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Abstract We study a 1-D hyperbolic-type problem with free boundary which describes
the motion of a piece of tape being peeled off from a surface. The graph of the solution
represents the shape of the tape, which displays contact angle dynamics at the free bound-
ary (the location of peeling). The contact angle dynamics lead to singularities located on
the free boundary, which cause a slight difficulty. Under some assumptions, this problem
can be solved numerically by a so-called fixed domain method. This method is a numer-
ical method which transforms the domain of the positive part of the solution into a fixed
domain using a change of variables and solves the problem in that domain. Although this
method has a high accuracy, it can not be applied in some cases. Hence other numer-
ical methods are chosen for solving a regularized problem, i.e., the singularities on the
free boundary are regularized by a smoothing function. The numerical methods are: two
types of finite difference methods, the finite element method and discrete Morse flow. In
this paper, the error of solving the regularized problem instead of the original problem
is calculated. Since the choice of the parameter for smoothing function is important for
the accuracy, we propose a formula to estimate the optimal parameter in order to mini-
mize the error. This formula is verified by numerical experiments and we find that it can
estimate the optimal parameter. In addition, based on comparisons between the numeri-
cal methods, we find that the finite difference methods have better performance than the
other methods.

Keywords. hyperbolic free boundary problem, fixed domain method, finite element
method, discrete Morse flow

1 Introduction

In this paper we investigate numerical methods for solving a one-dimensional hyper-
bolic-type problem with a free boundary. Our problem can be derived from a physical
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model of a piece of tape which is attached to a surface and peeled off from the edge
smoothly. Under certain assumptions [2], the motion of the tape is described by a
stationary point of the following action integral in a suitable function space:

J(u) =
∫ τ

0

∫
Ω

(
1
2
|∇u|2− 1

2
(ut)

2χu>0 +
Q2

2
χu>0

)
dxdt, (1.1)

where u : (0,τ)×Ω �→R is a scalar function which represents the shape of the tape, Ω
is a domain in Rd(d ≥ 1), Q is the surface tension and χu>0 is a characteristic function
of the set {(x, t) : u(x, t)> 0}. The following Euler-Lagrange equation can be derived
from functional (1.1) under certain assumptions [2]:{

utt = Δu in (Ω× (0,τ))∩{u > 0},
|∇u|2− (ut)

2 = Q2 on (Ω× (0,τ))∩∂{u > 0}. (1.2)

When d = 1, under certain conditions, [3] showed that the existence and the uniqueness
of its solutions are obtained locally.

On the other hand, we derive the following equation from (1.2) (see Section 2):

χ{u>0}utt = Δu− Q2

|Du|H
d�∂{u > 0} in Ω× (0,τ), (1.3)

where H d is the d-dimensional Hausdroff measure and Du =

(
∂u
∂x1

, . . . ,
∂u
∂xd

,
∂u
∂ t

)
.

Next, we consider the following equation as the regularized problem of (1.3)

χ{u>0}utt = Δu− Q2

2
(χε)′(u) in Ω× (0,τ), (1.4)

where χε(u) ∈C∞(R) is a smoothing of the characteristic function such that (χε)′ ≥ 0
and

χε(u) =

{
0 u≤ 0,

1 u≥ ε.

The main purpose of this paper is to investigate the error obtained in solving (1.4)
utilizing several numerical methods. The error is obtained by comparing with the
solution of (1.2) which is equivalent to the original problem (1.3) if the solution is
non-negative. We solve (1.2) by the fixed domain method. This method has high
accuracy [2]. Therefore we use its solution to calculate the error, and from this error,
we know that the choice of parameter ε is important to the accuracy. Therefore we
propose a formula to get the optimal ε and confirm that this formula applies based on
our experiments. We discuss this in Section 4.1–4.2.

The numerical methods that we use are:

1. explicit method 1 (spatial central difference + time forward difference)
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2. explicit method 2 (spatial and time central difference)

3. finite element method (FEM)

4. discrete Morse flow (DMF).

We choose explicit method 1 and 2 as they are standard methods. Here, explicit method
2 is a standard finite difference method which can be used to analyze the error of the
solution of the regularized problem. We choose FEM as it is widely used to approx-
imate solutions of hyperbolic problems and DMF is chosen since it is used in many
hyperbolic-type problems with constraints [1]. We conduct the comparisons of these
numerical methods in Section 4.4.

