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ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR
DAMPED WAVE EQUATIONS WITH

NON-CONVEX CONVECTION TERM ON THE HALF LINE

ITSUKO HASHIMOTO† AND YOSHIHIRO UEDA‡

Abstract. We study the asymptotic stability of nonlinear waves for damped
wave equations with a convection term on the half line. In the case where the
convection term satisfies the convex and sub-characteristic conditions, it is known
by the work of Ueda [7] and Ueda-Nakamura-Kawashima [10] that the solution
tends toward a stationary solution. In this paper, we prove that even for a quite
wide class of the convection term, such a linear superposition of the stationary
solution and the rarefaction wave is asymptotically stable. Moreover, in the case
where the solution tends to the non-degenerate stationary wave, we derive that
the time convergence rate is polynomially (resp. exponentially) fast if the initial
perturbation decays polynomially (resp. exponentially) as x → ∞. Our proofs are
based on a technical L2 weighted energy method.

1. Introduction

We consider the initial-boundary value problem on the half line for a damped
wave equation with a nonlinear convection term:

utt − uxx + ut + f(u)x = 0, x > 0, t > 0,

u(0, t) = u−, t > 0,

lim
x→∞

u(x, t) = u+, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x > 0,

(1.1)

where the function f = f(u) is a given C2 function satisfying f(0) = 0 and u± are
given constants with u− < u+. In this problem, we assume that the initial data
u0(x) satisfies u0(0) = u− and limx→∞ u0(x) = u+ as the compatibility conditions.
Throughout this paper, we impose the convex and sub-characteristic conditions at
the origin:

f ′′(0) > 0, |f ′(0)| < 1, f(u) > f(0) = 0 for u ∈ [u−, 0). (1.2)

For the viscous conservation laws on the half line, Liu-Matsumura-Nishihara
[3] investigated the case where the flux is convex and the corresponding Riemann
problem for the hyperbolic part admits the transonic rarefaction wave. More pre-
cisely, it was shown in [3] that depending on the signs of the characteristic speeds,
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the large-time behavior of the solutions is classified into three cases. On the other
hand, Ueda-Kawashima [9] and Ueda [7, 8] suggested that the dissipative structure
of (1.1) is similar to one of viscous conservation laws. Indeed, Ueda [7] considered
the problem (1.1) with u+ = 0 and showed that if the flux f(u) of (1.1) satisfies

f ′′(u) > 0, |f ′(u)| < 1 for u ∈ [u−, 0], (1.3)

then the solution of (1.1) tends toward the stationary solution ϕ, provided that the
initial perturbation is suitably small. Here, the stationary solution ϕ = ϕ(x) is
defined by the solution of the stationary problem corresponding to (1.1):{

f(ϕ) = ϕx, x > 0,

ϕ(0) = u−, lim
x→∞

ϕ(x) = 0.
(1.4)

In the case where the flux is not necessarily convex, Liu-Nishihara [4] and Hashimoto-
Matsumura [1] studied respectively the asymptotic stability of a viscous shock wave
and superpositions of stationary solution and rarefaction wave. Especially, in order
to obtain the stability result, Hashimoto-Matsumura [1] introduced a useful weight
function and handled the weighted L2 energy method.

Under the above consideration, we can expect that the asymptotic stability of
the nonlinear waves holds true for the problem (1.1) under the non-convex condition
(1.2). Therefore, we first treat the case u− < 0 < u+ and the condition (1.2) with
f ′(0) = 0, and derive that the solution of (1.1) tends to the superposition of the
stationary solution ϕ connecting u− and 0 and the rarefaction wave ψR connecting
0 and u+. Here, the rarefaction wave ψR = ψR(x/t) is concretely given by

ψR(x/t) =


0, x ≤ 0,

(f ′)−1(x/t), 0 ≤ x ≤ f ′(u+)t,

u+, x ≥ f ′(u+)t.

(1.5)

We emphasize that the sub-characteristic condition is enough to be imposed only
on u = 0.

Additionally, Ueda [7] and Ueda-Nakamura-Kawashima [11] considered the con-
vergence rate to the stationary solution for the problem (1.1) with u+ = 0. Ueda [7]
derived the polynomially and exponentially convergence rate to the non-degenerate
stationary solution, and Ueda-Nakamura-Kawashima [11] obtained the polynomially
convergence rate to the degenerate stationary solution under the condition (1.3). At
the second and third results of the present paper, we focus on the stationary solution
and show the convergence rate under the non-convex condition (1.2).

