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Abstract We consider a sequence of Hermitian vector bundles of the same rank
endowed with metric connections over compact Riemannian manifolds whose heat
kernels have uniform on-diagonal upper bounds, and we prove that there exists a sub-
sequence of the vector bundles and a closed form on a Hilbert space to which the
energy forms on the Hilbert spaces of square integrable sections of the vector bundles
Mosco-converge; if, in addition, the rank is equal to one, the limit Hilbert space con-
sists of square integrable sections of a continuous Hermitian line bundle over an open
subspace in a compact metric space endowed with a Radon measure.

Mathematics Subject Classifications(2000): 53C21, 58D17, 58J50

Key words: Vector bundle, metric connection, energy form, Laplacian, spectral con-
vergence

1 Introduction

A spectral distance on a set of compact Riemannian manifolds is introduced in [11] by
means of their heat kernels, and it is proved that a family of compact Riemannian man-
ifolds whose heat kernels uniformly satisfy on-diagonal upper estimates is precompact
and further any Cauchy sequence in the family converges to a compact regular Dirich-
let space in such a way that the eigenvalues and eigenfunctions of the manifolds tend
to those of the limit space. The uniform topology induced from the spectral distance
is related to that of the Gromov-Hausdorff distance and also the topology of Mosco-
convergence of energy forms. These are the subjects of [9] and [10].

In this note, we are concerned with energy forms of Hermitian vector bundles en-
dowed with metric connections over compact Riemannian manifolds whose heat ker-
nels uniformly satisfy on-diagonal upper estimates. The main result is stated in the
following
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Theorem 1.1. Let {En → Bn} be a sequence of Hermitian vector bundles of the same
rank r endowed with metric connections over compact Riemannian manifolds Bn. Sup-
pose that the heat kernels pBn of Bn satisfy pBn(t,x,y)≤ A/tν/2 for some positive con-
stants A and ν , and for all t ∈ (0,1] and x,y ∈ Bn. Then there exists a subsequence
{Ek} of {En} and a (symmetric) closed form (F ,D[F ]) on a Hilbert space to which
the energy form on the Hilbert space of L2-sections of Ek Mosco-converges as k → ∞.
Moreover if r = 1, then the Hilbert space consists of L2-sections of a continuous Her-
mitian line bundle over an open subset in a compact metric space with a Radon mea-
sure.

Here we sketch the proof of the main theorem. Let {En → Bn} be as in the theorem.
Let Mn be the principal U(r)-bundle of unitary frames of En. Then passing to a subse-
quence, we see that Mn Mosco-converges, as n → ∞, to a compact Dirichlet space on
which the unitary group keeps to act continuously; the measure and the Dirichlet form
are invariant under the action. The limit Hilbert space and the closed form in the main
theorem are respectively given by the L2-closure of the space of continuous functions
of the Dirichlet space to Cr which are equivariant under the action of U(r) and the
form restricted to this space. If the vector bundles are of rank one, then the outside
of the subset of points at which all equivariant continuous functions to C vanish is
invariant under the action of U(1) and we get a continuous Hermitian line bundle over
the quotient space which is associated with the canonical action of U(1) on C. This is
the limit bundle mentioned in the main theorem.

The notion of Mosco-convergence on forms is introduced in Kuwae andd Shioya
[13]. In section 2, we recall several notions on convergence of forms including Mosco-
convergence, and some known results relevant to the above theorem. In section 3, en-
ergy forms on vector bundles are discussed. Theorem 1.1 will be verified in section 4.

This note is a revised version of [8].

2 Convergence of compact Dirichlet spaces

In this section, we recall some results in [13] and [15] on convergence of closed forms
on Hilbert spaces, and then some in [9] and [11] on that of Dirichlet spaces.
2.1 Let us consider a sequence of separable Hilbert spaces Hn, a separable Hilbert
space H and a dense subspace C ⊂ H, and assume that there exist linear maps Φn of
C to Hn satisfying

lim
n→∞

|Φn(u)|Hn = |u|H , u ∈ C .

The existence of such linear maps allows us to define several notions on conver-
gence of functions, nonnegative symmetric closed forms, and associated operators. We
follow Kuwae and Shioya [13]:
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(i) A sequence of un ∈ Hn strongly converges to u ∈ H as n → ∞ if there exists a
sequence of ũk in C tending to u as k → ∞ such that

lim
k→∞

limsup
n→∞

|Φn(ũk)−un|Hn = 0.

(ii) A sequence of un ∈ Hn weakly converges to u ∈ H as n → ∞ if

lim
n→∞

⟨un,vn⟩Hn = ⟨u,v⟩H

for every v ∈ H and any sequence of vn ∈ Hn which strongly converges to v as n → ∞.
(iii) A sequence of bounded linear operators Bn : Hn → Hn strongly converges to a

bounded linear operator B : H → H as n → ∞ if Bn(un) strongly converges to B(u) for
every u ∈ H and any sequence of un ∈ Hn which strongly converges to u .

(iv) A sequence of closed forms En on Hn Mosco-converges, as n → ∞, to such a
form E on H if the following two conditions hold:

(iv-a) if a sequence of un ∈ Hn weakly converges to u ∈ H, then

E (u,u)≤ liminf
n→∞

En(un,un) (≤+∞);

(iv-b) for any u∈H, there exists a sequense of un ∈Hn which strongly converges
to u in such a way that

limsup
n→∞

En(un,un)≤ E (u,u) (≤+∞).

(v) A sequence of closed forms En on Hn is asymptotically compact if any sequence
of un ∈ Hn with supn |un|2Hn

+En(un,un)<+∞ contains a subsequence which strongly
converges (to an element of H).

In case the weak convergence of a sequence of elements un ∈ Hn in condition (iv-a)
is replaced by the strong convergence of {un}, we say that the sequence of forms En

Γ-converges to a form E . Recall that any sequence of closed forms on Hn admits a
subsequence which Γ-converges to a closed form on H (cf. e.g. [4]).

In the definitions above, (iv) and (v) are due to Mosco [15] for the case where all
Hn coincide with H and Φn is the identity map of H, and the present ones are due to
Kuwae and Shioya [13]; the following results are also proved in [13] and [15].

Theorem 2.1. Let En and E be densely defined, closed forms on Hn and H, respec-
tively. Let Gn;ζ , Pn;t , Ln, and En respectively be the resolvent, the semigroup, the
infinitesimal generator, and the spectral resolution associated with En and also, let
Gζ , Pt , L , and E respectively be those corresponding to E .

(1) The following conditions are mutually equivalent.
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(i) En Mosco-converges to E .

(ii) For some ζ < 0，Gn;ζ strongly converges to Gζ .

(iii) For some t > 0，Pn;t strongly converges to Pt．

(iv) If a sequence of continuous functions ψn : [0,+∞)→ R satisfying
limx→∞ ψn(x) = 0 uniformly converges to a continuous function ψ : [0,+∞)→ R
satisfying limx→∞ ψ(x) = 0, then ψn(Ln) strongly converges to ψ(L ).

(v) For all α , β (α < β ) which do not belong to the point spectrum of L，
En((α,β ]) strongly converges to E((α,β ]).

(2) If {En} is asymptotically compact and Γ-converges to E as n → ∞, then it
Mosco-converges to E .

2.2 Let X be a second countable, Hausdorff space and µ a positive σ -finite Borel
measure with supp[µ] =X . A Dirichlet form E on L2(X ,µ) with domain D[E ] is meant
to be a closed symmetric form on L2(X ,µ) satisfying the unit contraction property that
u ∈ D[E ] implies v = min{max{u,0},1} ∈ D[E ] and E (v,v) ≤ E (u,u). When X is
locally compact, µ is a positive Radon measure, and D[E ] is dense in L2(X ,µ), we
say that a Dirichlet form E is regular if E has a core, that is, a subspace C of D[E ]∩
C0(X) which is dense in D[E ] with norm (E (∗,∗)+ ∥ ∗ ∥2

L2)
1/2 and dense in C0(X)

with respect to uniform norm. We call two Dirichlet spaces (X ,µ,E ) and (X̃ , µ̃, Ẽ )

equivalent if there is an algebraic isomorphism Φ from D[E ]∩L∞ to D[Ẽ ]∩L∞ and
Φ preserves three kinds of metrics: for u ∈ D[E ]∩L∞, ∥u∥L∞ = ∥Φ(u)∥L∞ , ∥u∥L2 =

∥Φ(u)∥L2 , and E (u,u) = Ẽ (Φ(u),Φ(u)). Recall the following fundamental results:
(i) A Dirichlet space (X ,µ,E ) is equivalent to a regular one. (ii) If a regular Dirichlet
space (X ,µ,E ) is equivalent to another one (X̃ , µ̃, Ẽ ), then there exists a capacity
preserving quasi homeomorphism q from X to X̃ which has the properties that (ii-a) for
u ∈ D[E ]∩L∞, Φ(u)(x̃) = u(q−1(x̃)), µ̃-a.e. x̃ ∈ X̃ ; (ii-b) q is measure preserving.
See [6], Appendix, for these results and details.

