðx; y; tÞ � Etðx; y; tÞ

�
þ
�
Etðx; y; tÞ � EDðx; y; tÞ

�
:

Let c A Cy
0 ðWÞ. By Proposition 5.1 and Lemma 1.1, we see that the second term on the

right-hand side of (5.1) obeys

��c�Etðx; y; tÞ � EDðx; y; tÞ
�
c
�� ¼ OðtsÞ

for any s, 0 < s < n=2, and Proposition 5.2 enables us to take mg 1 so large that the first
term satisfies

��c�PNtðx; y; tÞ � Etðx; y; tÞ
�
c
�� ¼ OðtmÞ
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for any m, 0 < m < 1=2 � n. We now choose n ¼ 1=3. Then n=2 ¼ 1=2 � n ¼ 1=6 and we ob-
tain that EDðx; y; tÞ � GNDðx; y; tÞ obeys the desired bound OðtsÞ, 0 < s < 1=6. r

Remark 5.1. We note that the convergence in Theorem 1.2 is still valid in the Cy

sense. Roughly speaking, this is verified in the following way. By Theorem 1.2, it follows
that

��c�TDðtÞ � GNDðtÞ
�
c
�� ¼ OðtsÞ for any s, 0 < s < 1=6. We can also show that

��H m
D c

�
TDðtÞ � GNDðtÞ

�
c
�� ¼ Oðt�1Þ

for any mg 1 as an operator acting on L2ðWÞ. This, together with Lemma 1.1, yields the
desired result. We are going to discuss the detailed matter elsewhere.

We end the section by proving Proposition 5.1.

Proof of Proposition 5.1. Recall that J : L2 ¼ L2ðRnÞ ! L2ðWÞ is the restriction de-
fined by ðJf ÞðxÞ ¼ f ðxÞ for x A W. The proof relies on [3], Theorem 3.3 (see [2], Theorem
8.31 also). According to the theorem, JTtðsÞ � TDðsÞJ satisfies

kJTtðsÞ � TDðsÞJke gsðsÞts; s > 0;ð5:2Þ

as a bounded operator from L2 to L2ðWÞ, where s > 0 is as in the proposition, and gsðsÞ is
locally integrable over ½0;yÞ. It should be noted that gsðsÞ is integrable near s ¼ 0. Let
j; h A Cy

0 ðWÞ with 0e j; he 1. Then it follows from (5.2) that

��h�TtðsÞ � TDðsÞ
�
j
��e gsðsÞts:ð5:3Þ

We set wðtÞ ¼ j
�
uðtÞ � vðtÞ

�
, where uðtÞ ¼ TDðtÞj f and vðtÞ ¼ TtðtÞj f with f A L2. Then

w solves

qtw þ H0w ¼ ½j;H0�ðv � uÞ; wð0Þ ¼ 0:

The solution wðtÞ is given by the Duhamel principle

wðtÞ ¼
Ðt
0

T0ðt � sÞ½j;H0�
�
vðsÞ � uðsÞ

�
ds:

We may assume that c � j � h. Then c vanishes and h ¼ 1 on the support of ‘j. Hence
AmcT0ðsÞ½j;H0� : L2 ! L2 is bounded uniformly in sf 0, and we obtain

��Amc
�
TDðtÞ � TtðtÞ

�
c
�� ¼ OðtsÞ

by (5.3). This proves the proposition. r

6. Proof of Proposition 5.2

The proof of Proposition 5.2 is based on the idea from Rogava [15]. We begin by
stating a series of lemmas used in proving the proposition. Let A ¼ H0 þ 1 be as in (1.6).
We define
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At ¼ A þ Ut ¼ A þ t�nU ; StðsÞ ¼ expð�sAtÞ

and

LðtÞ ¼ expð�tUtÞS0ðtÞ ¼ expð�t1�nUÞS0ðtÞ;

where S0ðsÞ ¼ expð�sAÞ. According to the above notation, the di¤erence TtðtÞ �PðtÞN in
Proposition 5.2 is represented as

TtðtÞ �PðtÞN ¼ et
�
StðtÞ �LðtÞN

�

and hence it su‰ces to prove the proposition for StðtÞ �LðtÞN .