This paper is organized as follows. The main theorems are given in Section 2. In
Section 3, we reformulate our initial-boundary value problem (1.1) and state some
preliminaries. In Section 4, we prove the asymptotic stability result under the non-
convex condition (1.2) by using the weighted energy method. Finally, we focus on
the stationary solution and obtain the polynomially and exponentially convergence
rate of the solutions by using the space-time weighted energy method in Section 5.
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Notations. We denote by L2 = L2(R+) the usual Lebesgue space over R+ with the
norm ∥ · ∥L2 , and H1 = H1(R+) the corresponding first order Sobolev space with
the norm ∥ · ∥H1 . Moreover, H1

0 = H1
0 (R+) denotes the space of functoins f ∈ H1

with f(0) = 0, as a subspace of H1.
For α > 0, L2

α = L2
α(R+) denotes the polynomially weighted L2 space with the

norm

∥f∥L2
α
:=

(∫ ∞

0

(1 + x)α|f(x)|2dx
)1/2

,

while L2
α,exp = L2

α,exp(R+) denotes the exponentially weighted L2 space with the
norm

∥f∥L2
α,exp

:=
(∫ ∞

0

eαx|f(x)|2dx
)1/2

.

Similarly, we define the corresponding weighted Sobolev spaces H1
α =H1

α(R+) and
H1

α,exp=H
1
α,exp(R+).

For an interval I and a Banach space X, Ck(I;X) denotes the space of k-times
continuously differentiable functions on the interval I with values in X. Finally,
letters C and c in this paper are defined as positive generic constants unless they
need to be distinguished.

2. Main Theorems

In this section, we state our main results. The first theorem is the asymptotic
stability of the superposition of the stationary solution and the rarefaction wave
under the condition (1.2).

Theorem 2.1. Suppose that u− < 0 < u+, f
′(0) = 0 and (1.2) hold. Assume that

u0−u+ ∈ H1 and u1 ∈ L2. Let ϕ(x) be the stationary solution satisfying the problem
(1.4) and ψR(x/t) be the rarefaction wave given by (1.5). Then there exists a positive
constant ε0 such that, if u+ ≤ ε0 and ∥u0 − ϕ − ψR(·)∥H1 + ∥u1∥L2 ≤ ε0, then the
initial-boundary value problem (1.1) has a unique global solution in time u satisfying

u− u+ ∈ C0([0,∞);H1), ux, ut ∈ L2(0,∞;L2),

and the asymptotic behavior

lim
t→∞

sup
x>0

∣∣u(x, t)− ϕ(x)− ψR(x/t)
∣∣ = 0. (2.1)

When we consider the case u+ = 0, we obtain the following corollary.

Corollary 2.2. Suppose that u+ = 0 and (1.2) hold true. Assume that u0 −ϕ ∈ H1

and u1 ∈ L2. Let ϕ(x) be the stationary solution satisfying the problem (1.4). Then
there exists a positive constant ε1 such that, if ∥u0 − ϕ∥H1 + ∥u1∥L2 ≤ ε1, then the
initial-boundary value problem (1.1) has a unique global solution in time u satisfying

u− ϕ ∈ C0([0,∞);H1
0 ), (u− ϕ)x, ut ∈ L2(0,∞;L2),

and the asymptotic behavior

lim
t→∞

sup
x>0

|u(x, t)− ϕ(x)| = 0. (2.2)
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The proof of Corollary 2.2 is completely same as in Theorem 2.1 and omit-
ted here. The second purpose of this paper is to get the convergence rates of the
solution u toward the stationary wave ϕ. Both theorems are concerned with the
non-degenerate case f ′(0) < 0. Theorem 2.3 and 2.4 give the polynomial and the
exponential stability result, respectively.

Theorem 2.3. Suppose that u+ = 0, f ′(0) < 0 and (1.2) hold true. Let ϕ(x) be the
stationary wave of the problem (1.4), and u(x, t) be the global solution to the problem
(1.1) which is constructed in Corollary 2.2. If u0 − ϕ ∈ H1

α and u1 ∈ L2
α for α ≥ 0,

then we have

∥u(t)− ϕ∥H1 ≤ CEα(1 + t)−α/2 (2.3)

for t ≥ 0, where C is a positive constant and Eα := ∥u0 − ϕ∥H1
α
+ ∥u1∥L2

α
.

Theorem 2.4. Suppose that the same conditions as in Theorem 2.3 hold true. Then,
if u0 − ϕ ∈ H1

α,exp and u1 ∈ L2
α,exp for α > 0, then we obtain

∥u(t)− ϕ∥H1 ≤ CEα,expe
−βt

for t ≥ 0, where β is a positive constant depending on α, C is a positive constant
and Eα,exp := ∥u0 − ϕ∥H1

α,exp
+ ∥u1∥L2

α,exp
.

Remark.
Corollary 2.2 and Theorems 2.3, 2.4 become the extensions of the asymptotic

stability result in [7].

3. Reformulation of the problem

In this section, we make preparations for the proofs of Theorem 2.1, 2.3 and
2.4. Let ϕ(x) be the stationary solution satisfying (1.4) and let ψR(x/t) be the
rarefaction wave given by (1.5). As in the previous works, we introduce a smooth
approximation ψ(x, t) of ψR(x/t) and define

Φ(x, t) = ϕ(x) + ψ(x, t) (3.1)

as an approximation of our asymptotic solution ϕ(x)+ψR(x/t). Then we reformulate
our problem (1.1) by introducing the perturbation v(x, t) by

u(x, t) = Φ(x, t) + v(x, t). (3.2)

This is the standard strategy for solving our stability problem.
To complete this procedure, we first review the fundamental properties of the

stationary solution ϕ(x) which satisfies (1.4). For its proof, we refer the reader to
[3, 4, 7].