The second purpose of this paper is to investigate the effectivity of different kinds of
smoothed characteristic functions. We consider two types of smoothed characteristic
functions and compare them to get the suitable one (see Section 4.3). The last purpose
is to implement more advanced case such as a model in which there are more than one
free boundary points that appear or vanish during the simulation (see Section 4.5).

2 Derivation of (1.3)

This section depends on [4]. We show the derivation of (1.3). Let QT :=Ω×(0,τ). We
assume u ∈ H2({u > 0})∩C(QT ) is a nonnegative solution of (1.2) such that contact
set {u > 0} has a sufficiently regular boundary and {u > 0} ⊂C0,1. By definition

(utt −Δu)(ϕ) =−
∫

QT

{utϕt −∇u ·∇ϕ}dxdt,

where utt −Δu is a measure. Since u is nonnegative,(
χ{u>0}utt

)
(E) =

∫
E∩{u>0}

utt

= utt

(
E ∩{u > 0}

)
= utt(E),

where E ⊂ QT . Thus χ{u>0}utt = utt in the measure sense. Then, by using the above
assumptions, we can calculate(

χ{u>0}utt −Δu
)
(ϕ) =−

∫
QT

{utϕt −∇u ·∇ϕ}dxdt

=
∫
{u>0}

(utt −Δu)ϕdxdt−
∫

∂{u>0}
|∇u|2− (ut)

2

|Du| ϕdH m

=−
∫

∂{u>0}
Q2

|Du|ϕdH m,

and directly obtain (1.3).
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3 Numerical Methods

From this section throughout this paper, we assume that Ω is 1-dimensional. This
section explains our numerical methods. Let us introduce some notations. The domain
Ω is divided into N intervals, x0 < x1 < · · · < xN , then the characteristic function is
smoothed as follows

(χε)′(u) =

{
1/ε 0 < u < ε,
0 otherwise.

(3.1)

As we will show later in Section 4.3, the smoothness of χε does not significantly
influence accuracy, and therefore to speed up the numerical computations we use a
smoothing function χε as above that is only Lipschitz continuous. Next, the charac-
teristic function is

χ{u>0}(xi, t) =

{
1 if max(u(xi−1, t),u(xi, t),u(xi+1, t))> 0,

0 otherwise

and

χε(u) =
∫ u

0
(χε)′(s)ds.

At last, since we are interested in observing the biggest error of the solutions during
time t, we define the error of numerical solutions as

Eu = max
i=0,...,N
k=0,...,M

|u∗(xi, tk)−uk
i |,

where u∗ is the exact solution or fixed domain method solution and uk
i is the numerical

solution at xi in time tk.

3.1 Fixed domain method (FDM)

For equation (1.2), we build the numerical solution as explained in [2]. We assume that
the free boundary contains a single point l(t). Here, u(x, t) is the solution at position
x and time t, l(t) is the position of the boundary at time t and l0 = l(0). Since the key
of fixed domain method in this case is to solve only in {u > 0}, the coordinates are
mapped using function

y =
2x
l(t)

−1

and become (0, l(t))× (0,τ) � (x, t) �→ (y, t) ∈ (−1,1)× (0,τ). Rewriting equation
(1.2) using (y, t), one has

utt − 4− ((y+1)l′(t))2

l(t)2 uyy−2(y+1)
l′(t)
l(t)

uty− (y+1)
l(t)l′′(t)−2(l′(t))2

l(t)2 uy = 0
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in (−1,1)× (0,τ) and

l′(t) =±
√

1−
(

Ql(t)
2uy(1, t)

)2

,

where l′(t) ≥ 0. Now, the y-space [−1,1] is discretized into Ñ equal intervals and we
can get the following equations

d
dt

ui(t) = vi(t), (3.2)

d
dt

vi(t) =
4− ((yi +1)l′(t))2

l(t)2
ui+1(t)−2ui(t)+ui−1(t)

(Δy)2

+2(yi +1)
l′(t)
l(t)

vi+1(t)− vi−1(t)
2Δy

+(yi +1)
l(t)l′′(t)−2(l′(t))2

l(t)2
ui+1(t)−ui−1(t)

2Δy
, i = 1, . . . , Ñ−1, (3.3)

l′(t) =±

√√√√1−
(

Ql(t)
2uN

y (t)

)2

. (3.4)

We solve (3.2)–(3.4) using the 4th-order Runge-Kutta method.