Now we consider a regular Dirichlet space (X ,µ,E ) satisfying the following prop-
erty of the semigroup Pt associated with E :

∥Ptu∥L∞ ≤ a
tν/4 ∥u∥L2 , u ∈ L2(X), 0 < t ≤ 1

for some positive constants a and ν , or equivalently the property that Pt admits an
integral kernel p(t,x,y) satisfying

p(t,x,y)≤ A
tν/2 , a.a. (x,y) ∈ X ×X , 0 < t ≤ 1 [H]A,ν

for some positive constants A and ν . We recall that the property [H]A,ν is equivalent to
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the Nash inequality:

∥u∥2(1+2/ν)
L2 ≤ A′(EX(u,u)+∥u∥2

L2)∥u∥4/ν
L1 , u ∈ D[EX ],

and for ν > 2, it is equivalent to the Sobolev inequality:

∥u∥2
L2ν/(ν−2) ≤ A′′(EX(u,u)+∥u∥2

L2), u ∈ D[EX ], [S]A”,ν

where A′ and A′′ are positive constants depending only on A and ν ; furthermore the
imbedding of D[E ] into L2(X) is compact and the spectrum of E is discrete if [H]A,ν
holds and µ(X) is finite (see [5]).

Given positive numbers A and ν , we denote by DA,ν the set of regular Dirichlet
spaces X = (X ,µ,E ) satisfying [H]A,ν , µ(X) = 1 and Pt1 = 1. Let D = ∪A,νDA,ν .
Given X = (X ,µ,E ) ∈ D , we can define a map of X into a Banach space, using
complete orthonormal systems of eigenfunctions of L2(X ,µ). To be precise, let us
denote by C∗([0,∞], ℓ2) the set of continuous curves γ(t) (t ∈ [0,∞]) in ℓ2 such that
γ(0) = γ(∞) = 0. Here ℓ2 stands for the Hilbert space consisting of square summable
sequences. The set is considered as a metric space with a distance

Θ(γ,σ) = sup{∥γ(t)−σ(t)∥ℓ2 | t ∈ [0,∞]}, γ,σ ∈ C∗([0,∞], ℓ2).

Let {ϕi | i = 0,1,2, . . .} be a complete orthonormal system of eigenfunctions of E with
ϕ0 = 1. The eigenfunction ϕi has the i-th eigenvalue λi of E and it is assumed to be
quasi continuous (cf. [6], Chap.2). Then we can define a Borel measurable map I of X
into C∗([0,∞], ℓ2) by

I[x](t) = (e−(t+1/t)/2e−λit/2ϕi(x))i=0,1,2,..., x ∈ X , 0 ≤ t ≤+∞.

The image I[X ] is included in a compact subset K of C∗([0,∞], ℓ2), which can be
chosen in such a way that I[X ] ⊂ K for all X ∈ DA,ν , and there exists a sequence of
continuous functions ψi on the closure I[X ] of I[X ] such that I∗ψi = ϕi (i = 0,1,2, . . .),
each element γ of I[X ] can be written as

γ(t) = (e−(t+1/t)/2e−λit/2ψi(γ))i=0,1,2,...,

and {ψi} becomes a complete orthonormal system in L2(X̃ , µ̃), where µ̃ and X̃ are
respectively the image measure I∗µ and its support. Then the quadratic form Ẽ on
L2(X̃ , µ̃) obtained by the system {ψi} coupled with the eigenvalues {λi} gives a regu-
lar representaion of X satisfying the following three properties: (i) the state space X̃ is
compact, (ii) the semigroup P̃t of Ẽ admits a continuous kernel p̃(t,x,y) (t > 0,x,y ∈
X̃), and (iii) if we set
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dspec(x,y) =
(

sup
t>0

e−(t+1/t)(p̃(t,x,x)+ p̃(t,y,y)−2p̃(t,x,y))
)1/2

, x,y ∈ X̃ ,

then dspec becomes a distance on X̃ which induces the same topology of X̃ .
The Borel measurable map I described above gives rise to the equivalence between

X and X̃ , and moreover such a regular representation of X = (X ,µ,E ) ∈D is unique in
the sense that if X̃ ′ = (X̃ ′, µ̃ ′, Ẽ ′) is another one satisfying the same properties (i), (ii),
and (iii) as above, then there exists a homeomorphism f ; X̃ → X̃ ′ between X̃ and X̃ ′

such that f preserves the kernel functions, i.e., p̃′(t, f (x), f (y)) = p̃(t,x,y) (x,y ∈ X̃)

and the measures, i.e., f∗µ̃ = µ̃ ′.
An element X = (X ,µ,E ) ∈ D is assumed, unless otherwise is stated, to possess

the properties (i), (ii) and (iii) described above and we denote by µX , EX , PX ;t , and pX

respectively the measure, the Dirichlet form, the semigroup, and the kernel function of
X . Since pX is continuous, it holds that PX ;t(L2(X ,µ))⊂C(X).

We observe that X is decomposed into the irreducible components {Xi}k
i=1, where

a pair of points x,y ∈ X belongs to the same component if and only if pX(t,x,y) > 0
for some t > 0 (and hence for all t > 0), and that if X ∈ DA,ν , then the number of the
components is bounded by a constant depending only on the given constants A and ν ;
in addition, each component is open and closed in X and a function u with E (u,u) = 0
is constant there.

2.3 Given X ,Y in D and a positive number ε , a Borel measurable map f : X → Y is
called an ε-spectral approximating map if it satisfies

e−(t+1/t)|pX(t,x,x′)− pY (t, f (x), f (x′))|< ε, t > 0, x,x′ ∈ X .

The spectral distance SD(X ,Y ) between X and Y is by definition the greatest lower
bound for positive numbers ε such that there exist ε-spectral approximating maps
f : X → Y and h : Y → X . The spectral distance SD gives a uniform topology on
D . We note that an ε-spectral approximating map f : X → Y induces a 4ε-Hausdorff
approximating map between the metric spaces (X ,dspec

X ) and (Y,dspec
Y ).

The following is proved in [11].

Theorem 2.2. Given positive numbers A and ν , the metric space (DA,ν ,SD) is pre-
compact, that is, any sequence in DA,ν contains SD-Cauchy subsequences. Moreover
let {Xn = (Xn,µXn ,EXn)} be an SD-Cauchy sequence in DA,ν . Then there exists a com-
pact metric space (X̂ , d̂spec

X ), a nonnegative Radon measure µX on X̂, a nonnegative
continuous function pX(t,x,y) on (0,∞)× X̂ × X̂ , Borel measurable maps fn : Xn → X̂ ,
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hn : X̂ → Xn, and a sequence of positive numbers {εn} tending to zero as n → ∞, which
satisfy the following properties:

(1) The function pX(t,x,y) is the kernel of a strongly continuous semigroup {Pt :
t > 0} on L2(X ,µX) associated with a regular Dirichlet form EX on L2(X ,µX), where
X denotes the support of µX .

(2) The regular Dirichlet space (X ,µX ,EX) belongs to the same classe DA,ν .
(3) The distance d̂spec

X is given by

d̂spec
X (x,y) =

(
sup
t>0

e−(t+1/t)(pX(t,x,x)+ pX(t,y,y)−2pX(t,x,y)
)1/2

, x,y ∈ X̂ .