Lemma 3.1. Suppose that (1.2). Then the stationary problem (1.4) has a unique
smooth solution ϕ(x) satisfying u− < ϕ(x) < 0 and ϕx(x) > 0 for x > 0. Moreover,
for the non-degenerate case f ′(0) < 0, we have

|∂kxϕ(x)| ≤ Ce−cx, x ≥ 0
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for each nonnegative integer k. On the other hand, for the degenerate case f ′(0) = 0,
we obtain

|∂kxϕ(x)| ≤ C(1 + x)−k−1, x ≥ 0

for each nonnegative integer k.

Next we introduce a smooth approximation of our rarefaction wave ψR(x/t).
We use the approximation due to Matsumura and Nishihara [5], which is defined by

ψ(x, t) = (f ′)−1(ω(x, t))|x≥0, (3.3)

where ω(x, t) is the smooth solution of the following Cauchy problem for the Burgers
equation: {

wt + wwx = 0, x ∈ R, t > 0,

w(x, 0) = f ′(u+) tanh x, x ∈ R.

We note that our approximation ψ(x, t) in (3.3) is well-defined if f(u) is strictly
convex on [0, u+]; this is true even in the case (1.2) if u+ is suitably small. Then,
by a simple calculation, we see that ψ(x, t) satisfies{

ψt + f(ψ)x = 0, x > 0, t > 0,

ψ(0, t) = 0, t ≥ 0.
(3.4)

Let ψ0(x) := ψ(x, 0) = (f ′)−1(ω(x, 0))|x≥0. Furthermore, the approximation ψ(x, t)
satisfies the following properties which are proved in [5].

Lemma 3.2. Suppose that (1.2) with f ′(0) = 0 and f(u) is strictly convex on [0, u+].
Then we have:

1) 0 < ψ(x, t) < u+ and ψx(x, t) > 0 for x > 0 and t > 0.

2) For 1 ≤ p ≤ ∞, there exists a positive constant C such that

∥ψx(t)∥Lp ≤ Cmin{u+, u1/p+ (1 + t)−1+1/p},
∥ψxx(t)∥Lp ≤ Cmin{u+, (1 + t)−1},
∥ψxxx(t)∥Lp ≤ Cmin{u+, (1 + t)−1}.

3) ψ(x, t) is an approximation of ψR(x/t) in the sense that

lim
t→∞

sup
x>0

|ψ(x, t)− ψR(x/t)| = 0.

We consider our approximation Φ(x, t) defined by (3.1). By using (1.4) and
(3.4), we find that Φ(x, t) satisfies{

Φtt − Φxx + Φt + f(Φ)x = h x > 0, t > 0,

Φ(0, t) = u−, t ≥ 0.
(3.5)

where the error term h is
h :=(f(Φ)− f(ϕ)− f(ψ))x + ψtt − ψxx

=(f ′(ϕ+ ψ)− f ′(ϕ))ϕx + (f ′(ϕ+ ψ)− f ′(ψ))ψx + ψtt − ψxx

=O(|ψ||ϕx|+ |ϕ||ψx|+ |ψtt|+ |ψxx|).
(3.6)
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Also, we note that u− < Φ(x, t) < u+ and Φx(x, t) > 0 for x > 0 and t ≥ 0.
Moreover, using the estimates in Lemmas 3.1 and 3.2, we can estimate the error
term h in (3.5) as follows.

Lemma 3.3. For the error term h defined by (3.6), we estimate

∥h(t)∥Lp ≤ Cmin{u+, σ(t)(1 + t)−1}
for 1 ≤ p ≤ ∞, where σ(t) = log(2 + t) for p = 1 and σ(t) = 1 for 1 < p ≤ ∞, and
C is a positive constant independent of u+.

We omit the proof and refer the readers to [3, 1].

Finally we introduce the perturbation v(x, t) by (3.2) and rewrite our original
problem (1.1) as

vtt − vxx + vt + {f(Φ + v)− f(Φ)}x + h = 0, x > 0, t > 0,

v(0, t) = 0, t > 0,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x > 0.

(3.7)

where we put v0(x) := u0(x)−Φ0(x) with Φ0(x) := ϕ(x)+ψ0(x) and v1(x) := u1(x).
We will discuss this reformulated problem in Sections 4 and 5 to prove our main
theorems.

