Examples of complete minimal surface in Rm whose Gauss maps omit $m(m+1) / 2$ hyperplanes in general position

メタデータ	言語：eng
	出版者：
	公開日：2017－10－03
	キーワード（Ja）：
	キーワード（En）：
	作成者：藤本，坦孝
	メールアドレス：
	所属：
URL	https：／／doi．org／10．24517／00011188

This work is licensed under a Creative Commons
Attribution－NonCommercial－ShareAlike 3.0
International License．

Examples of complete minimal surfaces in \mathbb{R}^{m} whose Gauss maps omit $m(m+1) / 2$ hyperplanes in general position

By
Hirotaka Fujimoto
Department of Mathematics, Faculty of Science, Kanazawa University

(Received October 30, 1988)

Abstract

Recently, the author has shown that, for a complete minimal surface M in \mathbb{R}^{m}, if the Gauss map of M is nondegenerate, then G can omit at most $m(m+1) / 2$ hyperplanes in general position. We give some examples of minimal surfaces which show that the number $m(m+1) / 2$ of the above result is best-possible for arbitrary odd numbers m.

§1. Introduction

Let $x: M \rightarrow \mathbb{R}^{m}$ be a (connected oriented) minimal surface immersed in $\mathbb{R}^{m}(m \geqq 3)$. Consider the set Π of all oriented 2-planes in \mathbb{R}^{m}. As is well-known, Π is canonically identified with the quadric

$$
Q_{m-2}(\mathbb{C}):=\left\{\left(w_{1}: \cdots: w_{m}\right) ; w_{1}^{2}+\cdots+w_{m}^{2}=0\right\}
$$

in $P^{m-1}(\mathrm{C})$. By definition, the Gauss map of M is the map which maps each point p to the point in Π, or $Q_{m-2}(\mathbb{C})$, corresponding to the oriented tangent plane of M at p. For the case $m=3$, the space $Q_{1}(\mathbb{C})$ may be identified with the Riemann sphere $P^{1}(\mathbb{C})$ and the Gauss map of M may be considered as a map into $P^{1}(\mathbb{C})$. The author has shown that the Gauss map of a complete nonflat minimal surface in \mathbb{R}^{m} can omit at most four points in $P^{1}(\mathbb{C})([4])$. Moreover, in the previous paper [6] he gave the following theorem.

Theorem 1. Let M be a complete minimal surface in \mathbb{R}^{m} and assume that the Gauss map G is nondegenerate, namely, the image of G is not included in any hyperplane in $P^{m-1}(\mathbb{C})$. Then G can omit at most $m(m+1) / 2$ hyperplanes in general position.

The purpose of this note is to show that, for an arbitrary odd number m, the number $m(m+1) / 2$ of Theorem 1 is best-possible, namely, there exist some complete minimal surfaces in \mathbb{R}^{m} whose Gauss maps are non-degenerate and omit $m(m+1) / 2$ hyperplanes in general position. We shall give also such examples for some particular even numbers m.

§2. Preliminaries on minimal surfaces in \mathbb{R}^{m}

Consider a surface M in \mathbb{R}^{m} immersed by a map $x=\left(x_{1}, \ldots, x_{m}\right): M \rightarrow \mathbb{R}^{m}$, where a surface means a connected and oriented 2-dimensional differentiable manifold. We may consider M as a Riemannian manifold with the metric $d s^{2}$ induced from the standard metric of \mathbb{R}^{m}. With each system of positive isothermal local coordinates (u, v) associating a holomorphic local coordinate $z=u+i v, M$ may be considered as a Riemann surface with a conformal metric $d s^{2}$. The fact that (u, v) are isothermal local coordinates means that they satisfy the condition that

$$
\Sigma_{i=1}^{k}\left(\frac{\partial x_{i}}{\partial u}\right)^{2}=\Sigma_{i=1}^{k}\left(\frac{\partial x_{i}}{\partial v}\right)^{2}, \quad \quad \sum_{i=1}^{k} \frac{\partial x_{i}}{\partial u} \frac{\partial x_{i}}{\partial v}=0
$$

Set $f_{j}=\partial x_{j} / \partial z\left(=\left(\partial x_{j} / \partial u-i \partial x_{j} / \partial v\right) / 2\right)$. The above condition is rewritten as

$$
\begin{equation*}
f_{1}^{2}+f_{2}^{2}+\ldots+f_{m}^{2}=0 \tag{2.1}
\end{equation*}
$$

As is well-known, M is a minimal surface in \mathbb{R}^{m} if and only if each x_{i} is a harmonic function on M, namely,

$$
\frac{\partial^{2} x_{i}}{\partial z \partial \bar{z}}=0, \quad i=1,2, \ldots, m
$$

for an arbitrary holomorphic local coordinate $z=u+i v$. This is equivalent to the condition that f_{i} is holomorphic on M. To construct minimal surfaces in \mathbb{R}^{m}, the following Proposition is useful.

