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Abstract : Noether’s theorem is extended to a non-local field theory. As a model, a
Schroedinger field interacting through a potential acting with a finite range is studied. It
is shown that an invariance of a Lagrangian under a continuous transformation does not
necessarily mean a local conservation of the Noether’s current because of an apperance of an
additional source due to the non-locality of the interaction. Some examples are shown to
explain the extended Noethor’s theorem.

1. Introduction

A non-perturbative approach has attracted much interest in many branches of field
theories?~". In particular, local conservation laws for various physical quantities related
to a transformation properties, known as the Noether’s theorem, play important role®>®.
The theorem states that there exists a four-current ju(x) (©=0,1,2,3) associated with a
continuous transformation of the field. It satisfies a continuity equation

Z3uju (x)=q (x), (1-1
where x (=%, %, %, %) is a set of space-time coordinates, and ¢ (x) is a source of the
current. If an action integral for the field is kept invariant under the transformation the
source vanishes identically, thus we have a local conservation law associated with the
transformation.

The proof for the theorem has been made thus far for a local field under a primary
interest to apply to a relativistic field theory. However, in non-relativistic fields which are
used to apply to condensed matter physics we are faced to a field described by a non-local

- Lagrangian with an interaction through a finite range potential, e.g., a coulomb potential
between charged particles. In the non-local field the invariance of the action under a
transformation dose not necessarily mean the local conservation of the related four-current
because an additional non-local source appears. Therefore, it is worth wile to examine the
validity of the Noether’s theorem and extend it to the non-local field theory.

In the following, a general transformation formula for the non-local field is derived (§
2), and some examples of the conserved and non-conserved quantities related with the
special transformations are shown. In §4 discussions and conclusions are given.

2. General formula for non-local field

Let us consider a (complex) field described by a Lagrangian density
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L=L,+L, 2-1)
where L, is a term bilinear in the field s (x) and its complex conjugate ¥s* (x) (s=1,2,-++,
n), and L; is a nonlinear and non-local interaction. To be concrete, we are interested
specifically in a Schroedinger field described as (a sum over s is omitted)

Li=p {$* W3 E)— (@ @) 1)

~ g SO WA+ V(I ()Y, (22
and
L= d'yW(),v0);x ), (2-3)
where
W (¢(x), ¥ ; 2, 9)= Ulxy) ¢ * @) *0) ¢ ) (x), (2-4)
and
Ulx-y)=U(x-y) 6(%-3), (2-5)

is an instantaneously propergating potential. The integral in Eq.(2-3) is taken over an
infinite space-time volume. Note that the Lagrangian depends explicitly on the space-time
coordinates through the external potential V(x) and the interaction potential U(x-y).
Now, let us consider local variations of the field and the space-time coordinates as
P(x)>P(x) = Plx)+ o (x), (2-6)
Xpu—x = xp + 00xu, 2-7)
where ¢ is an infinitesimal parameter. The variation dy(x) is supposed to be given by the
linear combination of the field components and/or their derivatives. Because the field

derivatives are involved in L, only, an action principle leads to the Eular’s equation of a
form as

oL, 2L, .. oW
T @) e Y e “o
Equation (2-8) is identical to the Schroedinger equation,
Y (x)=— %2@ 29+ dyUxy) @)y (), (2-9)

where the sum over ¢ is taken over the spatial components of the coordinate.
We consider a variation ¢S of the action due to the variation given by Egs.(2-6) and
(2-7),
aS=/ Qd'x [J {Lo (¢’ (x), 2'uy’'(y’) ; ')
+[ Ay {AWEE), ¢0°); x), ¥)
—Lo(¢(x), ouyr(x) ; x)
—[ d'yW(g), v©); % )}]

—6f Qd*xsL, (2-10)
where () is an arbitrary space-time volume, and J is the Jacobian for the transformation
@2-7).

Calculation of the r.h.s. of Eq.(2-10) is done by a straightforward extension of a usual
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procedure to prove the Noether’s theorem for the local theory. It gives

oL,

0S=0/ Q'x [——— EYAT) oYr(x)
-1-2——8—['0——-— { ovdy (x)— Z(Ovdau ) dvyr (x)
% o(oy(x)) v
+3 SLO +Z(oudnu )Ly ]
HO) 0d'S d'y [~ S+ OU)
+3 @Z S+ 2;5 oy )
+§ {(Oudxu) W + (2% udyu) W i1 , (2-11)

up to the first order terms in the parameter 4. The last term in the integrals in the r.h.s.
of Eq.(2-11) emerged from the Jacobian for the transformation by Eq.(2-7). The derivatives
with respect to the field mean such that

oL, _ oL,
-2 , ets. 2-12
ENAE R APy (12)