In order to derive the existence of the global solution in time described in The-
orem 2.1, we need the local existence theorem. For this purpose, we define the
solution space for any interval I ⊆ R+ and M > 0 by

XM(I) := {v ∈ C0(I;H1
0 (R+)) ; vt ∈ C0(I;L2(R+)),

supt∈I(∥v(t)∥H1 + ∥vt(t)∥L2) ≤M}.
For the solution space XM(I), the local existence theorem of the solution v for (3.7)
is stated as follows.

Proposition 3.4 (local existence). For any positive constant M, there exists a
positive constant t0 = t0(M) such that if ∥v0∥H1 + ∥v1∥L2 ≤ M , then the initial
boundary value problem (3.7) has a unique solution v ∈ X2M([0, t0]).

We prove Proposition 3.4 by using a standard iterative method and omit the proof.

4. Asymptotic stability of nonlinear waves

The aim of this section is to prove Theorem 2.1. For this purpose, it is important
to derive the following a priori estimate of solutions v for (3.7) in the Sobolev space
H1.

Proposition 4.1 (a priori estimate). Suppose that the same assumptions as in
Theorem 2.1 hold true. Then, there exists a positive constant ε2 such that if v ∈
Xε2([0, T ]) is the solution of the problem (3.7) for some T > 0, then it holds

∥v(t)∥2H1 + ∥vt(t)∥2L2 +

∫ t

0

(∥vt(τ)∥2L2 + ∥vx(τ)∥2L2 + ∥
√

Φxv(τ)∥2L2) dτ

≤ C(∥v0∥2H1 + ∥v1∥2L2 + |u+|1/6)
(4.1)
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for t ∈ [0, T ], where C is a positive constant independent of T .

Before proceeding to the proof of Proposition 4.1, we give some preparations
for a weight function. Since f ′′(0) > 0 and |f ′(0)| < 1 by (1.2), there exist positive
constants r and ν such that

f ′′(u) ≥ ν and |f ′(u)| < 1 for |u| ≤ r.

We also assume that u− < 0 < u+< r throughout this section. In this situation, we
choose the weight function as

w(u) = f(u) + δg(u) for u ∈ [u−, r], (4.2)

where g(u) is defined by g(u) = −u2m + r2m, and δ and m are positive constants
determined later. For the weight function (4.2), we obtain the following lemma.

Lemma 4.2 (Hashimoto-Matsumura [1]). Suppose that f(u) satisfies (1.2). Let
w(u) be the weight function defined in (4.2). Then, for suitably small δ > 0 and
suitably large integer m, there exist positive constants c and C such that

c ≤ w(u) ≤ C, (f ′′w − fw′′)(u) ≥ c

for u ∈ [u−, r].

For the proof, readers are referred to [1]. Furthermore, we prepare the key
lemma for the weight function (4.2) as follows.

Lemma 4.3. Suppose that the same conditions as in Lemma 4.2 hold true. Then,
for suitably small δ > 0, we obtain the inequality

(f ′w − fw′)(u)2 < w(u)2 (4.3)

for u ∈ [u−, r].

Proof. By the definition of w, we rewrite (4.3) as

δ2
{
(f ′g − fg′)(u)

}2
<

{
(f + δg)(u)

}2
. (4.4)

Thus, the inequality (4.4) is enough to derive the inequality (4.3). In order to get
the inequality (4.4), we divide the interval [u−, r] into [u−,−r] and [−r, r]. We first
consider the interval [−r, r]. By the condition |f ′(u)| < 1 and (fg)(u) ≥ 0 for
u ∈ [−r, r], we choose δ suitably small, obtaining{

(f + δg)(u)
}2 − δ2

{
(f ′g − fg′)(u)

}2

= δ2g(u)2
(
1− f ′(u)2

)
+ f(u)2

(
1− δ2g′(u)2

)
+ 2δ(fg)(u)

(
1 + δ(f ′g′)(u)

)
≥ δ2g(u)2

(
1− f ′(u)2

)
+ f(u)2

{
1− δ2 max

u∈[−r,r]
|g′(u)|2

}
+ 2δ(fg)(u)

{
1− δ max

u∈[−r,r]
|f ′g′(u)|

}
> 0 for u ∈ [−r, r].
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Next, we consider the interval [u−,−r]. Taking δ sufficiently small, we have

(f + δg)(u) ≥ min
u∈[u−,−r]

f(u)− δ max
u∈[u−,−r]

|g(u)| ≥ 1

2
min

u∈[u−,−r]
f(u)

for u ∈ [u−,−r]. Therefore, using the inequality

δ2
{
(f ′g − fg′)(u)

}2 ≤ δ2 max
u∈[u−,−r]

|(f ′g − fg′)(u)|2

and choosing δ suitably small such that

δ max
u∈[u−,−r]

|(f ′g − fg′)(u)| ≤ 1

2
min

u∈[u−,−r]
f(u),

we obtain the desired inequality (4.4) for u ∈ [u−,−r] and complete the proof. 2

Using Lemmas 4.2 and 4.3, and the technical weighted energy method given by
[1], we prove Proposition 4.1.