Lemma 6.1. The operators A and At satisfy the following relations:

(1) A�1=2
t A1=2 ¼ Opð1Þ.

(2) A�1
t A ¼ Opðt�n=2Þ.

(3) A1=2
t A�1=2 ¼ Opðt�n=2Þ.

Lemma 6.2. Let mf 0. Suppose that c � y, and set o ¼ 1 � y. Then StðsÞ obeys the

following bounds uniformly in s A ½0; t�, t > 0 being fixed:

(1) AmcStðsÞcA�m ¼ Opð1Þ.

(2) AmcStðsÞo ¼ Opðt�nÞ.

Lemma 6.3. Let GðtÞ be defined by

GðtÞ ¼ S0ðt=2Þ expð�tUtÞS0ðt=2Þ ¼ S0ðt=2Þ expð�t1�nUÞS0ðt=2Þ;

and let EAðlÞ, l > 0, be the spectral resolution associated with A ¼ H0 þ 1. Set

Pt ¼ EA

�
ð0; 1=tÞ

�
and Qt ¼ Id � Pt. Then GðtÞ j

takes the form

GðtÞ j ¼ ðt�1=2A�1=2Pt þ QtÞBjðtÞ; 1e j eN;

where BjðtÞ : L2 ! L2 obeys the bound kBjðtÞk ¼ Oð j�1=2Þ uniformly in t.

Lemma 6.4. Let c A Cy
0 ðWÞ. Define

RðtÞ ¼ StðtÞ � GðtÞ; ~RRðtÞ ¼ StðtÞ �LðtÞ:ð6:1Þ

Then these two operators have the following properties:

(1) AmcRðtÞ ¼ OpðtyÞ and similarly for ~RRðtÞ.

(2) A�1
t RðtÞA�1=2 ¼ Opðt3=2�nÞ.

(3) A�1
t RðtÞ ¼ Opðt1�nÞ.
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We prove these lemmas after completing the proof of Proposition 5.2. For brevity, we
prove the proposition and lemmas for the case t ¼ 1 only, so that t ¼ 1=N.

Proof of Proposition 5.2. Let GðtÞ be as in Lemma 6.3. We first prove that

��c�Stð1Þ � GðtÞN
�
c
��¼ Oðt1=2�njlog tjÞ:ð6:2Þ

The di¤erence is represented as

c
�
Stð1Þ � GðtÞN

�
c ¼ c

�
StðtÞN � GðtÞN

�
c ¼

PN
k¼1

XkðtÞ;

where XkðtÞ ¼ cSt

�
ðk � 1Þt

�
RðtÞGðtÞN�kc and RðtÞ is defined by (6.1). If k ¼ 1 or

N, then it follows from Lemma 6.4 that X1ðtÞ ¼ OpðtyÞ and XNðtÞ ¼ OpðtyÞ. When
2e k eN � 1, we decompose XkðtÞ into the product

XkðtÞ ¼
�
cSt

�
ðk � 1Þt

�
At

��
A�1

t RðtÞ
�
ðt�1=2A�1=2Pt þ QtÞBN�kðtÞc

by Lemma 6.3. Hence XkðtÞ obeys

kXkðtÞk ¼ ðk � 1Þ�1ðN � kÞ�1=2
Oðt�nÞ

by Lemmas 6.3 and 6.4. This implies (6.2). Once (6.2) is established, we can show in almost
the same way as in the proof of Proposition 1.1 that

��c�Stð1Þ �LðtÞN
�
c
�� ¼ Oðt1=2�njlog tjÞ:

We skip the details.