Proposition 2. Let M be a simply connected open Riemann surface and let f_{1}, f_{2}, \ldots, f_{m} be holomorphic functions on M which have no common zero and satisfy the identity (2. 1). Set

$$
\begin{equation*}
x_{i}(z)=\operatorname{Re} \int_{z_{0}}^{z} f_{i} d z \tag{2.2}
\end{equation*}
$$

where z_{0} is an arbitrarily fixed point of M and the right hand side means the real part of the integral along an arbitrarily chosen continuous curve in M joining z_{0} and z. Then, the surface $x=\left(x_{1}, \ldots, x_{m}\right): M \rightarrow \mathbb{R}^{m}$ is a minimal surface in \mathbb{R}^{m}. The induced metric is locally given by

$$
\begin{equation*}
d s^{2}=2\left(\left|f_{1}\right|^{2}+\ldots+\left|f_{m}\right|^{2}\right)|d z|^{2} \tag{2.3}
\end{equation*}
$$

Proof. Since M is simply connected, x_{i} are well-defined single-valued functions on M and it is easily seen that $\partial x_{i} / \partial z=f_{i}(1 \leqq i \leqq m)$. By the assumption of holomorphy of f_{i} we have

$$
\left(\partial^{2} / \partial z \partial \bar{z}\right) x_{i}=(\partial / \partial \bar{z}) f_{i}=0
$$

and by the assumption (2.1) the induced metric is conformal with respect to the complex structure of M. Moreover, the metric is given by

$$
d s^{2}=\sum_{i=1}^{k}\left(\frac{\partial x_{i}}{\partial u}\right)^{2} d u^{2}+\sum_{i=1}^{k}\left(\frac{\partial x_{i}}{\partial v}\right)^{2} d v^{2}
$$

$$
=2\left(\left|f_{1}\right|^{2}+\ldots+\left|f_{m}\right|^{2}\right)|d z|^{2}
$$

This completes the proof of Proposition 2.

§3. Constructions of minimal surfaces

We shall give the following proposition.
TheOrem 3. For an arbitrarily given odd number $m(\geqq 3)$ there is a complete minimal surface in \mathbb{R}^{m} whose Gauss map is nondegenerate and omits $m(m+1) / 2$ hyperplanes in $P^{m-1}(\mathbb{C})$ located in general position.

For a given odd number m we set $n:=m-1$ and $k:=n / 2$. We first recall an algebraic lemma which was given in the previous paper [6].

Lemma 4. Consider $m(m+1) / 2$ polynomials

$$
\begin{array}{cc}
g_{i}(u):=\left(u-a_{0}\right)^{m-i} & (1 \leqq i \leqq m) \\
g_{m+i}(u):=\left(u-a_{1}\right)^{m-i}\left(u-b_{1}\right)^{i-1} & (1 \leqq i \leqq m) \\
\cdots \cdots & \\
g_{k m+i}(u):=\left(u-a_{k}\right)^{m-i}\left(u-b_{k}\right)^{i-1} & (1 \leqq i \leqq m),
\end{array}
$$

where a_{σ}, b_{τ} are mutually distinct complex numbers. These are in general position, namely, arbitrarily chosen m polynomials among them are linearly independent for suitably chosen a_{σ} and b_{τ}.