Proof of Proposition 4.1. We introduce a new unknown function ṽ as

v(x, t) = w
(
Φ(x, t)

)
ṽ(x, t), (4.5)

where w is the weight function defined by (4.2). Substituting (4.5) into the equation
of (3.7), we obtain(

w(Φ)ṽ
)
tt
−
(
w(Φ)ṽ

)
xx

+
(
w(Φ)ṽ

)
t
+
{
f(Φ + w(Φ)ṽ)− f(Φ)

}
x
+ h = 0. (4.6)

Multiplying (4.6) by ṽ, we get{1

2
(w + wt)(Φ)ṽ

2 + w(Φ)ṽtṽ
}

t
− w(Φ)ṽ2t + w(Φ)ṽ2x +

1

2
(wtt − wxx + wt)(Φ)ṽ

2

+ Φx

∫ ṽ

0

f ′(Φ + w(Φ)η)− f ′(Φ)dη + Φx

∫ ṽ

0

f ′(Φ + w(Φ)η)w′(Φ)ηdη + Fx = −ṽh,

(4.7)

where we define F as

F = −1

2
w(Φ)xṽ

2 − w(Φ)ṽṽx +
(
f(Φ + w(Φ)ṽ)− f(Φ)

)
ṽ −

∫ ṽ

0

f(Φ + w(Φ)η)− f(Φ)dη.

By using the equation (3.5) and the condition Φx = f(Φ) + O(|ψ| + |ψx|), we find
that

(wtt − wxx + wt)(Φ) = w′(Φ)(Φtt − Φxx + Φt) + w′′(Φ)(Φ2
t − Φ2

x)

= w′(Φ)(h− f(Φ)x) + w′′(Φ)(Φ2
t − Φ2

x)

= −{w′′(Φ)Φx + (f ′w′)(Φ)}Φx + w′′(Φ)Φ2
t + w′(Φ)h

= −(fw′′ + f ′w′)(Φ)Φx +O(|ψ|+ |ψx|)Φx +O(|h|+ |ψx|2).

(4.8)
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Moreover, by the straightforward calculation, we have

Φx

∫ ṽ

0

f ′(Φ + w(Φ)η)− f ′(Φ)dη + Φx

∫ ṽ

0

f ′(Φ + w(Φ)η)w′(Φ)ηdη

=
1

2
(f ′′w + f ′w′)(Φ)Φxṽ

2 +O(|ṽ|)Φxṽ
2.

(4.9)

Therefore substituting (4.8) and (4.9) into the equality (4.7), we obtain{1

2
w(Φ)ṽ2 + w(Φ)ṽtṽ +O(|ψx|)ṽ2

}
t
+ w(Φ)ṽ2x +

1

2
(f ′′w − fw′′)(Φ)Φxṽ

2

− w(Φ)ṽ2t + Fx = −ṽh+O(|ṽ|+ |ψ|+ |ψx|)Φxṽ
2 +O(|h|+ |ψx|2)ṽ2.

(4.10)

Next, we multiply (4.6) by 2ṽt, obtaining

Gt + 2w(Φ)ṽ2t +H−
(
2w(Φ)ṽtṽx

)
x
= −2ṽth, (4.11)

where G and H are defined by

G = w(Φ)ṽ2t + w(Φ)ṽ2x + (wx(Φ)ṽ
2)x + (wtt − wxx + wt)(Φ)ṽ

2

+ 2Φx

∫ ṽ

0

f ′(Φ + w(Φ)η)− f ′(Φ)dη + 2Φx

∫ ṽ

0

f ′(Φ + w(Φ)η)w′(Φ)ηdη,

H = 3wt(Φ)ṽ
2
t − wt(Φ)ṽ

2
x − (wtt − wxx + wt)t(Φ)ṽ

2

+ 2
{
f ′(Φ + w(Φ)ṽ)w(Φ)− wx(Φ)

}
ṽtṽx

− 2Φx

∫ ṽ

0

{
f ′(Φ + w(Φ)η)− f ′(Φ)

}
t
dη − 2Φx

∫ ṽ

0

{
f ′(Φ + w(Φ)η)w′(Φ)η

}
t
dη.

Applying the relations (4.8) and (4.9), we rewrite G as

G = w(Φ)ṽ2t + w(Φ)ṽ2x + (wx(Φ)ṽ
2)x + (f ′′w − fw′′)(Φ)Φxṽ

2

+O(|ṽ|+ |ψ|+ |ψx|)Φxṽ
2 +O(|h|+ |ψx|2)ṽ2.