Next we shall show that

��Amc
�
Stð1Þ �LðtÞN

�
c
�� ¼ Oðt�1�nÞð6:3Þ

for any m > 0. To prove this, we write

Amc
�
Stð1Þ �LðtÞN�c ¼

PN
k¼1

YkðtÞ;

where YkðtÞ ¼ AmcSt

�
ðk � 1Þt

�
~RRðtÞLðtÞN�kc and ~RRðtÞ is as in Lemma 6.4. Let

c � y � h and set o ¼ 1 � y. Then YkðtÞ admits the decomposition

YkðtÞ ¼
�
AmcSt

�
ðk � 1Þt

�
o
�
~RRðtÞLðtÞN�kc

þ
�
AmcSt

�
ðk � 1Þt

�
yA�m

��
Amh ~RRðtÞ

�
LðtÞN�kc:

By Lemma 6.2, the first operator on the right-hand side obeys the bound Oðt�nÞ, and by
Lemmas 6.2 and 6.4, the second one obeys OðtyÞ. Hence (6.3) is obtained. We can show
in a similar way that
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��Amc
�
Stð1Þ �

�
LðtÞ�

�N�
c
�� ¼ Oðt�1�nÞ

for any m > 0. Thus the proof of the proposition is complete. r

It remains to prove Lemmas 6.1@6.4.

Proof of Lemma 6.1. (1) Since AtfA and Atf t�nU in the form sense, (1) follows
at once.

(2) Similarly we have

UA�1=2
t ¼ Opðtn=2Þ:ð6:4Þ

If we write A�1
t A ¼ 1 � t�nA�1

t U , then (2) follows from (6.4).

(3) We calculate

AtA
�1 ¼ 1 þ t�nUA�1 ¼ Opðt�nÞ:

Hence (3) is obtained by interpolation. r

Proof of Lemma 6.2. (1) Since c has support in W, it follows by elliptic regularity
and by interpolation that

AmcStðsÞcA�m ¼ ðAmcA�m
t ÞStðsÞðAm

t cA�mÞ ¼ Opð1Þ

uniformly in s.

(2) We represent StðsÞ as

StðsÞ ¼ S0ðsÞ � t�n
Ðs
0

S0ðtÞUStðs � tÞ dt:

As is easily seen, AmcS0ðsÞo ¼ Opð1Þ and AmcS0ðsÞU ¼ Opð1Þ. Hence we have
AmcStðsÞo ¼ Opðt�nÞ. r

Proof of Lemma 6.3. We first note that

0eGðtÞeS0ðtÞe 1ð6:5Þ

in the form sense. We decompose GðtÞ j into the product

GðtÞ j ¼ EjðtÞðt�1=2A�1=2Pt þ QtÞ;

where EjðtÞ ¼ FjðtÞLðtÞL0ðtÞ with FjðtÞ ¼ GðtÞ j
�
1 � GðtÞ

�1=2
, and

LðtÞ ¼
�
1 � GðtÞ

��1=2�
1 � S0ðtÞ

�1=2
;

L0ðtÞ ¼
�
1 � S0ðtÞ

��1=2ðt1=2A1=2Pt þ QtÞ:
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It is easy to see that kFjðtÞk ¼ Oð j�1=2Þ uniformly in t, and also it follows from (6.5)
that kLðtÞke 1. There exists c > 0 such that ð1 � e�lÞ�1=2l1=2

e c for 0 < le 1 and

ð1 � e�lÞ�1=2
e c for lf 1. This implies that kL0ðtÞke c. If we put BjðtÞ ¼ EjðtÞ�, then

we combine these estimates to obtain the lemma. r

Proof of Lemma 6.4. (1) We decompose RðtÞ into the sum

RðtÞ ¼
�
StðtÞ � S0ðtÞ

�
þ
�
S0ðtÞ � GðtÞ

�
¼ R1ðtÞ þ R2ðtÞ:

The first operator R1ðtÞ is represented in the integral form

R1ðtÞ ¼ �t�n
Ðt
0

S0ðsÞUStðt� sÞ ds:

As is easily seen, AmcS0ðsÞU ¼ OpðtyÞ uniformly in s A ½0; t�, and hence AmcR1ðtÞ is of
class OpðtyÞ. The second operator R2ðtÞ equals

R2ðtÞ ¼ S0ðt=2Þ
�
1 � expð�t1�nUÞ

�
S0ðt=2Þ:

Since 1 � expð�t1�nUÞ vanishes over W, we can easily see that AmcR2ðtÞ ¼ OpðtyÞ. Thus
AmcRðtÞ ¼ OpðtyÞ. A similar argument applies to ~RRðtÞ.

