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Abstract 'We consider the rth-order Reed-Muller codes Z,RM (r,m) of length 2" over
Galois rings of characteristic g = 2" with extension degree m. This code has similar
properties as a Reed-Muller code over a finite field. The Lee weight of the codeword
of Z,RM(r,m) is expressed by cosine functions and gth roots of unity. We determine
the minimum Lee weight of Z,RM(1,m), that is 2". Let Z,RM(1,m)~ be a shortened
Ist-order Reed-Muller code. We show that the cyclic group generated by a shift map-
ping of codewords fixes 2Z¢ RM (1,m)~ and acts on the cosets of Z,RM(1,m)~ modulo

2Z¢RM (1,m)~ transitively except for 2Z¢RM (1,m)~. It follows that the Lee weight

distribution of Z,RM(1,m)~ can be obtained from the Lee weight distributions of the
cosets of Z,RM(1,m)~ modulo 2Z%RM(1,m)_.
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Key words: Reed-Muller Codes, Codes over rings, Galois rings

1 Introduction

In 1994, Hammons et al. showed that the well-known binary codes, Kerdock, Preparata
and Nordstrom-Robinson codes can be obtained as binary images of linear codes over
Galois rings of characteristic 4 under the Gray map [3]. They also showed that the Ker-
dock codes over Galois rings of characteristic 4 are the dual codes of the Preparata codes
over the same rings.

This led us to the active study of combinatorial topics over Galois rings. Borges
et al. defined the quaternary Reed-Muller code and showed that this code has similar
properties as a Reed-Muller code over a finite field [1]. They showed that a Reed-Muller
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code over a finite field is embedded in the ideal-part of this code. Recently Bhaintwal
and Wasan [2] treated the generalized Reed-Muller codes over Z» for a prime power p”.
They determined the minimum Hamming distance of the codes and characterized their
properties.

In this paper, we restrict the characteristic g to a power of 2 and discuss the prop-
erties of Reed-Muller codes Z,RM (r,m) over these Galois rings. We give express the
Lee weight of the codeword of Z,RM(r,m) in terms of cosine functions and gth roots
of unity. We determine the minimum Lee weight of the 1st-order Reed-Muller code
Z,RM (1,m) over this ring, which was not given in Bhaintwal and Wasan’s paper [2]. Let
Z,RM(1,m)~ be a shortened 1st-order Reed-Muller code. We show that the cyclic group
generated by the cyclic shift mapping of codewords fixes 2Z g RM(1,m)~ and acts on the
cosets of Z,RM(1,m)~ modulo 2Z¢RM(1,m)" transitively except for 2Z¢RM(1,m)". It
follows that the Lee weight distribution of the shortened Reed-Muller code Z,RM (1,m)~
can be obtained from the Lee weight distributions of the cosets of Z,RM(1,m)~ modulo
2ZgRM(l,m)_.

2 Galois Rings GR(2",m)

We let g =2",q' = q/2,Z, = Z/qZ and denote a finite field with 2" elements by Fn.

Let hy(x) be a primitive polynomial of degree m over F>. If a monic irreducible
polynomial h,(x) € Z,[x] satisfies h(x) = hy(x) (mod 2) and divides x*"~! — 1, then it
is called a primitive basic polynomial of degree m over Z,. Let &, be a root of hy(x)
of degree m such that éé\’ =1, where N = 2" — 1. Then the residue ring Z,[x]/(h4(x)) is
called a Galois ring of characteristic ¢ with extension degree m and is written as GR(q,m).
We see Z,(&,) = GR(g,m). If it doesn’t depend on an extension degree, then we put
Ay = GR(q, m) for convenience sake.

Every ideal of %, is given by p/ = 2'%,, where 1 <[ < n— 1. The maximal ideal of
Ry is pg =2 and Xy /v, = Fom.

Every element ¢ € %, has a unique 2-adic representation ¢ = Z;f;(l) 2/a j» where a; €
{0,1,&,, (12,...,54\’_1}, 0 < j <n— 1. The automorphism .%, of %, defined by ¢”« =
Z’;;(l) 2/ a? is called the Frobenius automorphism. The trace T;(c) of ¢ € %, is defined by

1, (c)= ):;n:_ol C(]"/ .