3.2 Explicit method 1 (spatial central difference and time forward dif-
ference)

We represent equation (1.4) using an explicit method with uxx approximated by central
differencing. Suppose ut = v then

d
dt

ui(t) = vi(t), (3.5)

d
dt

vi(t) =
ui−1(t)−2ui(t)+ui+1(t)

(Δx)2 − Q2

2
(χε)′(ui(t)), if χ{u>0}(xi, t) = 1, (3.6)

vi(t) = 0, if χ{u>0}(xi, t) = 0, (3.7)

where i = 1, . . . , N−1. We solve (3.5)–(3.7) using the 4th order Runge-Kutta.

3.3 Explicit method 2 (spatial and time central difference)

This method utilizes a standard finite difference discretization. We approximate uxx

and utt from equation (1.4) using centered differencing. Here, [0,τ] is divided into M
equal intervals, 0 = t0 < t1 < · · ·< tM = τ , so we have

χ{u>0}(xi, tk)
uk+1

i −2uk
i +uk−1

i
(Δt)2 =

uk
i+1−2uk

i +uk
i−1

(Δx)2 − Q2

2
(χε)′(uk

i ),

i = 1, . . . , N−1 and k = 1, . . . , M−1,
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where uk
i = u(xi, tk). Then we calculate the solutions using the following⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uk+1
i = 2uk

i −uk−1
i

+(Δt)2

(
uk

i+1−2uk
i +uk

i−1

(Δx)2 − Q2

2
(χε)′(uk

i )

)
, if χ{u>0}(xi, tk) = 1,

uk+1
i = 0, if χ{u>0}(xi, tk) = 0.

(3.8)

3.4 Finite Element Method

To implement finite element method, we multiply equation (1.4) by any test function
ξ ∈C∞

0 (Ω) and integrate over the space domain
∫

Ω
(χ{u>0}utt −uxx +

Q2

2
(χε)′(u))ξ dx = 0.

By integration by parts we obtain
∫

Ω
(χ{u>0}uttξ +uxξx +

Q2

2
(χε)′(u)ξ )dx = 0, ∀ξ ∈C∞

0 (Ω). (3.9)

We divide Ω into N intervals and find the approximate solution of (3.9) in the set

Vt = {u ∈C0(Ω̄) : u|∂Ω = f (·, t), u is linear on every [xk−1,xk], k = 1, . . . , N}
for each time t ∈ (0,τ), where f : Ω̄× [0,τ] is a given function. Then the approximate
solution can be described by u(x, t) = ∑N

i=0 ai(t)ϕi(x), where

ϕi(x) =
(

1− |x− xi|
Δx

)
+

, i = 0, . . . , N.

Here the symbol ( )+ implies ( f (x))+ = max( f (x),0). We substitute the approximate
solution u to (3.9)

∫
Ω

(
χ{u>0}

N

∑
i=0

a′′i ϕiξ +
N

∑
i=0

aiϕ ′i ξ
′+

Q2

2
(χε)′

N

∑
i=0

aiϕiξ

)
dx = r, ∀ξ ∈C∞

0 (Ω), (3.10)

where r is the residual which comes from the approximated representation of function
u. We choose ϕ j, j = 1, . . . , N−1, as our test function and rewrite (3.10) as follows:

N

∑
i=0

[
a′′i

∫
Ω

χ{u>0}ϕiϕ jdx
]
+

N

∑
i=0

[
ai

∫
Ω

ϕ ′i ϕ
′
jdx

]
+

Q2

2

∫
Ω
(χε)′

N

∑
i=0

aiϕiϕ jdx = 0,

j = 1,2,. . . ,N-1.

This can be written in a vector form

Ba′′+Aa+
Q2

2
C(a) = p,
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where a is the column vector with entries a1, . . . , aN−1,

A =
1

Δx

⎡
⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 · · · 0 0
−1 2 −1 0 0 · · · 0 0
0 −1 2 −1 0 · · · 0 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 · · · −1 2

⎤
⎥⎥⎥⎥⎥⎦

and

B =
Δx
6

⎡
⎢⎢⎢⎢⎢⎣

4χ̃(a1) χ̃(a1) 0 0 0 · · · 0 0
χ̃(a2) 4χ̃(a2) χ̃(a2) 0 0 · · · 0 0

0 χ̃(a3) 4χ̃(a3) χ̃(a3) 0 · · · 0 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 · · · χ̃(aN−1) 4χ̃(aN−1)

⎤
⎥⎥⎥⎥⎥⎦ .