(2) By definition, we have

A�1
t RðtÞA�1=2 ¼ A�1

t

�
StðtÞ � GðtÞ

�
A�1=2:

If we write A�1
t StðtÞA�1=2 as

A�1
t StðtÞA�1=2 ¼

�
A�1

t expð�tAtÞA�1=2
t

�
A1=2

t A�1=2;

then it follows from Lemma 6.1 (3) that

A�1
t StðtÞA�1=2 ¼ A�1

t ð1 � tAtÞA�1=2 þ Opðt3=2�n=2Þ:ð6:6Þ

On the other hand, A�1
t GðtÞA�1=2 takes the form

A�1
t GðtÞA�1=2 ¼ A�1

t S0ðt=2Þ
�
1 � t1�nU þ Opðt2ð1�nÞÞ

�
S0ðt=2ÞA�1=2

¼ A�1
t

�
S0ðtÞ � t1�nS0ðt=2ÞUS0ðt=2Þ

�
A�1=2 þ Opðt2ð1�nÞÞ:

We obtain

A�1
t S0ðtÞA�1=2 ¼ A�1

t A
�
A�1S0ðtÞA�1=2

�
¼ A�1

t ð1 � tAÞA�1=2 þ Opðt3=2�nÞ

by Lemma 6.1 and we decompose A�1
t S0ðt=2ÞUS0ðt=2ÞA�1=2 into the product

A�1=2
t ðA�1=2

t A1=2Þ
�
A�1=2S0ðt=2Þ

�
U
�
S0ðt=2ÞA�1=2

�
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to obtain that

t1�nA�1
t S0ðt=2ÞUS0ðt=2ÞA�1=2 ¼ tA�1

t UtA
�1=2 þ Opðt3=2�nÞ:

Thus it follows that

A�1
t GðtÞA�1=2 ¼ A�1

t ð1 � tAtÞA�1=2 þ Opðt3=2�nÞ;

which, together with (6.6), yields the desired bound.

(3) This is shown in almost the same way as (2). We have A�1
t StðtÞ ¼ A�1

t þ OpðtÞ
and

A�1
t GðtÞ ¼ A�1

t S0ðt=2Þ
�
1 þ Opðt1�nÞ

�
S0ðt=2Þ ¼ A�1

t þ Opðt1�nÞ:

This proves (3). r

7. Appendix

We conclude the paper by proving (1.8). The Whittaker functions Mk;mðzÞ and
Wk;mðzÞ, z A C, satisfy the equation

W 00 þ
�
�1=4 þ k=z þ

�
m2 � ð1=4Þ

�
=z2

�
W ¼ 0

as a pair of linearly independent solutions. The proof uses the functions with m ¼ 1=2 only.
We set MkðzÞ ¼ Mk;1=2ðzÞ and WkðzÞ ¼ Wk;1=2ðzÞ, which solve

W 00 þ ð�1=4 þ k=zÞW ¼ 0:ð7:1Þ

These functions are known to have the following asymptotic properties ([16]):

MkðzÞ ¼ z þ Oðjzj2Þ; jzj ! 0;ð7:2Þ

WkðzÞ@ e�z=2zk; jzj ! y; �p < arg z < p;ð7:3Þ

MkðzÞ@�
�
e�ikp=Gð1 þ kÞ

�
e�z=2zk þ

�
1=Gð1 � kÞ

�
ez=2z�k; jzj ! y;ð7:4Þ

along �p=2 < arg z < 3p=2, where GðpÞ is the gamma function. The Wronskian is calcu-
lated as

WðMk;WkÞ ¼ �1=Gð1 � kÞð7:5Þ

by (7.3) and (7.4), provided that k is not a positive integer.

We now consider the Schrödinger operator H ¼ H0 þ V with the positive Coulomb
potential VðxÞ ¼ c=jxj, c > 0, in three dimensions. We work in the polar coordinate sys-
tem. Let U be the unitary operator defined by

ðUvÞðr; yÞ ¼ rvðryÞ : L2ðR3Þ ! L2ð0;yÞnL2ðS2Þ;
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where r ¼ jxj A ð0;yÞ and y ¼ x=jxj A S2. Then the adjoint operator U � is defined by