3 Codes over Z,

If C is a Z;-submodule of quv , then we call C a linear code of length N over Z,. We define
the Hadamard product a * b in the usual way. We also define the Hamming weight,
Hamming distance and the minimum Hamming weight in the same way of a finite field.
The Lee weight of a vector x € Z)) is defined by wy(x) = YN, min{x;,q—x;} in Z, the
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ring of rational integers, and the Lee distance of vectors x and y is given by dy (x,y) =
wr(x —y). We define the minimum Lee distance of C to be the minimum Lee distance
between distinct codewords. The minimum Lee distance is equal to the minimum Lee
weight of the code C.

4 Reed-Muller Codes

4.1 Reed-Muller Codes over Galois Rings GR(2",m)

In [2], Bhaintwal and Wasan treated the Reed-Muller codes over a finite field and that
over Galois rings of characteristic p”, where p” is any prime powers and any extension
degree. They determined the minimum Hamming weight and gave some properties. In
this paper, we restrict the characteristic to a power of 2 and discuss the properties of
Reed-Muller codes over these rings.

Definition. Let &, be a root of a primitive basic polynomial A,(x) of degree m. Let us
consider the following (m+ 1) x (N + 1) matrix:

1 1 1 --- 1 1 1 1
L1 . I 0 -+ 0 bimw bimy1r -+ bin-a
o - 0 01 0 bam bamy1r -+ ban-i
(014 & = g) - " !
0 0 0 1 bmm bmm+1 mefl
1
81
= 8 |,
8m

where éq’ in the second row is replaced by the m-tuple (b1,b2},...,bnj) € Z' given by
éqj :blj—i-széq—k'-‘—i—bmjé;’*l, 0<j<N-1. Weputg(} =1 (1<j<m), where 1
is the vector whose entries are all 1. Then, rth-order Reed-Muller code Z,RM (r,m) (0 <
r < m) of length N + 1 over %, is the code generated by the (N + 1)-tuples of the form

g x 85w xgh
where i; =0,1 (1 < j<m), Z’}’: 1 ij < r. In particular, Z,RM (r,m) is a Reed-Muller code

RM (r,m) of a finite field and Z4RM (r,m) is a quaternary Reed-Muller code QRM (r,m).
We also see that Z,RM(0,m) = {el | € € Z,} and Z,RM (m,m) = Zém.

If hy(x) € Z,[x] is a primitive basic polynomial of degree m and d is a divisor of ¢,
then /,(x) € Z4[x] (mod d%,) is a primitive basic polynomial of degree m. Let o be the
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natural homomorphism from %, to Z,/p,. Then, we have
a <ZqRM(r,m)) = RM(r,m).
We define the map 7 : Z; — %4 as 7(c) = ¢ (mod 1%,) for c € Z,. Then we obtain

T(ZqRM(r,m)) = ZRM(r,m).

We notice that the commutative relationship between trace functions and the maps & or
7 holds.

For the preparation, we give the Lee weight distribution of Z4RM(1,m) which was
given in [1] and [3].

The case m > 3 odd;

The case m > 2 even;

Lee weight | number of codewords Lee weight | number of codewords
0 1 0 1
om _ "t 2mtl(om 1) m—2% 2m(2m—1)
om 2m+2__2 om 2m+1(2m_+1)__2
2t omtl(m 1) 2" 424 om(am 1)
ym-+1 1 om+1 1

Z,RM (r,m) has the following properties similar to RM (r,m) and QRM (r,m).
Theorem 1 ([1], [2], [3]). (1) The number of codewords of Z,RM (r,m) is q*, where
r
k=Y ( " )
s=0 §
(2) ZyRM(r,m) is contained in ZgRM (r+ 1,m) for 0 < r < m.

(3) The minimum Hamming weight of Z,RM (r,m) is 2"~".

4.2 The Lee Weight wy (c) of the Codeword

The entry of the codeword of Z,RM (r,m) is given by using a trace function 7.

Lemmal. Let 1 <ij<ip<---<ig<m(1<s<r). Weput§;°:0. Forgiﬁ, 1<B<s,
there exists a unique element [, € Ry such that

8i = (Tq(”iﬁégo)’Tq('uiﬁ)7Tq(“iﬁ§q)7Tq(ﬂiﬁ§q2),...,Tq(ﬂiﬁé';v*l)).