Here, χ̃(ai) = 1, whenever max(ai−1,ai,ai+1) is greater than zero and χ̃(ai) = 0 oth-
erwise. Here, C is a column vector whose elements are determined by a and p is
determined by boundary values.

We approximate a′′ using central difference with ak
i =ai(tk) and ak=(ak

1, . . . ,a
k
N−1):

B
ak+1−2ak +ak−1

(Δt)2 +Aak +
Q2

2
C(ak) = p.

The final form is

Bak+1 = 2Bak−Bak−1− (Δt)2
(

Aak +
Q2

2
C(ak)− p

)
. (3.11)

We define ak+1
i = 0, if bii = 0 where bii is the diagonal element of matrix B at ith row.

In general, matrix B is non-symmetric. We can change the position of the known value
of ak+1

i to the right hand side and adjust the matrix B to be a symmetric matrix. Now,
we approximate the solution ak+1 of (3.11) by conjugate gradient method.

3.5 Discrete Morse Flow

Let us consider problem (1.4) with u0 as the initial value, v0 as the initial velocity and
u1 = u0 +Δtv0. Now, we determine the time step Δt = τ/M, where M > 0 is a natural
number. Then, the approximate solution for the next time t = kΔt, k = 2,3, . . . , M is
defined by the minimizer uk ∈K of

Jk(u) =
∫

Ω

|u−2uk−1 +uk−2|2
2(Δt)2 χ{u>0}dx+

1
2

∫
Ω
|∇u|2dx+

Q2

2

∫
Ω

χε(u)dx,
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where u j(x)=u(x, t j), t j= jΔt ( j=k−2,k−1) and K = {u∈W1,2(Ω);u = g on ∂Ω}.
We approximate uk as a piecewise linear function, so that the functional’s values

are approximated:

Jk(u)≈
N

∑
i=1

∫ xi

xi−1

( |u−2uk−1 +uk−2|2
2(Δt)2 χ{u>0}+

1
2
|∇u|2 + Q2

2
χε(u)

)
dx. (3.12)

We calculate the first term as follows:
∫ xi

xi−1

|u−2uk−1 +uk−2|2
2(Δt)2 χ{u>0}dx

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(v2 +w2 + vw)
Δx

6(Δt)2 ui−1 > 0, ui > 0,

(w2 +(v2)
2 +wv2)

xc− xi

6(Δt)2 ui−1 ≤ 0, ui > 0,

((w2)
2 + v2 +w2v)

xc− xi−1

6(Δt)2 ui−1 > 0, ui ≤ 0,

0 otherwise,

where v= |ui−1−2uk−1
i−1 +uk−2

i−1 |, w= |ui−2uk−1
i +uk−2

i |, ui−1 = u(xi−1, t), ui = u(xi, t),

v2 = v− w− v
ui−ui−1

ui−1, w2 = v2 and xc = xi−1− Δx
ui−ui−1

ui−1. The second term is

1
2

∫ xi

xi−1

|∇ui|2dx =
(ui+1−ui)

2

2Δx
,

and for the third term we have∫ xi

xi−1

χε(u)dx

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δx umax ≥ ε, umin ≥ ε,

1− Δx
umin−umax

(−umin(umin− ε)
2ε

− (ε−umax)

)
umax ≥ ε, 0≤ umin < ε,

umaxΔx
2(umax−umin)

umax ≥ ε, umin ≤ 0,

Δx
2ε

(umax +umin) 0≤ umax < ε, 0≤ umin < ε,
u2

maxΔx
2ε(umax−umin)

0≤ umax < ε, umin ≤ 0,

0 otherwise,

where umax = max(ui−1,ui) and umin = min(ui−1,ui). We find the minimizer of (3.12)
using a non-linear conjugate gradient method.
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4 Numerical results

In this section, we explain our experiments and the results. In our experiments we
compare two problems. The first problem is⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

utt = uxx in (Ω× (0,τ))∩{u > 0},
(ux)

2− (ut)
2 = Q2 on (Ω× (0,τ))∩∂{u > 0},

u(0, t) = f (t),

u(x,0) = g(x),

ut(x,0) = h(x),

approximated by the fixed domain method and the second problem is⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χ{u>0}utt = uxx− Q2

2
(χε)′(u) in Ω× (0,τ),

u(0, t) = f (t),

u(x,0) = g(x),

ut(x,0) = h(x),

approximated by two types of finite different method, FEM or DMF. The initial con-
ditions of our experiments are

l0 =
1√

Q2 + f ′(0)2
,

g(x) =max(1− 1
l0

x,0),

h(x) =

{
f ′(0) 0 < x≤ l0,

0 l0 < x,

and f (t) are as follows:

Case 1 Peeling speed is constant f (t) = at + 1. The exact solution of this case is
u(x, t) = max(1+ t− 1

l0
x,0).