(4.12)

On the other hand, making use of the equality

f ′(Φ + w(Φ)ṽ)w(Φ)− wx(Φ) = (f ′w − fw′)(Φ) +O(|ṽ|+ |ψ|+ |ψx|),

we have

H = 2(f ′w − fw′)(Φ)ṽtṽx +O(|ṽ|+ |ψ|+ |ψx|)ṽtṽx +O(|ṽ|2)ΦtΦx

+O(|ψx|)(ṽ2t + ṽ2x) +O(|ψx|2 + |ψxx|+ |ψx|3 + |ψxψxx|+ |ψxxx|)ṽ2.
(4.13)

Summing up (4.10) and (4.11), and substituting (4.12) and (4.13) into the re-
sultant equation, we obtain(

Ẽ +R1

)
t
+ D̃ + F̃x = R1 +R2 − (ṽ + 2ṽt)h, (4.14)
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where Ẽ, D̃, F̃ , R̃1 and R̃2 are defined by

Ẽ = w(Φ)
(1
2
ṽ2 + ṽ2t + ṽ2x + ṽṽt

)
+ (f ′′w − fw′′)(Φ)Φxṽ

2,

D̃ = w(Φ)(ṽ2x + ṽ2t ) + 2(f ′w − fw′)(Φ)ṽtṽx +
1

2
(f ′′w − fw′′)(Φ)Φxṽ

2,

F̃ = −1

2
w(Φ)xṽ

2 − w(Φ)(ṽṽx + 2ṽtṽx)

+
(
f(Φ + w(Φ)ṽ)− f(Φ)

)
ṽ −

∫ ṽ

0

f(Φ + w(Φ)η)− f(Φ)dη,

R1 = O(|ṽ|+ |ψ|+ |ψx|)Φxṽ
2 +O(|h|+ |ψx|2)ṽ2,

R2 = O(|ṽ|+ |ψ|+ |ψx|)ṽtṽx +O(|ψx|)(ṽ2t + ṽ2x)

+O(|ψxx|+ |ψx|3 + |ψxψxx|+ |ψxxx|)ṽ2.

Therefore, integrating the equation (4.14) over R+, we get the energy equality

d

dt

∫ ∞

0

Ẽ +R1dx+

∫ ∞

0

D̃ dx =

∫ ∞

0

R1 +R2 − (ṽ + 2ṽt)h dx. (4.15)

Here, calculating the discriminants and using Lemmas 4.2 and 4.3, we have the
condition∫ ∞

0

Ẽ dx ∼ ∥(ṽ, ṽx, ṽt,
√
Φxṽ)∥2L2 ,

∫ ∞

0

D̃ dx ∼ ∥(ṽx, ṽt,
√
Φxṽ)∥2L2 . (4.16)

We next consider the remainder terms. We first estimate the third term on the right
hand side of (4.15). Using Lemma 3.3 and the Sobolev and Young inequalities, we
obtain∫ ∞

0

|(ṽ + 2ṽt)h|dx ≤
∫ ∞

0

|ṽh|dx+ 2

∫ ∞

0

|ṽth|dx

≤ C∥ṽ∥1/2L2 ∥ṽx∥1/2L2 ∥h∥L1 + ε∥ṽt∥2L2 + Cε∥h∥2L2

≤ ε(∥ṽx∥2L2 + ∥ṽt∥2L2) + Cε(∥ṽ∥2/3L2 ∥h∥4/3L1 + ∥h∥2L2)

≤ ε(∥ṽx∥2L2 + ∥ṽt∥2L2)

+ Cε

{
∥ṽ∥2/3L2 |u+|1/6(1 + t)−7/6 log6/7(2 + t) + |u+|1/2(1 + t)−3/2

}
(4.17)

for any ε > 0, where Cε is a positive constant depending on ε. By Lemmas 3.1, 3.2
and 3.3, and the same computation as in (4.17), we estimate R1 and R2 as∫ ∞