Then, fort € {=0,0,1,...,N — 1}, the tth entry, say g;, of g;, *---* g;_is given as

m—1 m—1

I Is o (142244205
g = Z Z Tq(ﬂilﬂizzz”'ﬂis2 éq( +22 44 )t)'
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Hence the tth entry, say c;, of each codeword of Z,RM (r,m) is represented as

T, (7‘45;) +E£
for some unique element A; of %, and € € Z,.

Proof. We can prove the theorem similarly to the proof of Theorem 11 in [3]. O

We notice that there exists a unique element y; € %, such that

g = (0,...,0,1,0,...,0,bim,....biv_1)
- (Tq('uig‘;o)’Tq(‘u")’Tq(uuiéq),--~7Tq<ﬂi(€’évil>)-

Denote the number of entries of the vector x that are equal to d by s(d) and let {, be
a primitive gth root of unity. Then we have

Zliéq"’

XiEX q .=
Lemma 2 gives a formula which is used in Theorem 2.
Lemma 2. Assume q > 8. Then the following equality holds.

4

- H cos( 2]+1 +1).

w=1

Proof. We prove the lemma by induction on ¢. It is easily verified that the equality holds
for g = 8. From the induction hypothesis,

mt P it
=2(cos — + 1){6]’ + Y 2(4' —2w)cos W,}
q q

w=1
q’ —1
Wit Tt Tt
q(cos——l—l + Z4q 2w)< i )
=1
z 1
2wt 2w—1)mt 2 1)t
q(cos——l—l + ZZq 2w)<2cos id +cos( w—1) —1-005&)
q q q q
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!

7

t 2wt
:q+2(q—2)cosn—+ Z 2(qg—4w)cos v
q =1 q

2 1 —1
2w+ )nt+4cos (q Tt
q q

I MN‘Q\

2(q—4w—2)cos

! Wt

=q+ Z 2(qg—2w)cos —.
w=1 q

O

We express the Lee weight of the codeword of Z,RM (r,m) in terms of cosine functions
and gth roots of unity.

Theorem 2. Assume that q > 8. The Lee weight of a codeword ¢ of Z,RM (r,m) is

. 1 n—2 §
wife) =q2" 2> ¥ [Jleos(zrg)+1) ¥ &
todd j=1 ciec
0<r<g—1

where c¢; = T,(w&}) + € in Lemma 1.

- —2a)nt d ,
PrOOf: From Cqm + Cq(q a)t =2.co0s ﬂ[COSu and Z quZjl — 0,
q e

wie= L{L T g B Iy o)

ciee \j j=q'+1
DRTE WA (GERI e
qc,ec t:odd
0<r<g—1

H =05 e g
Z CQIc,(g 21+2C 4l +61C gl 4 (-1 (g+2)1 +. +Cq )l)

ciec
) —2j)mt
_ - { gtCi (q’cosm—i- Z 2jcosmcos(qj)ﬂ)}
%t

q todd =1 q
0<t<g—-1
l i 21c,(c 2l+2§ Al 4 dC gl 4 +(q 1)C721+'._+C7(q72)1)
q a q q q q q
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S L{r-x cfcf(q+zzjcos*<‘f |

q tec t:odd
O<t<q 1

4= ZZCZIC, C21+C 4I+ +€ ql)

clec =

,Z 2 1 Z (q—i—Zchos(q/

) ) Z th
qc,ec q  todd j=1 q ciec
0<r<g—1

| 4

:q’2"’_1—5 Y (q+z2q 2w)cosq )thcl

t:odd w= c€c
0<r<g—1

From Lemma 2, we obtain

1 n—2 it .
wi(e)=q2" 7 =2 ¥ [lleos(zp)+ D) XL &
t:odd  j=1 ci€e O
0<i<g—1

4.3 An Embedding System of Z,RM (r,m)

We will show thatif g > 8, then Zs RM (r,m) is embedded in the ideal part Z,RM (r,m) Np,,
of Z,RM (r,m).

Theorem 3. The code Z,RM(r,m) has the following partition.

ZRM(rm) = | <2Zq/RM(r,m)+(eol teigi++emgm

€0,€1,--,€5—1 €22

temr181%82F T Chk—18m—ri1*8m—ri2* "'*gm))a

-
wherekzz < " )
s=0 S

Proof. First we prove that the subsets 2Z,RM(r,m) +eol + €181 + -+ ex—18y_11 *
8_ri2% -+ * &y are disjoint. We denote the (N + 1)-tuples of the form g} * g2 kg
byri (1<i<k—1),wherei; =0, 1 (1< j<m). Assume that

2x+tapl +airy+--+agr1 =2y +bol +byry+ -+ b1,
where x,y € ZyRM (r,m). Thus,

2(x—y) = (bo—ao)l—l-(bl —al)rl —l-"'—l-(bk,l —akfl)rk,l,
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and applying the map «,
0= (bo —ao)l + (bl —al)a(rl) +--- 4 (bk—l —ak_l)oc(rk_l).

