Examples of complete minimal surface in Rm whose Gauss maps omit m(m+1)/2 hyperplanes in general position

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者: 藤本, 坦孝
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00011188
This work is licensed under a Creative Common	

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Sci. Rep. Kanazawa Univ. Vol. 33 No. 2 pp. 37~43 June 1989

Examples of complete minimal surfaces in \mathbb{R}^m whose Gauss maps omit m(m+1)/2 hyperplanes in general position

Hirotaka Fujimoto

Department of Mathematics, Faculty of Science, Kanazawa University (Received October 30, 1988)

Abstract Recently, the author has shown that, for a complete minimal surface M in \mathbb{R}^{m} , if the Gauss map of M is nondegenerate, then G can omit at most m(m+1)/2 hyperplanes in general position. We give some examples of minimal surfaces which show that the number m(m+1)/2 of the above result is best-possible for arbitrary odd numbers m.

§1. Introduction

Let $x: M \to \mathbb{R}^m$ be a (connected oriented) minimal surface immersed in $\mathbb{R}^m (m \ge 3)$. Consider the set Π of all oriented 2-planes in \mathbb{R}^m . As is well-known, Π is canonically identified with the quadric

$$Q_{m-2}(\mathbb{C}) := \{ (w_1 : \cdots : w_m) ; w_1^2 + \cdots + w_m^2 = 0 \}$$

in $P^{m-1}(\mathbb{C})$. By definition, the Gauss map of M is the map which maps each point p to the point in Π , or $Q_{m-2}(\mathbb{C})$, corresponding to the oriented tangent plane of M at p. For the case m=3, the space $Q_1(\mathbb{C})$ may be identified with the Riemann sphere $P^1(\mathbb{C})$ and the Gauss map of M may be considered as a map into $P^1(\mathbb{C})$. The author has shown that the Gauss map of a complete nonflat minimal surface in \mathbb{R}^m can omit at most four points in $P^1(\mathbb{C})$ ([4]). Moreover, in the previous paper [6] he gave the following theorem.

THEOREM 1. Let M be a complete minimal surface in \mathbb{R}^m and assume that the Gauss map G is nondegenerate, namely, the image of G is not included in any hyperplane in $P^{m-1}(\mathbb{C})$. Then G can omit at most m(m+1)/2 hyperplanes in general position.

The purpose of this note is to show that, for an arbitrary odd number m, the number m(m+1)/2 of Theorem 1 is best-possible, namely, there exist some complete minimal surfaces in \mathbb{R}^m whose Gauss maps are non-degenerate and omit m(m+1)/2 hyperplanes in general position. We shall give also such examples for some particular even numbers m.

By

§2. Preliminaries on minimal surfaces in \mathbb{R}^m

Consider a surface M in \mathbb{R}^m immersed by a map $x = (x_1, \ldots, x_m) : M \to \mathbb{R}^m$, where a surface means a connected and oriented 2-dimensional differentiable manifold. We may consider M as a Riemannian manifold with the metric ds^2 induced from the standard metric of \mathbb{R}^m . With each system of positive isothermal local coordinates (u, v) associating a holomorphic local coordinate z = u + iv, M may be considered as a Riemann surface with a conformal metric ds^2 . The fact that (u, v) are isothermal local coordinates means that they satisfy the condition that

$$\Sigma_{i=1}^{k} \left(\frac{\partial x_{i}}{\partial u} \right)^{2} = \Sigma_{i=1}^{k} \left(\frac{\partial x_{i}}{\partial v} \right)^{2}, \qquad \Sigma_{i=1}^{k} \frac{\partial x_{i}}{\partial u} \frac{\partial x_{i}}{\partial v} = 0.$$

Set $f_j = \partial x_j / \partial z (= (\partial x_j / \partial u - i \partial x_j / \partial v)/2)$. The above condition is rewritten as

(2. 1)
$$f_1^2 + f_2^2 + \ldots + f_m^2 = 0.$$

As is well-known, M is a minimal surface in \mathbb{R}^m if and only if each x_i is a harmonic function on M, namely,

$$\frac{\partial^2 x_i}{\partial z \partial \bar{z}} = 0, \qquad i = 1, 2, \ldots, m$$

for an arbitrary holomorphic local coordinate z = u + iv. This is equivalent to the condition that f_i is holomorphic on M. To construct minimal surfaces in \mathbb{R}^m , the following Proposition is useful.