0

|R1| dx ≤ C

∫ ∞

0

(|ṽ|+ |ψ|+ |ψx|)Φxṽ
2 dx+ C

∫ ∞

0

(|h|+ |ψx|2)ṽ2 dx

≤ C
(
∥ṽ∥L∞+|u+|

)
∥
√

Φxṽ∥2L2 + C∥ṽ∥L2∥ṽx∥L2

(
∥h∥L1 + ∥ψx∥2L2

)
≤ C

(
∥ṽ∥L∞+|u+|

)
∥
√

Φxṽ∥2L2 + ε∥ṽx∥2L2

+ Cε∥ṽ∥2L2

{
|u+|1/6(1 + t)−11/6 log11/6(2 + t) + |u+|2(1 + t)−2

}
(4.18)
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and∫ ∞

0

|R2| dx ≤ C

∫ ∞

0

(|ṽ|+ |ψ|+ |ψx|)ṽtṽx dx+ C

∫ ∞

0

|ψx|(ṽ2t + ṽ2x) dx

+ C

∫ ∞

0

(|ψxx|+ |ψx|3 + |ψxψxx|+ |ψxxx|)ṽ2 dx

≤ C
(
∥ṽ∥L∞ + |u+|

)(
∥ṽt∥2L2 + ∥ṽx∥2L2

)
+ C∥ṽ∥3/2L2 ∥ṽx∥1/2L2

(
∥ψxx∥L2 + ∥ψxxx∥L2

)
+ C∥ṽ∥L2∥ṽx∥L2

(
∥ψx∥3L3+∥ψx∥L∞∥ψxx∥L1

)
≤ C

(
∥ṽ∥L∞ + |u+|

)(
∥ṽt∥2L2 + ∥ṽx∥2L2

)
+ ε∥ṽx∥2L2

+ Cε∥ṽ∥2L2

(
∥ψxx∥4/3L2 + ∥ψxxx∥4/3L2 + ∥ψx∥6L3+∥ψx∥2L∞∥ψxx∥2L1

)
≤ C

(
∥ṽ∥L∞+|u+|

)(
∥ṽt∥L2 + ∥ṽx∥L2

)
+ ε∥ṽx∥2L2

+ Cε∥ṽ∥2L2

{
|u+|1/6(1 + t)−7/6 + |u+|3(1 + t)−3 + |u+|2(1 + t)−2

}
(4.19)

for any ε > 0, where Cε is a positive constant depending on ε. Therefore, integrating
(4.15) over (0, t), substituting (4.17), (4.18) and (4.19) into the resultant equality
and taking ε and sup0≤t≤T ∥v(t)∥H1 + |u+| sufficiently small, we obtain

∥ṽ∥2H1 + ∥ṽt∥2L2 +

∫ t

0

∥ṽx∥2L2 + ∥ṽt∥2L2 + ∥
√

Φxṽ∥2L2dτ ≤ C
(
∥ṽ0∥2H1 + ∥ṽ1∥2L2 + |u+|1/6

)
.

Finally, by the positivity of w in Lemma 4.8 and the simple relations vx =
wxṽ + wṽx and vt = wtṽ + wṽt, we find that ∥v∥L2 ∼ ∥ṽ∥L2 and

∥vx∥L2 ≤ C(∥
√
Φxṽ∥L2 + ∥ṽx∥L2), ∥ṽx∥L2 ≤ C(∥

√
Φxv∥L2 + ∥vx∥L2),

∥vt∥L2 ≤ C(∥
√
Φxṽ∥L2 + ∥ṽt∥L2), ∥ṽt∥L2 ≤ C(∥

√
Φxv∥L2 + ∥vt∥L2).

Thus, by using the above inequalities, we have the desired estimate (4.1) and com-
plete the proof of Proposition 4.1. 2

Proof of Theorem 2.1. The global existence of solutions to the initial-boundary
value problem (1.1) can be proved by the continuation argument based on a local
existence result in Proposition 3.4 combined with the corresponding a priori estimate
in Proposition 4.1. We omit the details and refer the readers to [1, 7]. 2

5. Convergence rates of stationary solutions

In this section, we prove Theorems 2.3 and 2.4. The main idea of the proofs
are due to Ueda [7]. We use the space-time weighted energy method introduced in
Kawashima-Matsumura [2]. Before stating the proofs, we give a preparation. The
following lemma is concerning the inequality of the nonlinear term f and the weight
function w.

Lemma 5.1. Suppose that f(u) satisfies (1.2) and f ′(0) < 0. Let w(u) be the weight
function defined by (4.2). Then, for suitably large integer m, there exists a positive
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constant c such that

(fw′ − f ′w)(u) ≥ c (5.1)

for u ∈ [u−, 0].

Proof. By the definition of weight function w, we have

(fw′ − f ′w)(u) = δ(fg′ − f ′g)(u).

In order to derive the desired inequality, we decompose the interval [u−, 0] into
[u−,−r], [−r,−r/2] and [−r/2, 0]. We first consider the case [u−,−r]. For u ∈
[u−,−r], we have

(fg′ − f ′g)(u) = −{2mu2m−1f(u) + f ′(u)(−u2m + r2m)}

= −2mu2m−1
{
f ′(u)

(
− 1 +

∣∣∣ r
u

∣∣∣2m) u

2m
+ f(u)

}
.

(5.2)

Here, we note that |r/u| ≤ 1 and f(u) ≥ c0, |f ′(u)| < C for u ∈ [u−,−r], where c0
and C are positive constants. Thus we can choose m sufficiently large such that

f ′(u)
(
−1 +

∣∣∣ r
u

∣∣∣2m) u

2m
+ f(u) ≥ c0

2
. (5.3)

Therefore, (5.2) and (5.3) imply the following inequality

(fg′ − f ′g)(u) ≥ c0mr
2m−1 > 0. (5.4)

For the case u ∈ [−r,−r/2], since f > 0, g′ > 0 and f ′ < 0 ≤ g, it immediately
holds

(fg′ − f ′g)(u) ≥ (fg′)(u) ≥ (fg′)(−r/2) > 0. (5.5)

Finally, for the case u ∈ [−r/2, 0], since f > 0, g′ ≥ 0 and f ′ < 0 < g, we get

(fg′ − f ′g)(u) ≥ (f ′g)(u) ≥ min
u∈[−r/2,0]

|(f ′g)(u)| > 0. (5.6)