For the proof, see [6], §6.
To prove Theorem 3 we define m entire functions

$$
\begin{array}{ll}
h_{\ell \ell+1}(z)=e^{\ell z}+e^{(2 k-\ell) z} & (0 \leqq \ell \leqq k-1) \\
h_{\ell \ell+2(z)}=i\left(e^{\ell z}-e^{(2 k-\ell) z}\right) & \\
(0 \leqq \ell \leqq k-1)
\end{array}
$$

and

$$
h_{2 k+1}=2 \sqrt{-k} e^{k z}
$$

Next we take suitable constants a_{σ} and b_{τ} such that the polynomials $g_{i}(1 \leqq i \leqq q:=$ $m(m+1) / 2$) are in general position. By changing the variable u suitably if necessary, we may assume that $a_{0}=0$. Set

$$
M^{*}=\mathbb{C}-\left\{z ; e^{z}=a_{i} \text { or } e^{z}=b_{i} \text { for some } i=1, \ldots, k\right\}
$$

and consider the universal covering surface $\pi: M \rightarrow M^{*}$. Set

$$
\psi(z)=\frac{1}{\left(e^{z}-a_{1}\right)\left(e^{z}-b_{1}\right) \ldots\left(e^{z}-a_{k}\right)\left(e^{z}-b_{k}\right)}
$$

and define m holomorphic functions

$$
f_{i}=\psi h_{i}(1 \leqq i \leqq m)
$$

on M^{*}. Then we see easily

$$
f_{1}^{2}+f_{2}^{2}+\ldots+f_{m}^{2}=0
$$

Without permission, we denote the functions $f_{i} \cdot \pi$ by the abbreviated notation f_{i} in the following.

We consider the functions x_{i} defined by (2.2) for the above functions f_{i}. By Proposition 2, the surface $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right): M \rightarrow \mathbb{R}^{m}$ is a minimal surface. The metric induced from the standard metric on \mathbb{R}^{m} is given by (2.3) and the Gauss map of M is equal to the map $f=\left(f_{1}: f_{2}: \ldots: f_{m}\right): M \rightarrow P^{m-1}(\mathbb{C})$ and therefore to the map $h=\left(h_{1}: \ldots: h_{m}\right)$. As is easily seen, a polynomial $P(u)$ vanishes identically if and only if $P\left(e^{z}\right)$ vanishes identically. Since the polynomials

$$
\begin{array}{ll}
P_{2 \ell+1}(u)=u^{\ell}+u^{2 k-\ell} & (0 \leqq \ell \leqq k-1) \\
P_{2 \ell+2(u)}=i\left(u^{\ell}-u^{2 k-\ell}\right) & (0 \leqq \ell \leqq k-1)
\end{array}
$$

and

$$
P_{2 k+1}(u)=2 \sqrt{-k} u^{k} .
$$

are linearly independent over \mathbb{C}, the Gauss map of M is nondegenerate. Moreover, since P_{1}, \ldots, P_{m} give a basis of the vector space of all polynomials of degree $\leqq m-1$, we can find some constants $c_{i j}$ such that

$$
g_{i}=\sum_{j=1}^{m} c_{i j} P_{j} \quad(1 \leqq i \leqq q)
$$

Now, consider q hyperplanes

$$
H_{i}: c_{i 1} w_{1}+\ldots+c_{i m} w_{m}=0 \quad(1 \leqq i \leqq q)
$$

which are located in general position because g_{i} are in general position. Then, the functions

$$
\begin{aligned}
g_{i}\left(e^{z}\right) & =\sum_{j=1}^{m} c_{i j} P_{j}\left(e^{z}\right) \\
& =\sum_{j=1}^{m} c_{i j} h_{j}(z)
\end{aligned}
$$

for $i=1, \ldots, q$. Obviously, each $g_{i}\left(e^{z}\right)$ vanishes nowhere on M. This shows that the Gauss map h of M omits q hyperplanes H_{i} located in general position. In the next section, we shall prove that the Riemann surface M with the induced metric $d s^{2}$ is complete. This will complete the proof of Theorem 3.

§4. The proof of completeness

The purpose of this section is to prove that the minimal surface M in \mathbb{R}^{m} constructed in the previous section is complete. We use the same notation as in $\$ 3$.

In our case, the induced metric is induced from the metric

$$
\begin{aligned}
d s^{2} & =\frac{\sum_{\ell=0}^{k-1}\left(\left|e^{\ell z}+e^{(2 k-\ell) z}\right|^{2}+\left|e^{\ell z}-e^{(2 k-\ell) z}\right|^{2}\right)+4 k\left|e^{k z}\right|^{2}}{\left|\left(e^{z}-a_{1}\right)\left(e^{z}-b_{1}\right) \ldots\left(e^{z}-a_{k}\right)\left(e^{z}-b_{k}\right)\right|^{2}}|d z|^{2} \\
& =\frac{2 \sum_{l=0}^{k-1}\left(\left|e^{\ell z}\right|^{2}+\left|e^{(2 k-\ell) z}\right|^{2}\right)+4 k\left|e^{k z}\right|^{2}}{\left|\left(e^{z}-a_{1}\right)\left(e^{z}-b_{1}\right) \ldots\left(e^{z}-a_{k}\right)\left(e^{z}-b_{k}\right)\right|^{2}}|d z|^{2} .
\end{aligned}
$$