Case 2 Peeling speed is increasing f (t) = (at +1)2.

Case 3 Peeling speed is decreasing f (t) =
√

at +1.

Case 4 Peeling speed is stopping at some times f (t) = 1+at + sin t

Case 5 Peeling direction is downward (pasting the tape).

g(x) =max(10− 1
l0

x,0),

f (t) =10−at,

h(x) =

{
f ′(0) 0 < x≤ l0,

0 l0 < x.
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Case 6 Peeling directions are upward and downward (oscillating tape) f (t) = 1+
0.3sin t.

In addition, we construct the exact solution of (1.4) for a special case. Let Ω = R,
then we describe problem (1.4) as

χ{u>0}utt = Δu− Q2

2
(χε)′(u) in R× (0,τ). (4.1)

Let uε : (0,τ)×R �→ R be the exact solution of (4.1) and we assume that uε is written
as

uε(x, t) = F(z), z = x− vt,

where v is a constant and 0 < v < 1, F : R→ R; F(0) = 0, F ′(0) = 0, F ∈C1,1(R).
This solution can be considered as peeling tape with constant peeling speed, where the
solution is increasing but keeps its shape. Therefore we get

χ{F>0}v2F ′′(z) = F ′′(z)− Q2

2
(χε)′(F). (4.2)

We separate F into three intervals {F ≥ ε}, {0 < F < ε} and {F = 0}. We assume
that the free boundary point is at z = 0 (F(0) = 0) and z = zε (F(zε) = ε) as shown in
Figure 1. Then we can construct the exact solution as follows

F(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− Q√
1− v2

(z− zε)+ ε z < zε ,

Q2

4ε(1− v2)
z2 zε ≤ z < 0,

0, 0≤ z.

(4.3)

Figure 1: Exact solution (4.2)
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4.1 Error in the peeling tape model using smoothed characteristic func-
tions

We solve cases 1–6 using explicit method 2 and compare with the exact solution for
case 1 and the fixed domain method solutions for cases 2–6. The parameters are shown
in Table 1 below.

Table 1: Parameters for explicit method 2 and fixed domain method

Q2 Ω a Δt Δx
explicit method 2 1 [0,15] 1 0.9Δx varied

fixed domain method 1 [−1,1] 1 0.0005625 0.002

The comparisons are shown in Figure 2. From the figures, we can see that the errors
of solutions for all cases tend to be small when Δx is decreasing with ε . They show
that small and big ε give large error and so we analyze this error pattern. Since the
precise error is difficult to find, we only approximate it. Here, the error of the explicit
method 2 satisfies the inequality

max
i=0,...,N
k=0,...,M

|u∗(xi, tk)−uk
i | ≤ E1 +E2,

where

E1 = max
i=0,...,N
k=0,...,M

|u∗(xi, tk)−uε(xi, tk)|, E2 = max
i=0,...,N
k=0,...,M

|uε(xi, tk)−uk
i |

and u∗ is the exact solution of problem (1.2), uε is the exact solution of (1.4) and u is
the solution of (3.8). From this inequality we expect to obtain the error pattern.

We calculate the error of finite difference (explicit method 2). We define

ek
i =

uε(xi, tk−1)−2uε(xi, tk)+uε(xi, tk+1)

Δt2 − uε(xi−1, tk)−2uε(xi, tk)+uε(xi+1, tk)
Δx2

+
Q2

2
(χε)′(uε(xi, tk)) (4.4)

and subtract (4.4) from (4.1) to obtain

uε
tt −uε

xx+
Q2

2
(χε)′(uε) =

uε(xi, tk−1)−2uε(xi, tk)+uε(xi, tk+1)

Δt2

− uε(xi−1, tk)−2uε(xi, tk)+uε(xi+1, tk)
Δx2 +

Q2

2
(χε)′(uε(xi, tk))− ek

i .