(4) The push-forward fn∗µn of the measure µn by fn converges to the measure µX

with respect to the vague topology.
(5) The maps fn and hn are εn-spectral approximating maps in the sense that

sup
t>0

e−(t+1/t)|pXn(t,x,y)− pX(t, fn(x), fn(y))|< εn; x,y ∈ Xn

sup
t>0

e−(t+1/t)|pXn(t,hn(x),hn(y))− pX(t,x,y)|< εn, x,y ∈ X̂ ,

and furthermore
d̂spec

X ( fn ◦hn(x),x)< εn, x ∈ X̂ .

(6) The i-th eigenvalue λ (n)
i of EXn for each i = 0,1,2, . . . converges to the i-th

eigenvalue λi of EX as n → ∞, and further letting a positive integer i be fixed, for each
eigenfunction u of En with eigenvalue λ (n)

i and unit L2-norm, there exists a continuous
function v on X̂ which is an eigenfunction of eigenvalue λi on X, such that

sup
x∈Xn

|u(x)− v( fn(x))|< εi;n ; sup
x∈X̂

|u(hn(x))− v(x)|< εi;n,

where {εi;n} is a sequence of positive numbers depending only on A, ν , and i, and
tending to zero as n → ∞.

The property (5) above implies that fn : Xn → X̂ and hn : X̂ → Xn are 3εn-Hausdorff
approximating maps between the metric spaces (Xn,d

spec
Xn

) and (X̂ , d̂spec
X ), and hence

the sequence {(Xn,d
spec
Xn

)} converges to (X̂ , d̂spec
X ) as n→∞ with respect to the Gromov-

Hausdorff distance. We remark that if Xn (resp. X) has kn (resp. k) irreducible com-
ponents, then limsupn→∞ kn ≤ k; the equality does not hold true in general as simple
examples show.

Let Xn = (Xn,µXn ,EXn), (X̂ , d̂spec
X ), X = (X ,µX ,EX), fn : Xn → X̂ be as in Theorem

2.2. Let C be the algebra generated by the eigenfunctions of EX . Then C is a subal-
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gebra of C(X̂)∩D[EX ] and becomes a core of D[EX ]. In fact, C is dense both in C(X̂)

and in D[EX ]. Let us define a linear map Φn : C → L2(Xn) by

Φn(u) = fn
∗u, u ∈ C .

Then Theorem 3.2 in [9] is restated in the following

Theorem 2.3. The sequence of forms {EXn} is asymptotically compact and Mosco-
converges to the form E

Now we would like to introduce an intrinsic pseudo distance on X ∈ D . For any
u ∈ D[EX ]∩L∞, the energy measure µu is defined by

µu(ϕ) = EX(u,ϕu)− 1
2
EX(u2,ϕ), ϕ ∈ D[EX ]∩C(X).

We assume that EX is strongly local. Letting A [E ] = {u∈D[EX ] | µu = γ(u)µX ,γ(u)∈
L1(X ,µX)}, we introduce a pseudo distance, called the intrinsic pseudo distance of EX ,
by

dX(x,y) = sup{|u(x)−u(y)| | u ∈ A [EX ]∩C(X),γ(u)≤ 1 µX −a.e.}, x,y ∈ X .

Then the on-diagonal estimate of the kernel function, [H]A,ν , yields the following:

dX(x,y)≤ ψ(d̂spec
X (x,y)), x,y ∈ X

and

|dX(x,y)−dX(x′,y′)| ≤ ψ(d̂spec
X (x,y)+ d̂spec

X (x′,y′)), x,x′,y,y′ ∈ X ,

where ψ(t) is a monotone increasing continuous function on [0,+∞) with ψ(0) = 0
depending only on A and ν . This suggests that the approximating maps fn in Theorem
2.2 is also such a map for the intrinsic pseudo distance of Xn. In fact, the following is
shown in [9].

Theorem 2.4. Let Xn = (Xn,µXn ,EXn), (X̂ , d̂spec
X ), X = (X ,µX ,EX), and fn : Xn → X̂ be

as in Theorem 2.2 and assume that each Xn is strongly local and the intrinsic pseudo
distance dXn defines a distance which induces the same topology of Xn. Then the fol-
lowing assertions hold:

(1) There exist a subsequence {Xm}, a sequence of positive numbers {εm} tending
to zero as m → ∞, and a continuous pseudo distance δ on X̂ such that the maps fm :
Xm → X̂ are εm-Hausdorff approximating maps between (Xm,dXm) and (X̂ ,δ ), that is,
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fm(Xm) is εm-dense in (X̂ ,δ ) and

|dXm(x,y)−δ ( fm(x), fm(y))|< εm, x,y ∈ Xm.

(2) The kernel function pX of X has an off-diagonal upper bound as follows:

pX(t,x,y)≤
A(α)

tν/2 exp
(
− δ (x,y)2

(4+α)t

)
, t ∈ (0,1], x,y ∈ X̂ , (2.1)

where α is any positive constant and A(α) is a positive constant depending only on A
and α .

(3) Let δ be a continuous pseudo distance on X̂ obtained in the first assertion and
C0,1(X̂ ,δ ) the space of functions on X̂ which are Lipschitz continuous with respect to
δ . Then C0,1(X̂ ,δ )⊂ D[EX ]∩C(X̂) and for u ∈C0,1(X̂ ,δ ) and v ∈ D[EX ], EX(u,v) = 0
if the support of u does not intersect that of v. Moreover the energy measure µu of
u ∈C0,1(X̂ ,δ ) is absolutely continuous with respect to the measure µX and the Radon-
Nikodym derivative γ(u) = dµu/dµX satisfies

γ(u)(x)1/2 ≤ dilδ u(x), a.a. x ∈ X .

The local dilatation of a Lipschitz function in this theorem is defined as follows:
Given a Lipschitz function u on a subspace A of (X ,δ ), the dilatation of u on A, that is
the infimal number λ satisfying |u(x)−u(y)| ≤ λδ (x,y) for all x,y ∈ A, is denoted by
dilδ (u), and for a Lipschitz function u on X , the local dilatation of u at a point x is the
number

dilδ u(x) = lim
r→0

dilδ (u|Bδ (x,r)),

where Bδ (x,r) stands for the metric ball around x of radius r with respect to the pseudo
distance δ .

Let us denote by X̂δ and πδ ; X̂ → X̂δ respectively the metric space obtained by
identifying points x,y of X̂ with δ (x,y) = 0 and the projection from X̂ onto X̂δ . The
first assertion of Theorem 2.4 says that (Xm,dXm) converges to the metric space (X̂δ ,δ )
with respect to the Gromov-Hausdorff distance via the approximating maps πδ ◦ fm :
Xm → X̂δ .

By virtue of the off-diagonal estimate (2.1) for pX(t,x,y), we can deduce the fol-
lowing assertions:

(i) For any x ∈ X̂ , δ (x,X) = 0.

(ii) For any continuous function u on X̂ which comes from the quotient space X̂δ ,
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i.e., u ∈ π∗
δC(X̂δ ), we have

lim
t→0

sup
x∈X̂

∣∣∣∣∫
X

pX(t,x,y)u(y) dµ(y)−u(x)
∣∣∣∣= 0. [SC]

(iii) If δ is nondegenerate in an open subset Ω of X̂ , i.e., δ (x,y)> 0 for all x,y ∈ Ω
with x ̸= y, then [SC] holds true in each compact subset of Ω for any u ∈C(Ω). Note
that there are examples such that δ degenerates somewhere, but X = X̂ and [SC] holds
true in X for any u ∈C(X) (cf. [12], [16] ).

(iv) If δ is nondegenerate in Ω, then EX(u,v) = 0 for all u,v ∈ D[EX ] such that u is
supported in Ω and v is constant on the support of u. Notice again that our limit spaces
admit non-local forms. See [9] for elementary examples, and also [16] for constructing
non-local forms as limits of those of local type.

3 Energy forms on vector bundles

Let B be a smooth manifold and G a compact Lie group. We consider a principal bun-
dle M =(M,B,π : M →B) over B with structure group G. Let V be a finite dimensional
complex vector space endowed with a Hermitian inner product ( , )V . Associated to
a finite dimensional unitary representation ρ : G → U(V ) of G, we have a Hermitian
vector bundle Eρ = (M ×ρ V,B,πρ : M ×ρ V → B). Let C∞(M,V )ρ denote the space
of ρ-equivariant smooth maps f of M to V , that is, smooth maps f : M →V satisfying

f (xa) = ρ(a−1) f (x), x ∈ M, a ∈ G.