on M^{*} by the projection map of M onto M^{*}. If M^{*} is complete, then M is also complete. It suffices to prove that M^{*} is complete. For the simplicity of notation, we denote the surface M^{*} by M. We now take a piecewise smooth curve $\gamma(t)(0 \leqq t<1)$ which tends to the boundary of M, namely, satisfies the condition that, for each compact set K in $M, \gamma(t)$ is not contained in K if t is sufficiently near 1 . Our purpose is to show that the length of γ is infinite. The proof is given by reduction to absurdity. Assume that the length of γ is finite.

We first consider the case where there exists a sequence $\left\{t_{i}\right\}$ with $\lim _{i \rightarrow \infty} t_{i}=1$ such that $\left\{\gamma\left(t_{i}\right)\right\}$ has an accumulation point z_{0} in \mathbb{C}. If $\gamma(t)$ does not tend to z_{0} as t tends to 1 , then γ is obviously of infinite length. By the assumption, we see $\lim _{t \rightarrow 1} \gamma(t)=z_{0}$. Then, by the assumption we have necessarily $e^{\pi_{0}}=a_{i}$ or $=b_{i}$ for some i. Then we can write

$$
e^{z}-e^{z_{0}}=\left(z-z_{0}\right) k(z)
$$

with a holomorphic function k on a neighborhood of z_{0} with $k\left(z_{0}\right) \neq 0$. Therefore, we can conclude

$$
d s^{2} \geqq C^{2} \frac{1}{\left|z-z_{0}\right|^{2}}|d z|^{2}
$$

for a positive constant C. This leads to an absurd conclusion

$$
\text { the length of } \gamma=\int_{V} d s \geqq C \int_{\left.\bar{z} z_{0}\right]} \frac{1}{\left|z-z_{0}\right|}|d z|=\infty \text {, }
$$

where z_{1} is a point sufficiently near z_{0} and $\overline{z_{1} z_{0}}$ denotes the line segment between z_{1} and z_{0}. This contradicts the assumption.

Accordingly, we have only to study the case that $\gamma(t)$ tends to ∞ as t tends to 1 . Firstly, assume that $\left\{e^{\gamma(t)}\right\}$ is bounded. Then there is a positive constant C^{\prime} such that

$$
\left|\left(e^{z}-a_{1}\right)\left(e^{z}-b_{1}\right) \ldots\left(e^{z}-b_{k}\right)\right| \leqq C^{\prime}
$$

on the curve γ and so

$$
\text { the length of } \gamma=\int_{\gamma} d s \geqq \frac{1}{C^{\prime}} \int_{\gamma}|d z|=\infty \text {, }
$$

which is impossible by the assumption. Otherwise, there exists a sequence $\left\{t_{i}\right\}$ which tends to 1 such that $\left\{e^{\gamma}\left(t_{0}\right)\right\}$ tends to ∞. Set $w:=e^{z}$. Then $|d w|=|w||d z|$ and the metric is given by

$$
\begin{aligned}
d s^{2} & =\frac{2 \sum_{k=0}^{k-1}\left(|w|^{2 \ell}+|w| 2(2 k-\ell)\right)+4 k|w|^{2 k}}{\left|\left(w-a_{1}\right)\left(w-b_{1}\right) \ldots\left(w-a_{k}\right)\left(w-b_{k}\right)\right|^{2}} \frac{|d w|^{2}}{|\mathrm{w}|^{2}} \cdot \\
& \geqq \frac{4 k}{\left|\left(1-a_{1} w^{-1}\right)\left(1-b_{1} w^{-1}\right) \ldots\left(1-a_{k} w^{-1}\right)\left(1-b_{k} w^{-1}\right)\right|^{2}} \frac{|d w|^{2}}{|w|^{2}} .
\end{aligned}
$$

Consider the curve

$$
\gamma^{\prime}: w(t)=e^{\gamma(t)}
$$

We have

$$
\int_{\gamma} d s \geqq C_{o} \int_{\gamma^{\prime}} \frac{|d w|}{|\mathrm{w}|}=\infty
$$

for a positive constant C_{o}. Thus the proof of Theorem 3 is completed.