PROPOSITION 2. Let M be a simply connected open Riemann surface and let f_1, f_2, \ldots, f_m be holomorphic functions on M which have no common zero and satisfy the identity (2. 1). Set

(2. 2)
$$x_i(z) = \operatorname{Re} \int_{z_0}^{z} f_i dz,$$

where z_0 is an arbitrarily fixed point of M and the right hand side means the real part of the integral along an arbitrarily chosen continuous curve in M joining z_0 and z. Then, the surface $x = (x_1, \ldots, x_m) : M \to \mathbb{R}^m$ is a minimal surface in \mathbb{R}^m . The induced metric is locally given by

(2.3)
$$ds^{2} = 2(|f_{1}|^{2} + \ldots + |f_{m}|^{2}) |dz|^{2}.$$

Proof. Since *M* is simply connected, x_i are well-defined single-valued functions on *M* and it is easily seen that $\partial x_i / \partial z = f_i (1 \le i \le m)$. By the assumption of holomorphy of f_i we have

$$(\partial^2/\partial z \partial \bar{z}) x_i = (\partial/\partial \bar{z}) f_i = 0$$

and by the assumption (2. 1) the induced metric is conformal with respect to the complex structure of M. Moreover, the metric is given by

$$ds^{2} = \sum_{i=1}^{k} \left(\frac{\partial x_{i}}{\partial u}\right)^{2} du^{2} + \sum_{i=1}^{k} \left(\frac{\partial x_{i}}{\partial v}\right)^{2} dv^{2}$$

Examples of complete minimal surfaces in \mathbb{R}^m

 $= 2(|f_1|^2 + \ldots + |f_m|^2) |dz|^2.$

This completes the proof of Proposition 2.

§3. Constructions of minimal surfaces

We shall give the following proposition.

THEOREM 3. For an arbitrarily given odd number $m (\geq 3)$ there is a complete minimal surface in \mathbb{R}^m whose Gauss map is nondegenerate and omits m(m+1)/2 hyperplanes in $P^{m-1}(\mathbb{C})$ located in general position.

For a given odd number m we set n := m-1 and k := n/2. We first recall an algebraic lemma which was given in the previous paper [6].

LEMMA 4. Consider m(m+1)/2 polynomials $g_i(u) := (u-a_0)^{m-i}$ $(1 \le i \le m)$ $g_{m+i}(u) := (u-a_1)^{m-i}(u-b_1)^{i-1}$ $(1 \le i \le m)$ \dots $g_{km+i}(u) := (u-a_k)^{m-i}(u-b_k)^{i-1}$ $(1 \le i \le m)$,

where a_{σ} , b_{τ} are mutually distinct complex numbers. These are in general position, namely, arbitrarily chosen m polynomials among them are linearly independent for suitably chosen a_{σ} and b_{τ} .

For the proof, see [6], §6.

To prove Theorem 3 we define m entire functions

$$h_{2\ell+1}(z) = e^{\ell z} + e^{(2k-\ell)z} \qquad (0 \le \ell \le k-1)$$

$$h_{2\ell+2}(z) = i(e^{\ell z} - e^{(2k-\ell)z}) \qquad (0 \le \ell \le k-1)$$

and

$$h_{2k+1} = 2\sqrt{-k} e^{kz}.$$

Next we take suitable constants a_{σ} and b_{τ} such that the polynomials $g_i(1 \le i \le q := m(m+1)/2)$ are in general position. By changing the variable u suitably if necessary, we may assume that $a_0 = 0$. Set

$$M^* = \mathbb{C} - \{z ; e^z = a_i \text{ or } e^z = b_i \text{ for some } i = 1, \ldots, k\}$$

and consider the universal covering surface $\pi: M \rightarrow M^*$. Set

$$\psi(z) = \frac{1}{(e^z - a_1)(e^z - b_1) \dots (e^z - a_k)(e^z - b_k)}$$

and define m holomorphic functions

$$f_i = \psi h_i \ (1 \le i \le m)$$

on M^* . Then we see easily

 $f_1^2 + f_2^2 + \ldots + f_m^2 = 0.$

39

Н. Fujimoto

Without permission, we denote the functions $f_i \cdot \pi$ by the abbreviated notation f_i in the following.

We consider the functions x_i defined by (2. 2) for the above functions f_i . By Proposition 2, the surface $x = (x_1, x_2, \ldots, x_m) : M \to \mathbb{R}^m$ is a minimal surface. The metric induced from the standard metric on \mathbb{R}^m is given by (2. 3) and the Gauss map of M is equal to the map $f = (f_1 : f_2 : \ldots : f_m) : M \to P^{m-1}(\mathbb{C})$ and therefore to the map $h = (h_1 : \ldots : h_m)$. As is easily seen, a polynomial P(u) vanishes identically if and only if $P(e^z)$ vanishes identically. Since the polynomials