Since 1 and a(ry),(ra),...,0(ry—1) are basis vectors of RM(r,m), then a; = b;, 0 <
i < k— 1. Therefore, the cosets are disjoint.

We put g = 1. From now on, we will show that

ZRM(rm)< | (ZZq/RM(r,m)—i—(eol teigi+ - +engm

€0,€1,.,€5—1 €22

+emt+181*%82+ - +ek—1gm7r+l *8m—ry2 ¥ >kgm))

First, we consider the case r = 1. We put

m
C = {2.761 —I—Zdig,- ‘ 2x1 € ZZq/RM(l,m),d,’ 622} .

i=0
m m
If we put a; = 28; +V; € Z;,6; € Zy,V; € Z, then Za,-g,— = 2(2& +vi)g; € C, that
i=0 i=0

is, Z;RM(1,m) C C,. Since ’Cl} = ‘ZqRM(l,m)‘: g™ ! from Theorem 1, we obtain
Z,RM(1,m) = C).

Next, we assume r = 2. We put

m
Cr=1{2x2+) digi+ Y ¢ij8i%8;|2% €2Z;RM(2,m),d;,ei; €2 .
i=0 1<i<j<m
If we put b;j = 26 + Vij, 8ij € Zy, Vij € Z, then 26;;8; % 8 € 2Z,RM (2,m), v;;8;* 8 €
C,, and
Y bigrg= L (204 v)gr8 € C

1<i<j<m 1<i<j<m

m
sothat } a;g;+ Z bijg;* g8 € Ca. It yields Z,RM(2,m) C Cy.

i=0 1<i<j<m

From Theorem 1,

G| = ¢* and ’ZqRM(Z,m)’: g~, where k = Y2_, ( ’j: ) There-
fore Z,RM (2,m) = C;.

It can be proved in a similar way for the case r > 3. O

The above theorem implies that Zg RM (r,m) is embedded in the ideal-part of Z,RM (r,m).
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4.4 Minimum Lee Weight of Z,RM(1,m)

It is easily verified that w(Lq) (t(c)) < w(L2q) (¢) where W(Lq) (t(c)) and w(qu) (c) are the Lee
weights of the codewords of 7(c) of Z,RM(r,m) and c of Z,,RM r,m) respectively.

Theorem 4. Suppose that ¢ > 8,m >3 and (q,m) # (8,3). The minimum Lee weight of
Z,RM(1,m) is 2™ and 1,—1 are the codewords with minimum Lee weight. For the case
(q,m) = (8,3), the minimum Lee weight is 6.

Proof. 1t is sufficient to prove the minimum Lee weight of ZsRM(1,m) is 2. We put
C = ZgRM(1,m). The Lee weight of every codeword ¢ € C is written as

wr(c) =ny+n7+2(ny +ne) + 3(n3 +ns) + 4na,

where n; is the number of entries of the codeword ¢ that are equal to i for 0 <i < 8.

We assume that wy(c) < 2™ for every ¢ € C,c # €l,€ € Z,. Since the minimum
Hamming weight of RM(1,m) is 2™~1, 2" > wy(¢) > 2(ny +ng +ng) +ny +n7 +n3 +
ns =3-2""1—2ny. Thus

ny >2"2. 4.1)

We put a = ng — ng,b = ny —ns,c = ny —ng,d = n3 —ny. By (4.1), we have a =
nop—ng > 0. Let { be a primitive 8th root of unity. From the theorem by Kumar et al.
[4, Theorem 1], we obtain

a+bl+cl*+dg < 3vom,
We substitute { = ?(1 ++/—1) to the above inequality.
a+bl+cl?+d8 = (a +£b— £d)+\/ 1(c +£b+ £d)

Therefore

2 3
+b8 +cl~+dC

~ (a +£b—£d) (+\fb+\fd)
. \f(a+b+c+d)2+(1—\f)(a2+b2+c2+d2)—\fz(“(ZdJrchd) (4-2)
< 9.2m,