§5. Concluding remarks

In case that the dimension m is even, we can conclude the same conclusion of Theorem 3 for some particular cases. For an arbitrary even number m set $k:=m / 2$. In this case we use entire functions

$$
h 2 \ell+1=e^{\ell z}+e^{(2 k-\ell-1) z} \quad(0 \leqq \ell \leqq k-1)
$$

and

$$
h 2 \ell+2=i\left(e^{\ell z}-e^{(2 k-\ell-1) z}\right) \quad(0 \leqq \ell \leqq k-1)
$$

Instead of Lemma 4 we use the following conjecture, which was not yet proved for general cases but for $m \leqq 16$ ([6], §6).

CONJECTURE. Set $k:=m / 2$ for an arbitrarily given even number m. Then $3 k$ polynomials

$$
\begin{array}{lr}
g_{i}(u):=u^{i-1} & (1 \leqq i \leqq k) \\
g_{i}(u):=(u-1)^{i-1} & (k+1 \leqq i \leqq 2 k) \\
g_{i}(u):=u^{i-k-1}(u-1)^{m-i+k} & (2 k+1 \leqq i \leqq 3 k)
\end{array}
$$

are in general position.
If the above conjecture is true for an even number m, then we can show that there exist m distinct constants $a_{1}:=0, b_{1}:=1, a_{2}, b_{2}, \ldots, a_{k}, b_{k}$ such that, for further polynomials

$$
\begin{array}{lc}
g_{3 k+1}(u):=\left(u-a_{2}\right)^{m-i}\left(u-b_{2}\right)^{i-1} & (1 \leqq i \leqq m) \\
g_{3 k+2 k(k-2)+i}(u):=\left(u-a_{k}\right)^{m-i}\left(u-b_{k}\right)^{i-1} & (1 \leqq i \leqq m)
\end{array}
$$

$g_{1}, g_{2}, \ldots, g_{q}$ are in general position.
As in the previous section, taking constants a_{σ} and b_{r} satisfying the above condition, we consider the universal covering surface M of the set

$$
M^{*}=\mathbb{C}-\left\{z ; e^{z}=a_{i} \text { or } e^{z}=b_{i} \text { for some } i=1, \ldots, k\right\}
$$

and, using the function

$$
\psi=\frac{1}{\left(e^{z}-1\right)\left(e^{z}-a_{2}\right)\left(e^{z}-b_{2}\right) \ldots\left(e^{z}-a_{k}\right)\left(e^{z}-b_{k}\right)}
$$

we define m holomorphic functions

$$
f_{i}=\psi h_{i} \quad(1 \leqq i \leqq m)
$$

on M^{*}. Then, by the similar manner as in the previous sections we can prove that for the functions x_{i} defined by (2.2) the surface $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right): M \rightarrow \mathbb{R}^{m}$ is a complete minimal surface whose Gauss map omits $m(m+1) / 2$ hyperplanes in general position.

Concludingly, if $m(\geqq 3)$ is odd or the above conjecture is valid for an even number m, then the number $m(m+1) / 2$ of Theorem 1 is best-possible.

References

[1] S. S. Chern and R. Osserman, Complete minimal surfaces in euclidean n-spece, J. Analyse Math., 19(1967), 15-34.
[2] H. Fujimoto, On the Gauss map of a complete minimal surface in \mathbb{R}^{m}, J. Math. Soc. Japan, $35(1983)$, 279-288.
[3] H. Fujimoto, Value distribution of the Gauss map of complete minimal surfaces in \mathbb{R}^{m}, J. Math. Soc. Japan, 35(1983), 663-681.
[4] H. Fujimoto, On the number of exceptional values of the Gauss map of minimal surfaces, Math. Soc. Japan 40(1988), 235-247.
[5] H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, to appear in J. Diff. Geometry.
[6] H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, II, to appear in J. Diff. Georetry.
[7] R. Osserman, Minimal surfaces in the large, Comm. Math. Helv., 35(1961), 65-76.
[8] R. Osserman, Global properties of minimal surfaces in E^{3} and E^{n}, Ann. of Math., 80(1964), 340-364.
[9] R. Osserman, A survey of minimal surfaces, 2nd edition, Dover, New York 1986.
[10] F. Xavier, The Gauss map of a complete non-flat minimal surface cannot omit 7 points of the sphere, Ann. of Math., 113(1981), 211-214.