Since the error occurs near z = 0 and zε , at first we calculate for z = 0 (xi− vtk = 0).

ek
i =

F(vΔt)−2F(0)+F(−vΔt)
Δt2 −utt − F(−Δx)−2F(0)+F(Δx)

Δx2 +uxx.
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(a) Eu at time τ = 9 in case 1 (b) Eu at time τ = 9 in case 2

(c) Eu at time τ = 9 in case 3 (d) Eu at time τ = 9 in case 4

(e) Eu at time τ = 9 in case 5 (f) Eu at time τ = 7 in case 6

Figure 2: The errors of explicit method 2 for cases 1–6

Since we want to find the upper bound of the error, we note

∣∣ek
i

∣∣≤ ∣∣∣∣F(vΔt)−2F(0)+F(−vΔt)
Δt2 −utt

∣∣∣∣+
∣∣∣∣−F(−Δx)−2F(0)+F(Δx)

Δx2 +uxx

∣∣∣∣
≤
∣∣∣∣ −Q2v2

4ε(1− v2)

∣∣∣∣+
∣∣∣∣ Q2

4ε(1− v2)

∣∣∣∣ .
Since 0 < v < 1, we have
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∣∣ek
i

∣∣≤ Q2

2ε(1− v2)
.

In the same way, we can get the estimate of
∣∣ek

i

∣∣ for zε , which is also less than or equal

to
Q2

2ε(1− v2)
. Since |ek

i | is the error of the finite differencing, we expect

E2 ∼ g2
uΔx
2ε

, (4.5)

where gu is the norm of the gradient of the solution and g2
u =

Q2

1− v2 . In this experiment,

we can consider the gradient is a constant C.
Next, we assume the error E1 = C̃ε . Therefore the total error is

max
i=0,...,N

|u∗(xi, tk)−uk
i | ≤ C̃ε +

CΔx
ε

. (4.6)

The graph of this total error can be seen in Figure 3. In this figure, there are two Δx:

Figure 3: Estimation from above of the total error for explicit method 2

0.01 and 0.005. When Δx decreases, the error also decreases for particular ε . It also
shows that when ε is big or small, the error increases. This is approximately similar to
the error pattern in Figure 2a and serves to justify our results.

4.2 Comparisons of solution having different gradient

We are also interested in investigating the choice of ε to get optimal error related to the
gradient of the solution near the free boundary point (gu). The relation between gu and
the error is shown in (4.5). The gradient of the solution is approximated by calculating
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(a) case 1 (b) case 2

(c) case 3 (d) case 4

Figure 4: The errors of solution for case 1–4 with different gradient and Δx= 0.000625
at τ = 7

the linear regression of five ui whose values are nearest to the value 0.1. This value
is chosen since, based on Figure 2a–2d, when ε = 0.1, they display similar errors for
different Δx.

To see the relation between the error of the solutions and gu, we conduct a few
experiments using cases 1–4 with different gu. We choose only cases 1–4 since they
are enough to represent different kinds of solutions. We set the gradient of the solution
at time τ = 7 to be 1 to 40. The results are shown in Figures 4 and 5. Figure 4 shows
that the range of optimal ε becomes larger when gu increases. In addition, Figure 5
shows that there are two surfaces. The lower surfaces describe the lower bound of
the range for the optimal ε , while the upper surfaces describe the upper bound of the
range for the optimal ε . From the figure, the range of the optimal ε becomes large if
the gradient of the solution increases.

The optimal ε can be derived from (4.6). Therefore we have

ε =Cgu
√

Δx. (4.7)

From the experiments above, the range of constant C in (4.7) is shown in Figure 6. In
this figure, each vertical line indicates the range of constant C which applies for the
gradient 1 to 40. It shows when the constant C is between 0.15–0.16, it satisfies for all
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Figure 5: The lower and upper bound of optimal ε for cases 1–4 at τ = 7

Figure 6: The range of constant C for cases 1–4 with different Δx
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cases and Δx. Therefore, we conclude that the constant C is approximately 0.15–0.16.

4.3 Comparisons of smoothed characteristic functions

Here, we will compare two smoothed characteristic functions satisfying (3.1) and

(χε)′(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

hu
a

0 < u < a,

h a≤ u≤ ε−a,
h(ε−u)

a
ε−a≤ u≤ ε,

0 otherwise,

(4.8)

where
a =

ε
b
, h =

1
ε−a

,

b is a positive number. Function (4.8) has smoother transitions than (3.1). We want to
know whether smooth transitions influence the accuracy. The goal of this experiment
is to get the appropriate smoothed characteristic function.

