An extension of Stieltjes-Young integrals

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者: 中尾, 愼太郎
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00011134

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

An extension of Stieltjes-Young integrals

Shintaro NAKAO

Department of Mathematics, Faculty of Science, Kanazawa University. Kanazawa 920-1192, Japan

(Received June 27, 2003)

Abstract: Let $\phi(t)$ and f(t) be real-valued functions defined on a closed interval [a,b]. The Riemann-Stieltjes integral of f with respect to ϕ is usually denoted by $\int_a^b f(t)d\phi(t)$. When $\phi(x)$ is of bounded variation on the interval [a,b], we can treat this integral in the framework of measure theory. Let p and q are positive numbers such that 1/p + 1/q > 1. L. C. Young showed that the integral $\int_a^b f(t)d\phi(t)$ in the case that f(t) and $\phi(t)$ have finite mean variation of order p and q, respectively. In this paper we shall try to extend the Stieltjes-Young integration theory when f(t) and $\phi(t)$ are stochastic processes.

1. Introduction

Let $\phi(t)$ and f(t) be real-valued functions defined on a closed interval [a, b]. The Riemann-Stieltjes integral of f with respect to ϕ (which is usually denoted by $\int_a^b f(t)d\phi(t)$) is defined by the limit of the Riemann-Stieltjes sums of f and ϕ whenever the limit exists. When $\phi(t)$ is of bounded variation on the interval [a, b], there exists a unique measure on $([a, b], \mathcal{B}([a, b]))$ corresponding to ϕ . Therefore the Riemann-Stieltjes integral with respect to a function ϕ of bounded variation can be treated in the integration theory based on the measures. But the measure theory is powerless to discuss the existence of the Riemann-Stieltjes integral with respect to ϕ which is not of bounded variation. Let p and q be positive numbers. L. C. Young [2] showed that if $\phi(t)$ has the finite mean variation of order p (cf. [1]), f(t) has finite mean variation of order q and 1/p + 1/q > 1, the Riemann-Stieltjes integral of f with respect to ϕ exists. We shall try an extension of the results about the Riemann-Stieltjes integral shown by L. C. Young [2] in this paper.

1

2. Result

Let (Ω, \mathcal{F}, P) be a measure space and $X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_n$ be \mathcal{F} -measurable real-valued functions defined on the measure space (Ω, \mathcal{F}, P) . Put $\mathbf{X} = (X_1, X_2, \dots, X_n)$ and $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)$. The operation of replacing by "+" certain of the "," separating consecutive terms of a finite sequence $a = (a_1, a_2, \dots, a_n)$ may be termed a partition Q. Let p and q be positive numbers such that 1/p + 1/q = 1 and q > 0. Define

$$S_{p,q,\alpha}(\mathbf{X}, \mathbf{Y}) = \max_{Q} \left(\sum_{k=1}^{m} E[|X_k'|^p] \right)^{1/p} \left(\sum_{k=1}^{m} E[|Y_k'|^q]^{\frac{1}{(1+\alpha)}} \right)^{(1+\alpha)/q},$$

where $Q\mathbf{X}=(X_1',X_2',\cdots,X_m')$ and $Q\mathbf{Y}=(Y_1',Y_2',\cdots,Y_m')$. Then we get the following lemma.

Lemma.

$$E[|\sum_{1 \le k \le l \le n} X_k X_l|] \le \left\{1 + \zeta \left(\frac{1}{p} + \frac{1+\alpha}{q}\right)\right\} S_{p,q,\alpha}(\mathbf{X}, \mathbf{Y}),$$

where $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$.

Let T be a positive number. For a $\mathcal{B}([0,T]) \times \mathcal{F}$ -measurable real-valued function $X(t,\omega)$ (= X(t) in abbreviation) defined on the product space $[0,T] \times \Omega$ and positive numbers p and α , we introduce the following two variations of X(t):

$$V_p(X) = \sup_{\Delta} \left(\sum_{i=1}^n E[|X_{t_i} - X_{t_{i-1}}|^p] \right)^{1/p}$$

$$V_{p,\alpha}(X) = \sup_{\Delta} \left(\sum_{i=1}^n E[|X_{t_i} - X_{t_{i-1}}|^p]^{1+\alpha} \right)^{(1+\alpha)/p},$$

where $\Delta = \{0 = t_0 < t_1 < \dots < t_n = T\}$ is a partition of the interval [0, T]. We call $V_p(X)$ and $V_{p,\alpha}(X)$ the integrated mean variation on [0, T] of X(t) of order p and the integrated mean variation on [0, T] of X(t) of order (p, α) , respectively.

Let X(t) and Y(t) be $\mathcal{B}([0,T]) \times \mathcal{F}$ - measurable real-valued functions defined on the product space $[0,T] \times \Omega$. We give the Riemann-Stieltjes sum of (X,Y) over the partition $\Delta = \{0 = t_0 < t_1 < \cdots < t_n = T\}$ and $u = (u_1, u_2, \cdots, u_n)$ $(t_{i-1} \leq u_i \leq t_i, 1 \leq i \leq n)$ by

$$S(X,Y;\Delta,u) = \sum_{i=1}^{n} Y_{u_i}(X_{t_i} - X_{t_{i-1}}).$$

We give the condition (A) for X(t) and Y(t).

$$(A) \left\{ \begin{array}{ccc} V_p(X) < \infty & \text{and} & V_{q,\alpha}(Y) < \infty. \\ \\ E[|Y_t - Y_s|^q] & \text{is continuous in } (s,t). \end{array} \right.$$

For a partition $\Delta = \{0 = t_0 < t_1 < \dots < t_n = T\}$, put $|\Delta| = \max |t_i - t_{i-1}|$. Then we get the following theorem.

Theorem. Let p, q and α be positive numbers such that 1/p + 1/q = 1. Suppose that X(t) and Y(t) satisfy the condition (A). Then there exists an integral $\int_0^T Y(t) dX(t)$ (= I) such that $E[|I|] < \infty$. That is, for any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$E[|I - S(X, Y; \Delta, u)|] \le \varepsilon$$
 for $\forall \Delta : |\Delta| \le \delta, \forall u$.

References

- [1] M. Breneau, Variation Totale d'une Function, Springer-Verlag, (Lecture Notes in Mathematics, 413), 1974.
- [2] L. C. Young, An inequality of Hölder type, connected with Stieltjes integration, Acta. Math., 67 (1936), 251–282.