$$P_{2\ell+1}(u) = u^{\ell} + u^{2k-\ell} \qquad (0 \le \ell \le k-1)$$

$$P_{2\ell+2}(u) = i(u^{\ell} - u^{2k-\ell}) \qquad (0 \le \ell \le k-1)$$

and

$$P_{2k+1}(u) = 2\sqrt{-k} u^k.$$

are linearly independent over C, the Gauss map of M is nondegenerate. Moreover, since P_1, \ldots, P_m give a basis of the vector space of all polynomials of degree $\leq m-1$, we can find some constants c_{ij} such that

$$g_i = \sum_{j=1}^m c_{ij} P_j \tag{1 \le i \le q}.$$

Now, consider q hyperplanes

$$H_i: c_{i1}w_1 + \ldots + c_{im}w_m = 0 (1 \le i \le q)$$

which are located in general position because g_i are in general position. Then, the functions

$$g_i(e^z) = \sum_{j=1}^m c_{ij} P_j(e^z)$$
$$= \sum_{j=1}^m c_{ij} h_j(z)$$

for $i=1, \ldots, q$. Obviously, each $g_i(e^z)$ vanishes nowhere on M. This shows that the Gauss map h of M omits q hyperplanes H_i located in general position. In the next section, we shall prove that the Riemann surface M with the induced metric ds^2 is complete. This will complete the proof of Theorem 3.

§4. The proof of completeness

The purpose of this section is to prove that the minimal surface M in \mathbb{R}^m constructed in the previous section is complete. We use the same notation as in §3.

In our case, the induced metric is induced from the metric

$$ds^{2} = \frac{\sum_{\ell=0}^{k-1} \left(|e^{\ell z} + e^{(2k-\ell)z}|^{2} + |e^{\ell z} - e^{(2k-\ell)z}|^{2} \right) + 4k |e^{kz}|^{2}}{|(e^{z} - a_{1})(e^{z} - b_{1})...(e^{z} - a_{k})(e^{z} - b_{k})|^{2}} |dz|^{2}$$
$$= \frac{2\sum_{\ell=0}^{k-1} (|e^{\ell z}|^{2} + |e^{(2k-\ell)z}|^{2}) + 4k |e^{kz}|^{2}}{|(e^{z} - a_{1})(e^{z} - b_{1})...(e^{z} - a_{k})(e^{z} - b_{k})|^{2}} |dz|^{2}.$$

on M^* by the projection map of M onto M^* . If M^* is complete, then M is also complete. It suffices to prove that M^* is complete. For the simplicity of notation, we denote the surface M^* by M. We now take a piecewise smooth curve $\gamma(t)$ ($0 \le t < 1$) which tends to the boundary of M, namely, satisfies the condition that, for each compact set K in M, $\gamma(t)$ is not contained in K if t is sufficiently near 1. Our purpose is to show that the length of γ is infinite. The proof is given by reduction to absurdity. Assume that the length of γ is finite.

We first consider the case where there exists a sequence $\{t_i\}$ with $\lim_{i\to\infty} t_i=1$ such that $\{\gamma(t_i)\}$ has an accumulation point z_0 in C. If $\gamma(t)$ does not tend to z_0 as t tends to 1, then γ is obviously of infinite length. By the assumption, we see $\lim_{t\to 1} \gamma(t)=z_0$. Then, by the assumption we have necessarily $e^{z_0}=a_i$ or b_i for some i. Then we can write

$$e^{z} - e^{z_{0}} = (z - z_{0})k(z)$$

with a holomorphic function k on a neighborhood of z_0 with $k(z_0) \neq 0$. Therefore, we can conclude

$$ds^2 \! \ge \! C^2 \frac{1}{\mid z - z_0 \mid ^2 \! \mid dz \mid ^2}$$

for a positive constant C. This leads to an absurd conclusion

the length of
$$\gamma = \int_{\gamma} ds \ge C \int_{\overline{z_1 z_0}} \frac{1}{|z - z_0|} |dz| = \infty$$
,

where z_1 is a point sufficiently near z_0 and $\overline{z_1 z_0}$ denotes the line segment between z_1 and z_0 . This contradicts the assumption.

Accordingly, we have only to study the case that $\gamma(t)$ tends to ∞ as t tends to 1. Firstly, assume that $\{e^{\gamma(t)}\}\$ is bounded. Then there is a positive constant C' such that

$$|(e^{z}-a_{1})(e^{z}-b_{1})...(e^{z}-b_{k})| \leq C'$$

on the curve γ and so

the length of
$$\gamma = \int_{\gamma} ds \ge \frac{1}{C'} \int_{\gamma} |dz| = \infty$$
,

which is impossible by the assumption. Otherwise, there exists a sequence $\{t_i\}$ which tends to 1 such that $\{e^{\gamma(t_i)}\}$ tends to ∞ . Set $w := e^z$. Then |dw| = |w| |dz| and the metric is given by

$$ds^{2} = \frac{2\sum_{\ell=0}^{k-1} (|w|^{2\ell} + |w|^{2(2k-\ell)}) + 4k |w|^{2k}}{|(w-a_{1})(w-b_{1})...(w-a_{k})(w-b_{k})|^{2}} \frac{|dw|^{2}}{|w|^{2}} \cdot \frac{4k}{|(1-a_{1}w^{-1})(1-b_{1}w^{-1})...(1-a_{k}w^{-1})(1-b_{k}w^{-1})|^{2}} \frac{|dw|^{2}}{|w|^{2}}.$$