We apply these two functions in equation (1.4) with parameters Q2 = 1, Ω= [0,15],
a = 1, Δx = 0.005 and Δt = 0.9Δx and solve using explicit method 2. The errors for
each case at time level τ = 9 (case 6 uses τ = 7) are shown in Figure 7. The errors are
calculated using

Ẽu = max
i=0,...,N
k=0,...,M

|u∗(xi, tk)− (u(3.1))k
i | or Ẽu = max

i=0,...,N
k=0,...,M

|u∗(xi, tk)− (u(4.8))k
i (t)|,

where (u(3.1))k
i and (u(4.8))k

i are solutions with smoothed characteristic function (3.1)
and (4.8) respectively. From Figure 7, we see that the error difference between (3.1)

Figure 7: Comparison of smoothed characteristic functions
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and (4.8) are slightly different, with an order of 10−3− 10−4. Therefore, (3.1) is an
adequate smoothed characteristic function.

4.4 Comparisons of numerical methods

To compare numerical methods, we conduct two experiments. The first experiment
is to numerically solve (4.2) and compare the results with the exact solution (4.3). In
order to do this, we consider a case similar to case 1 with initial conditions

uε(x,0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1
l0

x+1 0≤ x≤ l0− εl0,

(x− l0− εl0)2

4ε(l0)2 l0− εl0 ≤ x≤ l0 + εl0,

0 l0 + εl0 ≤ x,

uε(0, t) =

√
1

(l0)2 −Q2 t +1,

uε
t (x,0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
1

(l0)2 −Q2 0≤ x≤ l0− εl0,√
1

(l0)2 −Q2

2εl0
(x− l0− εl0) l0− εl0 ≤ x≤ l0 + εl0,

0 l0 + εl0 ≤ x.

The exact solution is uε(x, t) = F(x− l0− (ε/a)−
√

1− (Q/a)2 t). We choose the
parameters Q2 = 1, Ω = [0,15], Δx = 0.005 and Δt as in Table 2 below.

Table 2: Δt for numerical methods

explicit method 1 explicit method 2 FEM DMF
0.0045 0.0045 0.0025 0.0005

The error is calculated by

Cu = max
i=0,...,N
k=0,...,M

|uε(xi, tk)−uk
i |,

and Figure 8 shows the error results. In Figure 8, the errors Cu of all methods decreases
as ε increases and explicit method 2 has both the lowest and the biggest errors.

The second experiment applies the numerical methods to cases 1–6 and compares
the errors of each method. We choose the parameters Q2 = 1, Ω = [0,15], Δx =
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Figure 8: Error of numerical methods and exact solution of equation (4.2)

Table 3: Eu at time τ = 9 (cases 1–5) and τ = 7 (case 6)

case explicit method 1 explicit method 2 FEM DMF
1 0.008 0.011 0.01 0.0097
2 0.02 0.02 0.023 0.012
3 0.0079 0.006 0.0075 0.0074
4 0.013 0.013 0.014 0.0097
5 0.005 0.003 0.005 0.006
6 0.007 0.008 0.007 0.009

Table 4: Computation time

fixed domain
method

explicit
method 1

explicit
method 2

FEM DMF

time 2s 3s 3s 6s > 15mins

0.005, ε = 0.04 and Δt as in Table 2. The errors of the methods are shown in Table 3
and the computation time of each method can be seen in Table 4.

The error differences of each numerical method in Table 3 are relatively small
(order 10−3− 10−4). Therefore, we conclude that all methods have similar accuracy.
However, based on the computation time in Table 4, DMF has a large computation
time due to its algorithm and small Δt. We try several Δt for DMF and find that when
Δt = 1/10Δx the error corresponding to the DMF solution approach the errors of the
other methods. Regarding the FEM approach, we find that Δt ≤ 1/2Δx gives stable
solutions.
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4.5 Advanced cases

We also test more intricate cases where the free boundary points are more than one and
they appear or vanish during time t. We choose Ω = [0,2] (except case 7) , Q2 = 1,
Δx = 0.005, Δt as shown in Table 2 and initial conditions are listed below.

case 7 peeling tape from two sides
We modify case 1 above by peeling off from the beginning and end of the tape.
Our domain is Ω = [0,5]. The peeling velocities at both sides are the same as
case 1. The tape is peeled off until the free boundaries vanish and from here it
becomes a wave equation. Since case 1 has an exact solution, it can be used to
obtain the exact solution of the wave equation using d’Alembert’s formula. In
this case, we only consider the exact solution in the middle point of Ω.
To get the exact solution of the wave equation at x = 2.5, we first consider the
exact solution of case 1,

g(x, t) = max(1+ t− 1
l0

x,0)

and its velocity h(x, t). The time that the free boundary disappears is t = 2.535.
From this time on, the solution evolves by the wave equation: we define twave =

t−2.535 and the exact solution is

u∗(2.5, twave) =0.5

(
g(2.5+ twave,2.535)+g(2.5− twave,2.535)

+
∫ 2.5+twave

2.5−twave

h(2.5,2.535)dx
)
.