Then there is a canonical correspondence between C∞(M,V )ρ and the space of smooth
sections Γ(B,Eρ) of the vector bundle Eρ on B: given f ∈ C∞(M,V )ρ , we define
σ( f ) ∈ Γ(B,Eρ) by

σ( f )(y) = [x, f (x)], y ∈ B,

where x ∈ π−1(y) and [x, f (x)] stands for the equivalence class containing (x, f (x)),
{(xa,ρ(a−) f (x)) ∈ M×V | a ∈ G}.

Let L (G) be the Lie algebra of G. Given a principal connection ω : T M → L (G)

on the principal bundle M, we have a linear connection ∇ on Eρ , which is compatible
to the Hermitian inner product, in such a way that

∇X σ( f )(y) = [x,d f (XH)+ρ(ω(XH)) f (x)] = [x,XH( f )(x)], X ∈ TyB, y ∈ B,

where x ∈ π−1(y) and XH denotes the horizontal lift of a tangent vector X of B at y ∈ B
to TxM.



A. Kasue 35

In what follows, we assume that B = (B,gB) is a compact Riemannian manifold
and G is endowed with the bi-invariant metric < , > normalized in such a way that
G has unit volume, Vol(G) = 1. Then given a connection form ω : T M → L (G), we
define a Riemannian metric gω on the total space M by

gω = π∗gB+< ω,ω > .

The metric gω is G-invariant and the projection π : (M,gω)→ (B,gB) is a Riemannian
submersion with totally geodesic fibers isometric to G. Suppose that the represen-
tation ρ : G → U(V ) is irreducible. So far as the bijective correspondence between
C∞(M,V )ρ and Γ(B,Eρ) is concerned, we have∫

M
| f |2dµM =

∫
B
|σ( f )|2dµB, f ∈C∞(M,V )ρ ;

∫
M
|d f |2gω dµM =

∫
B
|∇σ( f )|2 +Cρ |σ( f )|2dµB, f ∈C∞(M,V )ρ ,

where µM and µB respectively denote the normalized volume elements of M = (M,gω)

and B = (B,gB), and Cρ stands for the eigenvalue of the Casimir operator (or the
Laplace operator of G) of the irreducible representation ρ , namely Cρ idV =−∑dimρ

α=1 ρ(eα)
2

(cf. e.g., [17]). It follows that f ∈C∞(M,V )ρ is an eigenfunction of the Laplacian of
M with eigenvalue λ +Cρ if and only if σ( f ) is an eigensection of the rough Laplacian
−∇∗∇ of the vector bundle Eρ with eigenvalue λ :

∆M f +(λ +Cρ) f = 0 ⇐⇒−∇∗∇σ( f )+λσ( f ) = 0.

Now we define a closed (quadratic) form (F
(ρ)
B ,D[F

(ρ)
B ]) on the Hilbert space

L2(B,Eρ) of square integrable sections of Eρ by

F
(ρ)
B (σ) =

∫
B
|∇σ |2dµB, σ ∈ D[F

(ρ)
B ].

Then Kato’s inequality in [7] (cf. also [1]) reads as follows:

EB(|σ |)≤ F
(ρ)
B (σ), σ ∈ D[F

(ρ)
B ]. (3.1)

Let R be a continuous section of the endomorphism algebra bundle Hom(Eρ ,Eρ)

which is symmetric with respect to the inner product. Then a closed form (F
(ρ)
B;R ,D[F

(ρ)
B;R ])

on L2(B,Eρ) is given by

F
(ρ)
B;R(σ) =

∫
B
|∇σ |2dµB +

∫
B
(R(σ),σ)Eρ dµB.
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Note that the domain D[F
(ρ)
B;R ] of F

(ρ)
B;R coincides with that of F

(ρ)
B , because R is

assumed to be continuous.

Lemma 3.1. Let r(x) be the least eigenvalue of Rx (x∈B) and let r−(x)=max{−r(x),0}.

(i) Suppose that the base Riemannian manifold B satisfies the Sobolev inequality
[S]ν ,A′′ for ν > 2, A′′ > 0, and ∫

B
|r−|pdµB ≤ K p

for some p > ν/2 and K > 0. Then for any α ∈ (0,1), one has

F
(ρ)
B;R(σ)≥ (1−α)F

(ρ)
B (σ)−β

∫
B
|σ |2dµB, σ ∈ D[F

(ρ)
B;R ]

where β is a positive constant depending only on ν ,A′′, p,K and α .

(ii) Suppose that the base Riemannian manifold B satisfies the Sobolev inequality
[S]ν ,A for ν > 2, A′′ > 0, and ∫

B
|r−|ν/2dµB ≤ α

A′′

for some α ∈ (0,1). Then one has

F
(ρ)
B;R(σ)≥ (1−α)F

(ρ)
B (σ)−β

∫
B
|σ |2dµB, σ ∈ D[F

(ρ)
B;R ],

where β is a positive constant depending only on ν ,A′′ and α .

Proof. Let L(s) = {x ∈ B | r−(x)≥ s} for s ≥ 0. Then we have∫
B

r−|σ |2dµB

=
∫

B\L(s)
r−|σ |2dµB +

∫
L(s)

r−|σ |2dµB

≤ s
∫

B
|σ |2dµB +

(∫
L(s)

(r−)ν/2dµB

)2/ν(∫
B
|σ |2ν/(ν−2)dµB

)(ν−2)/ν

≤ s
∫

B
|σ |2dµB + s(ν−2p)/ν

(∫
L(s)

(r−)pdµB

)2/ν(∫
B
|σ |2ν/(ν−2)dµB

)(ν−2)/ν

≤ s
∫

B
|σ |2dµB + s(ν−2p)/νK2p/ν

(∫
B
|σ |2ν/(ν−2)dµB

)(ν−2)/ν
,
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and then applying the Sobolev inequality , we get∫
B

r−|σ |2dµB ≤ s
∫

B
|σ |2dµB + s(ν−2p)/νK2p/νA′′

(
EB(|σ |)+

∫
B
|σ |2dµB

)
.

Take s so that s(ν−2p)/νK2p/νA′′ = α . Then using Kato’s inequality, we obtain∫
B

r−|σ |2dµB ≤ αFB(σ)+β
∫

B
|σ |2dµB,

where we put β = α + s. Using this, we get

F
(ρ)
B;R(σ) = F

(ρ)
B (σ)+

∫
B
(R(σ),σ)E|rhodµB

≥ F
(ρ)
B (σ)−

∫
B

r−|σ |2dµB

≥ (1−α)F
(ρ)
B (σ)−β

∫
B
|σ |2dµB.

This shows the assertion (i). If we take s = 0 and p = ν/2 as in the above arguments
we can prove the second assertion (ii). This completes the proof of Lemma 3.1.

Now let Ĝ denote the set of irreducible unitary representations of G. Given ρ ∈ Ĝ,
ρ : G → U(V ), we consider smooth functions ( f ,v)V on M, where f ∈ C∞(M,V )ρ

and v ∈V , and denote by C∞(M,ρ) the vector space spanned by such functions. This
is canonically isomorphic to the vector space C∞(M,V )ρ ⊗V ∗, and invariant by the
action of G. Then Schur’s orthogonal relation shows that for ρ , ρ ′ ∈ Ĝ with ρ ̸= ρ ′,
C∞(M,ρ) and C∞(M,ρ ′) are orthogonal in L2(M,µM), that is,

∫
M
( f ,v)V ( f ′,v′)V dµM =

{ ∫
M( f , f ′)V dµM(v,v′)V , if ρ = ρ ′,

0, if ρ ̸= ρ ′.

Let L2(M,ρ) denote the closure of the subspace C∞(M,ρ) in L2(M,µM). Then accord-
ing to Peter-Weyl ’s theorem, we have the orthogonal decomposition of L2(M,µM) as
follows:

L2(M,µM) = ∑
ρ∈Ĝ

L2(M,ρ).