Consider the curve

$$\gamma': w(t) = e^{\gamma(t)}.$$

We have

$$\int_{\gamma} ds \geq C_o \int_{\gamma'} \frac{|dw|}{|w|} = \infty.$$

for a positive constant C_o . Thus the proof of Theorem 3 is completed.

§5. Concluding remarks

In case that the dimension m is even, we can conclude the same conclusion of Theorem 3 for some particular cases. For an arbitrary even number m set k := m/2. In this case we use entire functions

$$h_{2\ell+1} = e^{\ell z} + e^{(2k-\ell-1)z} \qquad (0 \le \ell \le k-1)$$

and

$$h_{2\ell+2} = i(e^{\ell z} - e^{(2k-\ell-1)z}) \qquad (0 \le \ell \le k-1).$$

Instead of Lemma 4 we use the following conjecture, which was not yet proved for general cases but for $m \leq 16([6], \S 6)$.

CONJECTURE. Set k := m/2 for an arbitrarily given even number m. Then 3k polynomials

$$g_{i}(u) := u^{i-1} \qquad (1 \le i \le k)$$

$$g_{i}(u) := (u-1)^{i-1} \qquad (k+1 \le i \le 2k)$$

$$g_{i}(u) := u^{i-k-1}(u-1)^{m-i+k} \qquad (2k+1 \le i \le 3k)$$

are in general position.

If the above conjecture is true for an even number m, then we can show that there exist m distinct constants $a_1 := 0, b_1 := 1, a_2, b_2, \ldots, a_k, b_k$ such that, for further polynomials

$$g_{3k+1}(u) := (u-a_2)^{m-i}(u-b_2)^{i-1} \qquad (1 \le i \le m)$$

$$g_{3k+2k(k-2)+i}(u) := (u-a_k)^{m-i}(u-b_k)^{i-1} \qquad (1 \le i \le m),$$

 g_1, g_2, \ldots, g_q are in general position.

As in the previous section, taking constants a_{σ} and b_{τ} satisfying the above condition, we consider the universal covering surface M of the set

$$M^* = \mathbb{C} - \{z ; e^z = a_i \text{ or } e^z = b_i \text{ for some } i = 1, \dots, k\}$$

and, using the function

$$\psi = \frac{1}{(e^z - 1)(e^z - a_2)(e^z - b_2)...(e^z - a_k)(e^z - b_k)}$$

we define m holomorphic functions

$$f_i = \psi h_i \quad (1 \le i \le m)$$

42

on M^* . Then, by the similar manner as in the previous sections we can prove that for the functions x_i defined by (2. 2) the surface $x = (x_1, x_2, \ldots, x_m) : M \to \mathbb{R}^m$ is a complete minimal surface whose Gauss map omits m(m+1)/2 hyperplanes in general position.

Concludingly, if $m (\ge 3)$ is odd or the above conjecture is valid for an even number m, then the number m(m+1)/2 of Theorem 1 is best-possible.

References

- S. S. Chern and R. Osserman, Complete minimal surfaces in euclidean n-spece, J. Analyse Math., 19(1967), 15-34.
- [2] H. Fujimoto, On the Gauss map of a complete minimal surface in R^m, J. Math. Soc. Japan, 35(1983), 279-288.
- [3] H. Fujimoto, Value distribution of the Gauss map of complete minimal surfaces in R^m, J. Math. Soc. Japan, 35(1983), 663-681.
- [4] H. Fujimoto, On the number of exceptional values of the Gauss map of minimal surfaces, Math. Soc. Japan 40(1988), 235-247.
- [5] H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, to appear in J. Diff. Geometry.
- [6] H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, II, to appear in J. Diff. Georetry.
- [7] R. Osserman, Minimal surfaces in the large, Comm. Math. Helv., 35(1961), 65-76.
- [8] R. Osserman, Global properties of minimal surfaces in E^3 and E^n , Ann. of Math., 80(1964), 340-364.
- [9] R. Osserman, A survey of minimal surfaces, 2nd edition, Dover, New York 1986.
- [10] F. Xavier, The Gauss map of a complete non-flat minimal surface cannot omit 7 points of the sphere, Ann. of Math., 113(1981), 211-214.