We assume that m is odd. By the table in Subsection 4.1, we have

ng+ng = m= 2—1— 2 2 , Np+neg= 2m= 2_ 2

n1+n5:2’"_2+5277, ny+n;=2""2—
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where 6 = +1. Then it follows
2" >wi(c) > ny+n7+3(n3+ns) +2(n2+ne)
=3.2" 2y +mg) +2(2" 2 —2"T)
=21 2" 2 (ny +m7).

m—3
Therefore ny +n7; > 2" 1 -2,
Since wr(¢) = wr(—c) for ¢ € C, we may assume n; > ny without loss of generality.
. m—3
Since 2n; >ny +ny >2m 1 2%,
m—=>5

n >2m2 2" (4.3)

and

m 3

n3tns =2""—(n+ny) <2 —(2m 2" ) =2"7.

Then n; > 272 — 2" ZmT > n3+ns > ns, SO that b > 0. Furthermore from n; +n7 >
" and 2m2 - 2" <y <2m 240"

2m71 2%

np>2"t-2"7, 4.4)

For m > 3, we have ny > 22 —2"7 >2%
Thus

> n3+ns > n3, so that d < 0 and bd < 0.

o (r 2y = 22"
m—3

c <M 2%,

Then we have
m—3

2d +c<2(—2" 242" +2 Ty 4om2 0"
om0t 40"

Furthermore we assume m > 7, then 2d 4+ ¢ < 0. We see the last term —+/2(a(2d +
¢) +bd) > 0 of the equality (4.2). Also we see § =1 asns=2""2+ 82" —ny <
82" 42" from (4.3).
Consequently from (1 — %)(d2 +b?+c*+d*) > 1 (a> +b* +c* + d*), we obtain

1 2
Z(az+b2+c2+cﬂ) <la+bC+cC*+dE?| <9-2m.

On the other hand,
@+ 0+ 4 d* = (no+ny)* + (n) +ns)?

+ (n2 +ne)* + (n3 +n7)* — 4(nona + nins + nang + n3ny)
= 4(22m*4 + 2m73) —4(nong 4+ nyns + nang +nzny).
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Thus it follows

1
Z(a2 +b+ A+ dz) =24y ogm=3 _ (nona +nins + none +n3ny) < 9-2™M.

Therefore we obtain

22m=4 _71.2"73 < nona 4 nyns + nang + nzns.

From (4.1), we have nony = ng(2" 2 + 2" — np) < 2m=2+"7  We have nins < 3-
2" (22 —2"77), n3ng < 2”7 (2"2 —2"7") by using (4.3) and (4.4). When n, =
%(2’”_2 — 2,%3)’ nang = ny(2M% — 2" ny) has the maximal value, it leads nyng <

m=3
1(2m=2—2"77)2. From the above result, we have

22m—4 —71. 2m—3
< non4 +nins + nNang + N3Ny

m—35 m—3 m—3 m—1

m—J 1 m—J
<M 4 (2 2T P 43277 (2 2T ) 4277 (207 -2

)

m—3

=6- 2m73+ T + 22m76 —5. 2m74.

m—3 . . . .
If we putx =22 >4, then the above inequality is written as

x2
?(6)8— 12x—137) < 0.

The inequality does not hold for x > 6, namely m > 9. Therefore we have wy(c) > 2"
for odd m > 7.

Next, we assume that m is even. By the table in Subsection 4.1, we know n; +nj 4
is one of the following values 0,2 %+ 2" ,2m=2 om=1 om for 0 < j < 4. The Lee
weight of the codeword wy (¢) is greater than or equal to 2™ if nj+nj.4 = 2" for some
j,ni4+n3+ns+ny; =2" or ny+ng =2""!. For the case ng + ny = np +neg = 2" 2 and
ny+n3+ns—+n; = om=1, wr(c) =2(ny +ng) +4ns + oam=l 4 2(n3+ns) > 2™

We discuss in a similar way to the proof of odd m for the other cases. We put x = 2",
For ng +nq4 = 2m=2 4 ZmTJ,nz +ne = m=2 2%,n1+1 +npps = 2m=2 4 52"1;2, 6=
+1, [ =0,2, we obtain

x2
Z(3x2— 12x—130) < 0

and for ng +ng = 2" 2 42" ny +ng =272 — 2" mpy 4+ s =22, 1 =0,2, we

obtain
2

%(3x2—8x—138) <0.