We remark that for the trivial representation ρ = 1, the space L2(M,1) can be identified
with L2(B,µB) via the projection π : M → B, that is, L2(M,1) = {π∗u | u∈ L2(B,µB)} ,
and it holds that∫

M
|π∗u|2dµM =

∫
B
|u|2dµB, EM(π∗u,π∗u) = EB(u,u),∆Mπ∗u = π∗∆Bu.
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For ρ ∈ Ĝ, let {λ (ρ)
i } be the eigenvalues of the rough Laplacian −∇∗∇ acting

on L2(B,Eρ) and take a complete orthonormal system of eigenfunctions {ϕ (ρ)
i } in

C(M,V )ρ such that ϕ (ρ)
i has eigenvalue λ (ρ)

i +Cρ . Let {e1,e2, . . . ,edimρ} be an or-
thonormal basis of V . Then {

√
dimρ(ϕ (ρ)

i ,eα)V | i = 1,2, . . . ,α = 1,2, . . . ,dimρ} is
a complete orthonormal system of eigenfunctions of L2(M,ρ). Set

p(ρ)(t,x,y) =
dimρ

2
e−Cρ t

(
∞

∑
i=1

e−λ (ρ)
i t{(ϕ (ρ)

i (x),ϕ (ρ)
i (y))V +(ϕ (ρ)

i (y),ϕ (ρ)
i (x))V}

)
,

where t > 0 and x,y ∈ M. Then the heat kernel pM of M is decomposed into the sum
of p(ρ) (ρ ∈ Ĝ) as follows:

pM(t,x,y) = ∑
ρ∈Ĝ

p(ρ)(t,x,y), t > 0, x,y ∈ M. (3.2)

For ρ = 1, we have

p(1)(t,x,y) = pB(t,π(x),π(y)), t > 0, x,y ∈ M.

For ρ ∈ Ĝ, ρ ̸= 1, we can apply a result by [7] to get the following estimate:

p(ρ)(t,x,y)≤ dimρ e−Cρ t pB(t,π(x),π(y)), t > 0, x,y ∈ M. (3.3)

This implies in particular that

pM(t,x,y) ≤

∑
ρ∈Ĝ

dimρ e−Cρ t

 pB(t,π(x),π(y))

=
∫

G
pG(t,a,a)dµG(a) pB(t,π(x),π(y)), x,y ∈ M

(cf. [3]).

Lemma 3.2. There exists a positive constant C depending only on the dimension d
and the diameter diam (G) of G such that

0 ≤ pM(t,x,x)− pM(t,x,xa)

≤C

∑
ρ∈Ĝ

(dimρ)2C(1+d)/2
ρ e−Cρ t

 |a|G pB(t,π(x),π(x)), x ∈ M, a ∈ G,

where |a|G stands for the distance between a and the unit element e of G.
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Proof. Let ρ ∈ Ĝ and ρ : G →U(V ). We observe first that

(ϕ (ρ)
i (x),ϕ (ρ)

i (x))V − 1
2
{(ϕ (ρ)

i (x),ϕ (ρ)
i (xa))V +(ϕ (ρ)

i (xa),ϕ (ρ)
i (x))V}=

1
2
{(ϕ (ρ)

i (x),(1−ρ(a−1))ϕ (ρ)
i ))V +((1−ρ(a−1))ϕ (ρ)

i (x),ϕ (ρ)
i (x))V}.

Let {eα(a) | α = 1, . . . ,dimρ} be an orthonormal basis of V consisting of eigenvectors
eα(a) of ρ(a−1) with eigenvalues exp

√
−1θα(a). Then the right-hand side of the

above identity is equal to ∑dimρ
α=1 (1−cosθα(a))|(ϕ (ρ)

i (x),eα(a))V |2, and hence we have

(ϕ (ρ)
i (x),ϕ (ρ)

i (x))V − 1
2
{(ϕ (ρ)

i (x),ϕ (ρ)
i (xa))V +(ϕ (ρ)

i (xa),ϕ (ρ)
i (x))V}

=
dimρ

∑
α=1

(1− cosθα(a))|(ϕ (ρ)
i (x),eα(a))V |2. (3.4)

Let χρ : G → C be the character of ρ , that is, χρ = trace ρ . Then we have

dimρ

∑
α=1

(1− cosθα(a))|(ϕ (ρ)
i (x),eα(a))V |2 ≤

(
dimρ

∑
α=1

(1− cosθα(a))

)
|ϕ (ρ)

i (x)|2V

≤ |χρ(e)−χρ(a)||ϕ (ρ)
i (x)|2V ,

and thus by (3.3) and (3.4)), we get

p(ρ)(t,x,x)− p(ρ)(t,x,xa) ≤ e−Cρ t |χρ(e)−χρ(a)|
∞

∑
i=1

e−λ (ρ)
i t |ϕ (ρ)

i (x)|2V

≤ dimρ e−Cρ t |χρ(e)−χρ(a)|pB(t,π(x),π(x)).(3.5)

Here since G has nonnegative sectional curvature and χρ is an eigenfunction of eigen-
value Cρ , we apply a well known estimate due to Li-Yau [14] to χρ , and obtain

|χρ(e)−χρ(a)| ≤C dimρ C(1+d)/2
ρ |a|G, (3.6)

where C is a positive constant depending only on d and diam(G). Then in view of
(3.2), (3.5) and (3.6), we arrive at the inequality of Lemma 3.2.

Let dM and dB be, respectively, the Riemannian distances of M and B. Then dM

is G-invariant and the projection π : M → B is contractive, that is, dB(π(x),π(y)) ≤
dM(x,y), x,y ∈ M. Moreover since the fibers are totally geodesic and isometric to
G, for any x,y ∈ M, dM(x,ya) = dB(π(x),π(y)) for some a ∈ G, and it holds that
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|dM(x,y)−dM(xa,yb)| ≤ |ab−1|G, x,y ∈ M, a,b ∈ G.

Let dspec
M and dspec

B be, respectively, the distances on M and B determined by their
heat kernels. It is clear that dspec

M is G-invariant and the projection π : M → B is a
contraction map with respect to these distances, that is,

dspec
B (π(x),π(y))≤ dspec

M (x,y), x,y ∈ M.

Lemma 3.3. Suppose that B satisfies [H]ν ,A and the diameter of G is bounded from
above by a constant D. Then there exists a positive constant C depending only on
ν ,A,D, and d such that

|dspec
M (x,y)−dspec

M (xa,yb)| ≤C|ab−1|1/2
G , x,y ∈ M, a,b ∈ G

Proof. It follows from Lemma 3.2 that

dspec
M (x,xa)2 = sup

t>0
e−(t+1/t)(pM(t,x,x)+ pM(t,xa,xa)−2pM(t,x,xa))

= 2sup
t>0

e−(t+1/t)(pM(t,x,x)− pM(t,x,xa))

≤ 2C′|a|G,

where C′ is a positive consatnt depending only on ν ,A,D and d. Therefore we have

dspec
M (xa,yb) = dspec

M (xab−1,y)

= dspec
M (xab−1,y)−dspec

M (xab−1,x)+dspec
M (xab−1,x)

≤ dspec
M (x,y)+(2C′)1/2|ab−1|1/2

G .

Similarly we have

dspec
M (x,y) = dspec

M (xaa−1,ybb−1)≤ dspec
M (xa,yb)+(2C′)1/2|ab−1|1/2

G .

This completes the proof of Lemma 3.3.