(4.9)

case 8 pulling down a string from the middle

u(x,0) = 0.5, ut(x,0) =−20x(2− x), u(0, t) = u(2, t) = 0.5

case 9 an unstable curve

u(x,0) = max(−0.8(2x−2)6 +2(2x−2)4−2.2(2x−2)2 +1,0)

ut(x,0) = 0, u(0, t) = u(2, t) = 0

case 10 collision of four waves

u(x, t) =
4

∑
i=1

max(−6(x−ai− t)2 +0.16,0),

where ai = ai−1 +0.37 and a0 = 6.

The numerical solutions corresponding to the above cases are shown in Figures 9–12.
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Figure 9: The numerical solutions of case 7
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Figure 10: The numerical solutions of case 8
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Figure 11: The numerical solutions of case 9

For case 7, we compare the solution u(2.5, t) at the mid point when the free bound-
aries vanish with the exact solution (4.9) and calculate

E = |u∗(2.5, t)−u(2.5, t)|.
We choose ε = 0.04. The results can be seen in Figure 13. The error is of the same
order as the error of case 1 (see 2a).

For cases 8–10, as we do not have the exact solutions, we calculate the differences
between explicit method 1, FEM or DMF and explicit method 2. We calculate the
difference by

Du = max
i=0,...,N
k=0,...,M

|(uex2)k
i −uk

i |,

where uex2 is the solution of explicit method 2 and u is the solution of explicit method 1,
FEM or DMF. The comparison is shown in Table 5, from which we see that the dif-
ferences of the solutions are of the order 10−3. Hence we can say that all methods are
relatively similar.

Table 5: Du of numerical methods

case t explicit method 1 FEM DMF
7 0.2 0.0023 0.0008 0.0038
8 0.6 0.0061 0.0014 0.0017
9 0.5 0.0032 0.0016 0.0025
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Figure 12: The numerical solutions of case 10
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We summarize the features of the numerical methods in Table 6 below.

Table 6: The features of numerical methods

Fixed
domain
method

Explicit
method
1

Explicit
method
2

FEM DMF

accuracy 10−11 10−3 10−3 10−3 10−3

stability Δt ≤
0.1Δx

Δt =
0.9Δx

Δt =
0.9Δx

Δt ≤ 0.5Δx Δt ≤ 0.1Δx

easiness of imple-
mentation

medium medium easy medium hard

computation time fast fast fast fast slow
(dis-)appearance of
free boundary

no yes yes yes yes

From the table we conclude: first, the accuracy of fixed domain method is the
highest compared to the other methods. Second, DMF requires small Δt (at least
≤ 0.1Δx) for stability and it makes this method slow. Third, the computation time
of DMF is long since the minimization process needs many iterations. Fourth, only
fixed domain method can not handle the appearance and disappearance of the free
boundary point.

5 Conclusion

We solved a one dimensional hyperbolic-type problem with free boundary and a
smoothed characteristic function by the finite difference method (explicit method 2)
and compared the solution with exact or fixed domain method solutions. From experi-
ments 1 and 2, we obtained the error pattern of explicit method 2 and confirmed using
approximation that this error pattern holds. The observed pattern shows that there is
an optimal ε which minimizes the error. Therefore we proposed formula (4.7) to cal-
culate the optimal ε with respect to the gradient of the solution and Δx. This formula
includes a constant which, based on our experiments, we found to be within 0.15 to
0.16 for gradients with values between 1 and 40. In experiment 3, we conclude that
smooth transitions in the smoothed characteristic function do not significantly influ-
ence the accuracy of the method and that (3.1) is an adequate smoothed characteristic
function. In experiments 4 and 5, we compared four numerical methods solving the
peeling tape problem with more involved initial and boundary data and found that
explicit methods 1 and 2 have good performance.
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