Thus combining (5.4), (5.5) and (5.6), we obtain the desired estimate (5.1). 2

Proof of Theorem 2.3. When we consider the case u+ = 0, the solution of (1.1)
converges to the stationary solution ϕ. In this case, applying the weighted energy
method, we obtain the equation (4.14) with ψ = 0. More precisely, we get the
following differential equality.(

Ē + R̄1

)
t
+ D̄ + F̄x = R̄1 + R̄2, (5.7)
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where Ē, D̄, F̄ , R̄1 and R̄2 are defined by

Ē = w(ϕ)
(1
2
ṽ2 + ṽ2t + ṽ2x + ṽṽt

)
+ (f ′′w − fw′′)(ϕ)ϕxṽ

2,

D̄ = w(ϕ)(ṽ2x + ṽ2t ) + 2(f ′w − fw′)(ϕ)ṽtṽx +
1

2
(f ′′w − fw′′)(ϕ)ϕxṽ

2,

F̄ = −1

2
w(ϕ)xṽ

2 − w(ϕ)(ṽṽx + 2ṽtṽx)

+
(
f(ϕ+ w(ϕ)ṽ)− f(ϕ)

)
ṽ −

∫ ṽ

0

f(ϕ+ w(ϕ)η)− f(ϕ)dη,

R̄1 = O(|ṽ|)ϕxṽ
2, R̄2 = O(|ṽ|)ṽtṽx.

Here, we note that the perturbation v is defined by v = u − ϕ and ṽ is defined by
v = w(ϕ)ṽ. Applying Lemma 5.1 to F̄ , we calculate F̄ as

−F̄ =
1

2
(fw′ − f ′w)(ϕ)ṽ2 + w(ϕ)(ṽṽx + 2ṽtṽx) +O(|ṽ|3)

≥ cṽ2 − C(ṽ2x + ṽ2t ) +O(|ṽ|3),
(5.8)

where c and C are positive constants.
Let γ and β be any positive constants satisfying 0 ≤ γ, β ≤ α. We multiply the

equality (5.7) by (1 + t)γ(1 + x)β, obtaining

{(1 + t)γ(1 + x)β(Ē + R̄1)}t−γ(1 + t)γ−1(1 + x)β(Ē + R̄1) + (1 + t)γ(1 + x)βD̄

+ {(1 + t)γ(1 + x)βF̄}x − β(1 + t)γ(1 + x)β−1F̄ = (1 + t)γ(1 + x)β(R̄1 + R̄2).
(5.9)

Substituting (5.8) into (5.9), integrating the resultant inequality over R+×(0, t) and
taking sup0≤t≤T ∥v(t)∥L∞ sufficiently small, we have

(1 + t)γ∥(ṽ, ṽt, ṽx)(t)∥2L2
β
+

∫ t

0

(1 + τ)γ
(
∥(ṽt, ṽx,

√
ϕxṽ)(τ)∥2L2

β
+ β∥ṽ(τ)∥2L2

β−1

)
dτ

≤ CE2
β + γC

∫ t

0

(1 + τ)γ−1∥(ṽ, ṽt, ṽx)(τ)∥2L2
β
dτ + βC

∫ t

0

(1 + τ)γ∥(ṽt, ṽx)(τ)∥2L2
β−1
dτ

for an arbitrary γ and β with 0 ≤ γ, β ≤ α, where C is a constant independent of
γ and β. For the above estimate, applying the induction argument, we can obtain
the desired estimate (2.3) in Theorem 2.3. For the details, we refer the readers to
[6, 7]. 2

Finally, we prove Theorem 2.4 by using the space-time weighted energy method.

Proof of Theorem 2.4. Let α, β > 0. Multiplying (5.7) by eβteαx, we obtain

{eβteαx(Ē + R̄1)}t − βeβteαx(Ē + R̄1) + eβteαxD̄

+ {eβteαxF̄}x − αeβteαxF̄ = eβteαx(R̄1 + R̄2).
(5.10)
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Substituting (5.8) into (5.10), integrating the resultant inequality over R+ × (0, t)
and taking sup0≤t≤T ∥v(t)∥L∞ sufficiently small, we get

eβt∥(ṽt, ṽx, ṽ)(t)∥2L2
α,exp

+

∫ t

0

eβτ∥(ṽt, ṽx)(τ)∥2L2
α,exp

dτ + α

∫ t

0

eβτ∥ṽ(τ)∥2L2
α,exp

dτ

≤ CE2
α,exp + βC0

∫ t

0

eβτ∥ṽ(τ)∥2L2
α,exp

dτ + (α + β)C1

∫ t

0

eβτ∥(ṽt, ṽx)(τ)∥2L2
α,exp

dτ,

where C0, C1 and C are positive constants independent of α and β. Taking α > 0
and β > 0 suitably small such that βC0 ≤ α and (α + β)C1 ≤ 1, we obtain the
desired estimate in Theorem 2.4 and complete the proof. 2
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