Remark If B satisfies [H]A,ν , then M satisfies [H]A′,ν+d for some constant A′ depend-
ing only on A, the dimension and the diameter of G. If the sectional curvature of B
and the curvature of a principal connection on M have double-sides bounds, then the
sectional curvature of M is also bounded from both sides (cf. [2], Chap.9).
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4 Convergence of Riemannian vector bundles

In this section, we consider a sequence of principal G-bundles Mn =(Mn,Bn,πn : Mn →
Bn), where G is a compact Lie group of dimension d endowed with the normalized bi-
invariant metric, the total space Mn has the Riemannian metric gωn associated to a
principal connection ωn, and the base space Bn is a compact Riemannian manifold.
We assume that all Bn satisfy [H]A,ν for some A and ν , and hence all Mn also satisfy
[H]A′,ν+d . Then in view of Theorem 2.2, we see by passing to a subsequence that
there exists a compact metric space (X̂ , d̂spec

X ), a nonnegative Radon measure µX on
X̂ , a nonnegative continuous function pX(t,x,y) on (0,∞)× X̂ × X̂ , Borel measurable
maps fn : Bn → X̂ , hn : X̂ → Bn, and a sequence of positive numbers {εn} tending to
zero as n → ∞, which satisfy the following properties: (1) pX(t,x,y) is the kernel
of a strongly continuous semigroup on L2(X ,µX) associated with a regular Dirichlet
form EX on L2(X ,µX), where X denotes the support of µ; (2) the regular Dirich-
let space (X ,µX ,EX) belongs to the same classe DA,ν ; (3) the distance d̂spec

X is given

by d̂spec
X (x,y) =

(
supt>0 e−(t+1/t)(pX(t,x,x)+ pX(t,y,y)−2pX(t,x,y)

)1/2
for x,y ∈ X̂ ;

(4) the push-forward fn∗µBn of the measure µBn by fn converges to the measure µX

with respect to the vague topology; (5) the maps fn and hn are εn-spectral approximat-
ing maps in the sense that supt>0,x,y∈Bn

e−(t+1/t)|pXn(t,x,y)− pX(t, fn(x), fn(y))|< εn,
supt>0,x,y∈X̂ e−(t+1/t)|pXn(t,hn(x),hn(y))− pX(t,x,y)|< εn, and furthermore
supx∈X̂ d̂spec

X ( fn ◦hn(x),x)< εn.
Similarly, passing to a subsequence, we see that there exists a compact metric space

(Ŷ , d̂spec
Y ), a nonnegative Radon measure µY on Ŷ , a nonnegative continuous function

pY (t,x,y) on (0,∞)× Ŷ × Ŷ , Borel measurable maps Fn : Mn → Ŷ , Hn : Ŷ → Mn, and
a sequence of positive numbers {εn} tending to zero as n → ∞, which satisfy the fol-
lowing properties:(1) pY (t,x,y) is the kernel of a strongly continuous semigroup on
L2(Y,µ) associated with a regular Dirichlet form EY on L2(Y,µY ), where Y denotes
the support of µY ; (2) the regular Dirichlet space (Y,µY ,EY ) belongs to the same classe
DA′,ν+d ; (3) the distance d̂spec

Y is given by d̂spec
Y (x,y) = (supt>0 e−(t+1/t)(pY (t,x,x)+

pY (t,y,y)− 2pY (t,x,y))1/2 for x,y ∈ Ŷ ; (4) the push-forward Fn∗µMn of the measure
µMn by Fn converges to the measure µY with respect to the vague topology; (5) the
maps Fn and Hn are εn-spectral approximating maps in the sense that
supt>0,x,y∈Mn

e−(t+1/t)|pMn(t,x,y)− pY (t,Fn(x),Fn(y))|< εn,
supt>0,x,y∈Ŷ e−(t+1/t)|pMn(t,Hn(x),Hn(y))− pY (t,x,y)|< εn, and furthermore
supx∈Ŷ d̂spec

Y (Fn ◦Hn(x),x)< εn.
Let π̂n be a Borel measurable map from Ŷ to X̂ defined by π̂n = fn◦πn◦Hn. Passing

to a subsequence, we will see that π̂n converges uniformly to a continuous map π̂∞ :
Ŷ → X̂ as n → ∞. In fact, taking an increasing family of finite subsets of Ŷ whose
union S is dense in Ŷ , and applying the diagonal argument, we get a subsequence of
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πn, denoted by the same letters, and a map π∞ from S to X to which πn converges
pointwise as n → ∞. Since we have

d̂spec
X (π̂n(y), π̂n(y′)) ≤ dspec

Bn
(ϕk ◦Hn(y),πk ◦Hn(y′))+ εk

≤ dspec
Mn

(y,y′)+2εn, y,y′ ∈ S,

letting n → ∞, we obtain

d̂spec
X (π̂∞(y), π̂∞(y′))≤ d̂spec

Y (y,y′), y,y′ ∈ S.

Since S is dense in Ŷ , we may assume that π̂∞ is a contraction map from Ŷ to X̂ . It
is easy to verify that π̂n converges uniformly to π̂∞ as n → ∞, since Fn, Hn and fn are
Gromov-Hausdorff approximations with respect to the metrics under consideration. In
addition, since π̂n(Ŷ ) is 2εn-dense in X̂ = (X̂ , d̂spec

X ), we have π̂∞(Ŷ ) = X̂ . The measure
µY and µX are respectively the vague limits of the image measures Fn∗µMn and fn∗µBn

as n → ∞, and πn∗µMn = µBn . Hence we get π̂∞∗µY = µX .
Now we want to show that a sequence of Borel measurable maps θn : Y ×G → Y

defined by θn(y,a) = Fn(Hn(y)a), y ∈ Y,a ∈ G, converges uniformly to a continuous
map θ : Ŷ ×G → Ŷ which gives an action of G on Ŷ . To see this, we have by Lemma
3.3

d̂spec
Y (θn(y,a),θn(y′,b)) ≤ dspec

Mn
(Hn(y)a,Hn(y′)b)+ εn

≤ dspec
Mn

(Hn(y),Hn(y′))+C|ab−1|G + εn

≤ d̂spec
Y (y,y′)+C|ab−1|G +2εn, (4.1)

y,y′ ∈ Ŷ , a,b ∈ G.

Passing to a subsequence of {θn}, denoted by the same letters, we see that θn converges
to a map θ : S × T → Ŷ , where T is a countably infinite, dense subset of G. For
simplicity, we write ya for θ(y,a), y ∈ S, a ∈ T . Then it follows from (4.1) that

d̂spec
Y (ya,y′b)≤ d̂spec

Y (y,y′)+C|ab−1|1/2
G , y,y′ ∈ S, a,b ∈ T.

In the same way, we obtain

d̂spec
Y (y,y′)≤ d̂spec

Y (ya,y′b)+C|ab−1|1/2
G , y,y′ ∈ S, a,b ∈ T.

Thus we have

|d̂spec
Y (ya,y′b)− d̂spec

Y (y,y′)| ≤C|ab−1|1/2
G , y,y′ ∈ S, a,b ∈ T. (4.2)
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Then we can deduce that (4.2) holds on Ŷ ×G and G acts continuously on Ŷ . With
respect to this action, the approximating maps Fn : Mn → Ŷ and Hn : Ŷ → Mn are ε̄n-
equivariant in the sense that{

d̂spec
Y (Fn(za),Fn(z)a) ≤ ε̄n, z ∈ Mn, a ∈ G

dspec
Mn

(Hn(ya),Hn(y)a)) ≤ ε̄n, y ∈ Ŷ , a ∈ G,

where {ε̄n} is a sequence of positive numbers tending to 0 as n → ∞. Moreover the
Borel measure µY and the kernel function pY of Ŷ are invariant under the action of G
on Ŷ , that is ∫

Y
u(ya)dµY (y) =

∫
Y

u(y)dµY (y), u ∈C(Ŷ ), a ∈ G

pY (t,ya,y′a)) = pY (t,y,y′), t > 0, y,y′ ∈ Ŷ ,a ∈ G

We denote the support of µY by Y .
As is done in the case of L2(Mn,µMn), we decompose the Hilbert space L2(Y,µY )

into the sum of the subspaces corresponding to the irreducible unitary representations.
For ρ ∈ Ĝ, ρ : G → U(V ), we denote by C(Ŷ ,V )ρ the space of ρ-equivariant con-
tinuous maps of Ŷ to V and C(Ŷ ,ρ) the linear space spanned by functions ( f ,v)V ,
f ∈C(Ŷ ,V )ρ , v ∈V . Here we notice that

π∗
∞C(X̂)⊂C(Ŷ ,1) = π∞;G

∗(C(Ŷ/G)),

where π̂∞;G : Ŷ → Ŷ/G stands for the projection of Ŷ onto Ŷ/G. We also remark
that C(Ŷ ,ρ) and C(Ŷ ,ρ ′) are orthogonal in L2(Y,µY ) if ρ ̸= ρ ′. In fact, for ( f ,v)V ∈
C(Ŷ ,ρ) and ( f ′,v′) ∈C(Ŷ ,ρ ′), we have

∫
Y
( f ,v)V ( f ′,v′)V ′dµY =

{ ∫
Y ( f , f ′)V dµY (v,v′)V , ρ = ρ ′,

0, ρ ̸= ρ ′.