ðU �uÞðxÞ ¼ jxj�1
uðjxj; x=jxjÞ, and we have

UHU � ¼ �d 2=dr2 þ c=r þ DS=r2;

where DS denotes the Laplace-Beltrami operator acting on L2ðS2Þ. As is well known, DS

has eigenvalues lðl þ 1Þ with multiplicity 2l þ 1, l f 0 being a nonnegative integer, and
the normalized eigenfunction associated with zero eigenvalue is the constant function
ð4pÞ�1=2. The value Eð0; 0; tÞ in (1.8) is determined only by a contribution from l ¼ 0. We
denote by h0 ¼ �d 2=dr2 þ c=r the self-adjoint operator in L2ð0;yÞ with the vanishing
boundary condition at r ¼ 0 and by g0ðr; r; zÞ, Im z3 0, the Green function of the resolvent
ðh0 � zÞ�1. Then the spectral function e0ðr; r; lÞ, l > 0, is defined by

e0ðr; r; lÞ ¼ ð2piÞ�1�
g0ðr; r; lþ i0Þ � g0ðr; r; l� i0Þ

�

and the value Eð0; 0; tÞ is given by

Eð0; 0; tÞ ¼
Ðy
0

e�tls0ðlÞ dl;

where s0ðlÞ ¼ ð4pÞ�1 lim
r!0

lim
r!0

r�1e0ðr; r; lÞr�1. We assert that

s0ðlÞ ¼ ðc=4pÞðecp=
ffiffi
l

p
� 1Þ�1:ð7:6Þ

To show this, we calculate g0ðr; r; lG ieÞ. If we take account of (7.1)@(7.5), then the stan-
dard way yields

g0ðr; r; lG ieÞ ¼
�
Gð1 � kGÞ=sG

�
MkG

�
sGðr5rÞ

�
WkG

�
sGðr4rÞ

�

after making a change of variables, where r5r ¼ minðr; rÞ, r4r ¼ maxðr; rÞ, and

sG ¼ sGðeÞ ¼H2iðlG ieÞ1=2; kG ¼ kGðeÞ ¼Hiðc=2ÞðlG ieÞ�1=2

withGImðlG ieÞ1=2 > 0. If we further set s ¼ 2il1=2 and k ¼ ðic=2Þl�1=2, then sGðeÞ !Hs

and kGðeÞ !Hk as e ! 0. Thus

g0ðr; r; lG i0Þ ¼H
�
Gð1G kÞ=s

�
MHk

�
Hsðr5rÞ

�
WHk

�
Hsðr4rÞ

�
:

By (7.2), lim
r!0

r�1MHkðHsrÞ ¼Hs, and hence we have

lim
r!0

r�1e0ðr; r; lÞ ¼ ð2piÞ�1Gð1 þ kÞGð1 � kÞYðr; lÞ;

where

Yðr; lÞ ¼
�
1=Gð1 � kÞ

�
W�kð�srÞ �

�
1=Gð1 þ kÞ

�
WkðsrÞ:

By (7.3), Yðr; lÞ behaves like
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Y ðr; lÞ@
�
1=Gð1 � kÞ

�
esr=2ð�srÞ�k �

�
1=Gð1 þ kÞ

�
e�sr=2ðsrÞk

as r ! y, and argð�srÞ ¼ argð�i2l1=2rÞ must equal �p=2. Hence ð�srÞ�k ¼ eikpðsrÞ�k,
and it follows from (7.4) that Y ðr; lÞ ¼ eikpMkðsrÞ. This yields

lim
r!0

r�1e0ðr; r; lÞ ¼ ð2piÞ�1kðp=sin kp
�
eikpMkðsrÞ

by the formula Gð1 þ kÞGð1 � kÞ ¼ kGðkÞGð1 � kÞ ¼ kðp=sin kpÞ. Thus

s0ðlÞ ¼ ð4pÞ�1ð2piÞ�1ksðp=sin kpÞeikp ¼ ðc=4pÞðecp=
ffiffi
l

p
� 1Þ�1

by (7.2). We can get the desired relation (7.6). If we let c ! 0, then

Eð0; 0; tÞ ! ð4pÞ�1 Ðy
0

e�tll1=2 dl ¼ ð4ptÞ�3=2:

The limit just coincides with the value corresponding to the free Hamiltonian H0.
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