Thus we have wy(c) > 2" for even m > 8.

We see the codewords 1 and —1 have the minimum Lee weight 2”'. Hence the min-
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imum Lee weight of Z,RM(1,m) is 2" for m > 8 and ¢ > 8. It remains to verify the
case for m < 8. We obtain the minimum Lee weight is 2" for4 <m < 8 and ¢ =8 by a
computer search. We also obtain the minimum Lee weight of ZsRM(1,3) is 6 and that of
Z16RM(1,3) is 2% by a computer search. Thus the minimum Lee weight of Z,RM (1,m)
forg>8,3<m<8, (q,m)# (8,3)is 2". 0

4.5 Lee Weight Distribution of Z,RM(1,m)~

Let 21,85, .,8m be the vectors obtained from g,,8,...,8, by removing the first en-
try. The cyclic code Z,RM(1,m)~ is defined from g,8,,...,&,, in the same way as
Z,RM(1,m), which is called a shortened 1st-order Reed-Muller code. The shift mapping
S is defined as

S:Z,RM(1,m)” — Z,RM(1,m)",
v=(ay,a,...,an) — S(v)= ) = (an,ay,az,...,an—1).

We denote a cyclic group of order N with a generater S by G. We can show that
Z,RM(1,m)~ has the following partition similarly to Theorem 3:

ZRM(1,m)~ = U (ZZQ/RM(lum)i—i_Dlgl+D2g2+”'+Dmgm)'
Dy,Ds,....DmEZp
Let

Z,RM(1,m)~ [2Z,RM(1,m)~
={2Z,RM(1,m)” + D18, + D282+ -+ D&y | D1,D2,...,Dy € 25}

be the quotient group of Z,RM(1,m)~ modulo the ideal-part 2Z,RM (1,m)".

Theorem 5. G acts on Z,RM(1,m)~ /2Z,RM(1,m)" transitively except for 2Z,RM(1,m)~.
That is, the cosets of ZgRM(1,m)~ /2ZyRM(1,m)~ have the same Lee weight distribu-
tion. The ideal-part 2ZyRM(1,m)~ is fixed by G.

Proof. We put v = (ay,as,...,ay) € 2ZyRM(1,m)™ 4+ b18y + 285 + -~ + b,8,,, and
v = (a)ay),....a)) € 22, RM(1,m)" + bV, + b5y + -+ + b}y . We know
b; = a(a;) and bgs) = (x(a[@) forie {1,2,...,m} easily.

We prove (by,ba,...,by) # (bgs),bgs), e ,bﬁ,‘;)). The vector g; is written as

8= (Tq(ﬂi)>Tq(ﬂiéq)aTq(#ié(;):-'-’Tq(.uigév_l))

for some element y; € %, from Lemma 1. Let A; = ot(y;) and 6 = a(§,). From the
commutability of the trace function and the map «, the /-th entry of a(v) is given as
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b1T2(M0") +baT5(A20") + - + by To (An0') = Tao((b1 A +b2As + -+ + byuAy)0')
— T2(9j+l)

for some integer j. Thus we obtain
a(v) = (T2(67),1,(671)), ..., (87N 1))

and also
a(w) = (12(6"),Ta(6"™),... To(6" ™))

for some integer .

Since the sequence 75(0"), n=0,1,...,N—1, has period N (cf. [5]), we have
T>(671!) # T (0'*1) for some I, which implies o (v) # o (v(*)). Therefore (by,bs,...,by)
% (b(ls),b(;), ... ,b,(,f)), namely v and v*) belong to different cosets.

Now, we show that G acts on Z,RM(1,m)~ /2ZyRM(1,m)~ transitively. Assume
that the codewords v, v/ are contained in the same coset. It is equivalent to v — V' €
2ZyRM(1,m)~. The vector v —V' is represented by trace function 7, from Lemma 1.
Therefore v(!) —v'(1) = (v —v/)() € 27, RM(1,m)~. Therefore v(!), v'(!) are contained
in the same coset. It completes the proof. O

Theorem 5 says every coset except for 2Z,RM(1,m)~ has the same Lee weight dis-
tribution. It turns out that the Lee weight distribution of Z,RM(1,m)~ can be obtained
from the Lee weight distributions of the cosets of Z,RM(1,m)~ modulo 2Z,RM(1,m)~.
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