Let L2(Y,ρ) be the closure of C(Ŷ ,ρ) in L2(Y,µY ). Then L2(Y,µY ) is decomposed
into the direct sum of L2(Y,ρ), ρ ∈ Ĝ:

L2(Y,µY ) = ∑
ρ∈Ĝ

L2(Y,ρ),

and a function u ∈ L2(Y,µY ) is written as

u = ∑
ρ∈Ĝ

u(ρ), u(ρ) ∈ L2(Y,ρ).



44 Spectral convergence of Riemannian vector bundles

According to this decomposition, the regular Dirichlet form EY =(EY ,D[EY ]) on L2(Y,µY )

is also decomposed as follows:

EY (u,u) = ∑
ρ∈Ĝ

E
(ρ)

Y (u(ρ),u(ρ)), u ∈ D[EY ].

We remark that
L2(Y,1) =C(Y,1) = π∞;G∗C(X).

Given ρ ∈ Ĝ, let {
√

dimρ(ϕ (ρ)
n;i ,eα)V | i = 1,2, . . . , α = 1, . . . ,dimρ} be a com-

plete orthonormal system of L2(Mn,ρ) which consists of eigenfunctions (ϕ (ρ)
n;i ,eα)V

with eigenvalues λ (ρ)
n;i +Cρ , where {eα | α = 1, . . . ,dimρ} is an orthonormal basis of

V . Then we have the following assertions:
(i) For each i = 1,2, . . ., λ (ρ)

n;i +Cρ converges, as n → ∞, to λ (ρ)
i +Cρ ∈ [Cρ ,+∞].

(ii) There exists a complete orthonormal system {
√

dimρ(ϕ (ρ)
i ,eα)V | 1 ≤ i < N ≤

+∞,α = 1, . . . ,dimρ} of L2(Y,ρ), which consists of eigenfunctions (ϕ (ρ)
i ,eα)V (∈

C(Ŷ ,ρ)) with eigenvalues λ (ρ)
i +Cρ , and ϕ (ρ)

n;i converges uniformly to ϕ (ρ)
i as n → ∞

via the spectral approximating maps Fn : Mn → Ŷ and Hn : Ŷ → Mn in such a way that

|ϕ (ρ)
n;i (Hn(y))−ϕ (ρ)

i (y)| ≤ εn(ρ ; i), y ∈ Ŷ ;

|ϕ (ρ)
n;i (z)−ϕ (ρ)

i (Fn(z))| ≤ εn(ρ; i), z ∈ Mn,

where limn→∞ εn(ρ ; i) = 0.
(iii) Let

p(ρ)Y (t,x,y) =

dimρ
2

e−Cρ t

(
∞

∑
i=1

e−λ (ρ)
i t{(ϕ (ρ)

i (x),ϕ (ρ)
i (y))V +(ϕ (ρ)

i (y),ϕ (ρ)
i (x))V}

)
.

Then we have

sup
t>0;x,y∈Ŷ ;z,w∈Mn

e−(t+1/t)|p(ρ)Mn
(t,Hn(x),Hn(y))− p(ρ)Y (t,x,y)| ≤ εn(ρ);

sup
t>0;x,y∈Ŷ ;z,w∈Mn

e−(t+1/t)|p(ρ)Mn
(t,z,w)− p(ρ)Y (t,Fn(z),Fn(w))| ≤ εn(ρ),

where limn→∞ εn(ρ) = 0.

Now we want to discuss a convergence of Hermitian vector bundles associated to
principal fiber bundles. For any ρ ∈ Ĝ, we have the Hermitian vector bundle En;ρ
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over Bn and a bijective linear correspondence σn between C(Mn,V )ρ and the space
of continuous sections Γ(Bn,En;ρ) of En;ρ . However in the case of the limit space
(Ŷ , X̂ , π̂∞ : Ŷ → X̂), the continuous action of G may have nontrivial isotropy groups,
and thus this process does not work well.

In what follows, we consider the case where G is the unit circle S1 = {e2π
√
−1θ | θ ∈

R} and V = C. Let

S̄ρ = {y ∈ Ŷ | f (y) = 0,∀ f ∈C(Ŷ ,C)ρ}= {y ∈ Ŷ | u(y) = 0,∀u ∈C(Ŷ ,ρ)}.

Then S̄ρ is an S1-invariant closed subspace of Ŷ . In view of (3.4), we observe that
for y ∈ Ŷ \ S̄ρ and a ∈ S1, ρ(a) = 1 if ya = y. This implies that we have a con-
tinuous Hermitian line bundle E∞;ρ = (Ŷ \ S̄ρ)×S1 C over (Ŷ \ S̄ρ)/S1 and an ele-
ment of C(Ŷ ,C)ρ corresponds to a continuous section σ : (Ŷ \ S̄ρ)/S1 → E∞;ρ such
that |σ(x)|E∞;ρ tends to zero as x ∈ (Ŷ \ S̄ρ)/S1 tends to S̄ρ/S1. We denote by
C∗((Ŷ \ S̄ρ)/S1,E∞;ρ) the space of such sections, and by L2((Ŷ \ S̄ρ)/S1,E∞;ρ) the
closure of C∗((Ŷ \ S̄ρ)/S1,E∞;ρ) in L2((Ŷ \ S̄ρ)/S1,E∞;ρ), where the push-forward
measure π̂∞;S1∗µY is taken. In this way, we obtain a densely defined closed form
(F (ρ),D[F (ρ)]) on L2((Ŷ \S̄ρ)/S1,E∞;ρ) which corresponds to the closed form E

(ρ)
Y

on L2(Ŷ ,ρ). We note that an eigensection of F (ρ)is continuous and belongs to C∗((Ŷ \
S̄ρ)/S1,E∞;ρ).

Now we define a linear map Φ(ρ)
n : C(Ŷ ,ρ)→ L2(Mn,ρ) by

Φ(ρ)
n (u) = (u◦Fn)

(ρ), u ∈C(Ŷ ,ρ).

Then we have
lim
n→∞

∥Φ(ρ)
n (u)∥L2 = ∥u∥L2 , u ∈C(Ŷ ,ρ),

and we can deduce from the above arguments

Assertion 1: a sequence of the closed forms E
(ρ)

Mn
on L2(Mn,ρ) is asymptotically com-

pact and Mosco-converges to the closed form E
(ρ)

Y on L2(Y,ρ) as n → ∞; moreover
if G = S1 and V = C, then a sequence of the closed form F

(ρ)
Bn

on L2(Bn,En;ρ) is
asymptotically compact and Mosco-converges to the closed form F (ρ) on L2((Ŷ \
S̄ρ)/S1,E∞;ρ) as n → ∞.

Now a continuous symmetric section Rn of the vector bundle Hom(En,En) over Bn

is given for each n. Then a closed form F
(ρ)
Rn

on L2(Bn,Eρ) is defined by

F
(ρ)
Rn

(σ) =
∫

Bn

|∇σ |2 +(Rn(σ),σ)Eρ dµBn , σ ∈ D[F
(ρ)
Rn

] = D[F
(ρ)
Bn

].
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Suppose that for some p > ν/2 and K > 0, and for all n,

∥r−n ∥Lp ≤ K,

or for some α ∈ (0,1) and for all n,

∥r−n ∥Lν/2 ≤
α
A′′ .

Then we can deduce from Lemma 3.1

Assertion 2: the sequence {F (ρ)
Rn

} is asymptotically compact, and further it contains
a Γ-convergent subsequence (cf. 2.1), which in fact Mosco-converges to a closed form
G (ρ) on L2(Y,ρ) with D[G (ρ)]⊂ D[F (ρ)].