Using Eq.(2-8) and integrating partially we rewrite Eq.(2-11) as
SS=6[ Qd*x [2 ouju (x)
i

oy (D e 2 ] (213)
where
Y (x) =y’ (x)— Y(x)
=dp(x)— %) Sxvovy (x), (2-14)
is a Lie derivative of the field, and
Julx)= ——a—(a—}%—&w(xw Sxul . (2-15)

The r.h.s. of Eq.(2-15) is formally same to the Noether’s current for the local theory”.
Comparing Eq.(2-10) and Eq.(2-13) and considering an arbitrariness of the volume  of
the integration, we arrive at the continuity equation as Eq.(1-1), the source of the current
being expressed as
q(x) =L+ gm(x), (2-16)
where

is a source due to the non-local interactlon. Note that the r.h.s. of Eq.(2-17) vanishes, and
the results reduces to the formula known in the local case, if a local instantaneous potential

Ulxy) = Us*(xp), (2-18)
is considered. In the local case the invariance of the action under the transformation leads
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to the local conservation law with vanishing source. However, in the non-local case the
invariance does not necessarily mean the local conservation of the Noether current.
Physically speaking, this failure of the local conservation is related to the fact that the
term Ldxy in the r.f.s. of Eq.(2-15) involves a flow caused by a force exerted by a field at
a distance. As shown in the next section the transformation can be classified into two
classes with respect to this view point, namely, according to whether the transformation
induces the force by an environmental field at a distance or not. The first class is the locally
conserving, and the second is the locally non-conserving.

In spite of the fact above mentioned, it should be noted that the spatially integrated
0-th component of the current,

ho=[ d*zjp(x)
remains to be a constant of motion if the action is invariant under the transformation in
the non-local case just as in the local case.

3. Examples
1) Phase transformation

The Lagrangian given by Eqs.(2-1)~(2-3) has an internal symmetry with respect to a
global phase tranformation as

P(x) =9 (x)=exp(if) ¢ (x). (3-1)
The Lie derivative is given by

FYx)=-ix). 3-2)
In this case the non-local source vanishes, and the conserving Noether current is given by

o) =+ (x) P (x), 3-3)

)= (020~ (0 () W) -4

as is well known as a conservation law of a‘particle number.
If an electromagnetic field is applied to a charged field the space-time derivatives in
the Lagrangian (2-2) is modified as
Sv— &+ 22U,
9;—0;—ile/c)A,;
where U and A, are scalar and vector potentials for the electromagnetic field. The
phase transformation modifies the spatial component of the Noether’s current given by Eq.
(3-4) as
.1
I i

3-5)

{$*() (= i= AP ()

~2 T ANV ) (). (3-6)

It is easy to show that a gauge invariance of the theory requires that

j=-0L/a(el), .
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Ji=coL/3(eA)).
Equation (3-7) gives in fact Egs.(3-3) and (3-6).

2) Translation in space
Consider a translation in a spatial direction j as

X%, =%+ 66, (3-8)
Then,

80 =-a:9(x), (3-9)
which leads to the Noether’s current

Tos(x)=-(1/2) {P*(x)0;¢(x)— (3,9 *(x) )(x), (3-10)

Ti(x)=Q1/2m) {0:4*(x) 0,4 (x)+ (3,4 *(x)} + L3y, , (3-11)

where a conventional tensor notation is used. 7p; is known as a momentum density and 77,
as a stress tensor of the field.

It is noted that the current given by Egs.(3-10) and (3-11) does not conserve locally
because the non-local source in the present case

gmx)=@1/2) d'yUlxy) {¢*@)o¢* () (x) ) ()

=¥ )3 (v )Y 0) ) ()}, (3-12)

does not vanish if the potential acts with a finite range. The spatial translation induces a
work exerted by a field at a distance to the field at a point under consideration, which gives
rise to the source for the momentum flow.