We make a remark. Let dMn and dBn be respectively the Riemannian distances of Mn

and Bn. Then we can apply Theorem 2.4 to Fn : Mn → Ŷ and fn : Bn → X̂ , and passing
to a subsequence denoted by the same letters, we get continuous pseudo distances δY

and δX on Ŷ and X̂ , respectively, so that Fn : (Mn,dMn)→ (Ŷ ,δY ) and fn : (Bn,dBn)→
(X̂ ,δX) are, respectively, εn-Hausdorff approximating maps with limn→∞ εn = 0. Note
that δY is G-invariant. Let Ŷδ (resp. X̂δ ) be the geodesic space obtained by identifying
points x,y ∈ Ŷ if δY (x,y) = 0 (resp. points z,w ∈ X̂ if δX(z,w) = 0). Then the action
of G on Ŷ descends to that on Ŷδ so that the quotient space Ŷδ/G coincides with X̂δ .

Proof of Theorem 1.1. Let {En → Bn} be as in Theorem 1.1. Let Mn be the unitary
frame bundle of En over Bn and consider En as the associated Hermitian vector bundle.
Passing to a subsequence, we assume that (Mn,d

spec
Mn

) converges to a compact metric
space (Ŷ ,dspec

Y ) endowed with a Radon measure and a Dirichlet form on the Hilbert
space of square summable functions relative to the measure; moreover the unitary
group U(r) isometrically acts on Ŷ in such a way that the measure and the Dirichlet
form are invariant. We write ρ0 for the canonical action of U(r) on Cr, and use the
same notations as in the above arguments, such as C(Mn,Cr)ρ0 , σn : L2(Mn,Cr)ρ0 →
L2(Bn,En), and C(Ŷ ,Cr)ρ0 . Then we have a linear map Ψn : C(Ŷ ,Cr)ρ0 to L2(Bn,En)

defined by Ψn(u) = σn((u ◦Fn)
(ρ0)), u ∈ C(Ŷ ,Cr)ρ0 , where Fn : Mn → Ŷ is an εn-

approximating map with limn→∞ εn = 0. Then Ψn satisfies that limn→∞ ∥Φn(u)∥L2 =

∥u∥L2 for all u ∈C(Ŷ ,Cr)ρ0 . Thus Assertion 1 shows the theorem.

Example. Here we provide a simple example to illustrate Theorem 1.1. Let M =

(M,B,π : M → B) be a principal bundle over a compact Riemannian manifold B =

(B,gB) with structure group S1 = {e2π
√
−1θ | θ ∈ R}. Given a connection form ω :

T M → L (S1) =
√
−1R, we have a Riemannian metric gω on M defined by gω =

π∗gB +ω ⊗ω . Let σ : U → M be a smooth section of M over an open subset U of B
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and define a local trivialization ησ ((x,a)) : U ×S1 → π−1(U) by ησ ((x,a)) = σ(x)a,
(x,a) ∈ U × S1. Then the pull-back ησ

∗ω is expressed by ησ
∗ω =

√
−1(dθ +Γ),

where Γ is a differential one-form on U .
Given an integer ℓ, ρℓ stands for the representation ρℓ(z) = zℓ, z ∈ S1. Let u be a

smooth function in C(M,ρℓ). Then we have

ησ
∗u(x,e2π

√
−1θ ) = ũ(x)e−2πℓ

√
−1θ , (x,e2π

√
−1θ ) ∈U ×S1,

where ũ is a smooth function on U , and

ησ
∗(∆Mu)(x,e2π

√
−1θ ) =(

∆Bũ+4π2(1+ |Γ|2)ũ−2πℓ
√
−1((div Γ♯)ũ+2(Γ♯,∇ũ)gB)

)
(x)e−2πℓ

√
−1θ .

Let us now consider a sequence of connection forms ωn and assume that (M,gωn ,B,
π : M → B) Mosco-converges to a compact Dirichlet space (Ŷ ,µY ,EY ,B, π̂∞ : Ŷ →
B) as n → ∞ in such a manner described as above. We suppose that as n → ∞, ωn

converges to a connection form ω∞ defined on an open subset π−1(B \K), uniformly
on a compact subset of π−1(B\K), where K is a compact submanifold of co-dimension
≥ 2. Let E∞ and p∞ denote the energy form on the Sobolev space W 1,2(π−1(B\K)) in
which C∞

0 (π−1(B \K)) is densely embedded. Then (π−1(B \K),gω∞) can be densely
embedded in Y = supp µY in such a way that p∞(t,x,y) = pY (t,x,y), t > 0,x,y ∈
π̂−1

∞ (B\K).
Now we take the base manifold B to be the unit Euclidean sphere S2 = (S2,g0) and

consider for simplicity the case where M is just the product space of S2 and S1. Let
(r,ξ ) (0 < r < 2π,0 ≤ ξ ≤ 2π) be the polar coordinates around the north pole p∗.
We write the metric g0 as g0 = dr2 +(sinr)2dξ 2 on S2 \ {p∗,q∗}, where q∗ denotes
the south pole, and express the metric gωn as gωn = dr2 +(sinr)2dξ 2 +(dθ +Γn)

2,
where Γn is a one-form on S2. Suppose that as n → ∞, Γn converges to τdξ , uni-
formly on a compact subset of S2 \ {p∗,q∗}. Here τ is a constant. For a fixed in-
terger ℓ, let ϕ (ℓ) be an eigenfunction in C(Ŷ ,ρℓ) with eigenvalue λ (ℓ) and set ϕ̃ (ℓ)(x) =
ϕ (ℓ)(x,e2π

√
−1θ )e2πℓ

√
−1θ on S2 \{p∗,q∗}. Then ϕ̃ (ℓ)(x) satisfies

−∆gstd ϕ̃ (ℓ)+4π2ℓ2
(

1+
τ2

4π2(sinr)2

)
ϕ̃ (ℓ)−

√
−1

2ℓτ
(sinr)2

∂ ϕ̃ (ℓ)

∂ξ
= λ (ℓ)ϕ̃ (ℓ).

Let

uℓ,k(r) =
∫ 2π

0
ϕ̃ (ℓ)(r,ξ )e−k

√
−1ξ dξ , k = 1,2, . . .



48 Spectral convergence of Riemannian vector bundles

Then uℓ,k(r) satisfies

u′′ℓ,k(r)+
cosr
sinr

u′ℓ,k(r)−
(k+ τℓ)2

(sinr)2 uℓ,k(r) = (λ (ℓ)−4π2ℓ2)uℓ,k(r)

on (0,2π). In view of this equation, we see that limr→0 uℓ,k(r) = limr→2π uℓ,k(r) = 0
if k + τℓ ̸= 0; in particular, ϕ̃ (ℓ)(r,ξ ) goes to zero as r → 0 or r → 2π if τ is an
irrational number. We consider the case that τ is a rational number and write τ = a/b
with integers a and b(≥ 1) which are relatively prime. Then for ℓ = bm (m ∈ Z),
ψ(ℓ)(r,ξ ) = ϕ̃ (ℓ)(r,ξ )eam

√
−1ξ satisfies

−∆g0ψ(ℓ) = (λ (ℓ)−4π2ℓ2)ψ(ℓ).

That is, ψ(ℓ) is an eigenfunction of S2 with eigenvalue λ (ℓ)− 4π2ℓ2. In other words,
for an eigenfunction ψ on S2 with eigenvalue λ , the function ϕ (ℓ)(r,ξ ,e2π

√
−1θ ) =

ψ(r,ξ )e−2mπ
√
−1(bθ+aξ/2π) is an eigenfunction of eigenvalue λ +4π2ℓ2 relative to the

Laplacian of the metric g∞ = dr2+(sinr)2dξ 2+(dθ +τdξ/2π)2 on S2\{p∗,q∗}×S1.
In this way, we see that (i) when τ is an irrational number, π̂−1

∞ (p∗)∩Y consists of a
single point and so does π̂−1

∞ (q∗)∩Y , and further π̂−1
∞ ({p∗,q∗})∩Y = S̄ρℓ

∩Y for
any ℓ; (ii) when τ is a rational number a/b (b ≥ 1), the isotropy group at a point in
π̂−1

∞ ({p∗,q∗}) is given by {e2mπ
√
−1/b | m = 0,1, . . . ,m−1}, and further if b does not

divide ℓ , then S̄ρℓ
∩Y = π̂−1

∞ ({p∗,q∗})∩Y and if b divides ℓ, then S̄ρℓ
∩Y = /0.
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