3) Translation in time
A translation in time

I—>t=t—9, (3-13)
induces a field variation
' P(x)= o (x). (3-14)

It generates a current
Too(x)=(1/2) {¢*x)SpPr(x)— (8P *(x) )¢r(x)} —L
=H(x), (3-15)
To(x)=(1/2m) {29 *(x) 3,4 (x)+(3:9*(x) B¢ (x)} , (3-16)
where H (x) is the Hamiltonian density of the field. Equation (3-15) shows that the
generator of the time displacement is given by the total Hamiltonian H =/ d°xH (x), as
it should be. As the example 2) the non-local source does not vanish and is given by
gux)=@1/2) d*yUlx-y) {¢*@) (P * W) (y) )r(x)
—¢* ) o(¥* () Px) )P ). (3-17)

4) Spatial rotation

According to a transformation property for a spatial rotation the fields are classified
into a scalar, spinor, vector and so on. For concreteness, we consider a spinor field with two
components «(« =1,2). For an infinitesimal rotation -8 about an axis in a direction n the
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coordinate is transformed as
6xi:—2keijkxjnk, (3-18)
and the Liie derivative is given by
<5‘°1/f0t(x)=—% %nk {ldaf +(s)aB} ¥B(x), (3-19)
where &, is the Levi-Civita’s tensor, sk is a component of a spin angular momentum , and
lhi=-(i/2) Z&:u(2:0;) —%,9)), (3-20)
i

is a component of an orbital angular momentum operator. The Noether’s current is a set
of a total angular momentum and its flow as,

2(x)=(1/2) %%k [% {Ya*x) hpa(x)— (L pa*(x) )pa(x)}
+Ep¢a*(x) (sw)aByB(x), (3-21)

gi(x):—(1/2mi)§m§ {(L Yo (x) )ospa(x)
+(aiW¢1’*(x) )lklba’(x)}
+Eﬂ(sk)aﬁ(¢a*(x)afwﬂ(x)—(aiwa*(x) WB(x)]

-Zeiatimal (%), (3-22)
jk

It is frequently useful to consider separately the spin part of Egs.(3-21) and (3-22).
Provided the interaction is invariant under the rotation in the spin space, the spin part of
the current is conserved locally by itself. In this case the non-local source vanishes as in
the example 1).

5) Galilean transformation
A Galilean transformation to a reference system with a relative velocityun,

r—r =r—unf, (3-23)

t—>t =1, (3-24)
induces a field variation

P(x)—y’ (") =exp(ig(x) )¢ (x), (3-25)
where,

gx)=-mun - v+ (m/2)u*t. (3-26)

The Lie derivative is given by
S Y (x) = ~iZmx; + 1) Y (x). (3-27)

The Noether’s current is
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Go(x)=(1/2)Zn; {¢*(x) (mx;+it0) ()

+( (mx; — i)y (x) ) (%)} (3-28)
Gix)=@/2n - T {P*(x) 2:9(x)—(0: 9" (x) )¢ ()

—(1/2m) t2nj {(0:¢*(x) Yo, (x)

+(0;¢*(x) )op(x)} — tun, L
=n- l‘TOi—tzanij, (3'29)
The non-local source does not vanish as given by

Gu=Q1/212n[ d'yU(x-y) {¥*@)oy* ()P x) ¥ ()
=)oY YY)} . (3-30)

As an application of the Galilean transformation we derive a theorem of a center-of-
mass motion. To prove this we put as

X(O=[ d*xxAp*(x)P(x), (3-31)
P(t)=-(/2)f dx {¢*x)o:¥(x)— (84" (x) )¢ (x)} . (3-32)
Note that
G(t)=/ d*xGy(x)
=n - {mX(t)—P()} . (3-33)

If the Lagrangian is Galilei-invariant, Gy(¢)= G, and P(#)=P are constants of motion. This
leads to the theorem of the center-of-mass motion as

3
m——x()=P. (3-34)

4, Conclusion

We have shown the Noether’s theorem for the non-local field with some concrete
examples. The continuity equations derived in the above examples are same as those
obtained by a canonical formalism®.

Although we have treated only the classical field, the formulae above derived are
easily carried over to a quantized field, and also to the Matubara formalism at a finite
temperature by a substitution of the real time ¢ by an imaginary oneit.

It is demonstrated in the examles that the Noether’s currents are classified into two
groups according to the conserving property. (The phase transformation (example 1) and
the spin-space rotation (example 4) fall into the first group where the non-local interacton
does not generate the non-local source and the continuity of the Noether’s currents holds
exactly as in the case of the local interaction. On the other hand the space and time
translation and the rotation (exmples 2,3 and 4) belong to the second group where the
non-local interaction generates the additional non-local source. However, for the latter
case it is able to construct an approximately conserving current provided a variation of the
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field can be considered to be sufficiently slow as compared with the scale of a range of the
interaction. This fact provides a basis to derive a hydrodynamic theory for the system
described by the non-local field *'9,
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