Types of Some Infinitely Generated Kleinian Groups

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者: 赤座, 暢
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00011291

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Sci. Rep. Kanazawa Univ. Vol. 19, No. 2, pp. 95—108 December 1974

Types of Some Infinitely Generated Kleinian Groups

Tohru Akaza

Department of Mathematics, Faculty of Science, Kanazawa University

(Received September 28, 1974)

In the previous paper [4] we gave the results between the singular sets of some infinitely generated Kleinian groups and their computing functions and presented three problems; (I) Is $G^*(\alpha_0)$ the μ -convergent type, if $M_{\mu}(E)=0$? (II) Does it hold $0 < M_{\frac{\mu_0}{2}}(E)$ at the Hausdorff dimension d(E)? (III) Does it always hold $d(E) \ge \alpha_0$ for $G^*(\alpha_0)$?

The purpose of this paper is to show that (I) and (II) can be solved positively. We shall give in §2 the properties of the limiting computing functions on $G^*(\alpha_0)$ and show in §3 that (I) and (II) are solved by using these properties.

§1. Preliminaries and Notations.

1. Let $\{K_j\}_{j=1}^p$ and $\{H_i, H_i'\}_{i=p+1}^\infty$ be an infinite number of circles external to one another in the extended complex plane $\widetilde{C} = \{z ; |z| \leq \infty\}$, where $\{H_i, H_i'\}_{i=p+1}^q$ tend to only a finite point Q for $q \rightarrow \infty$. Let B be a domain bounded by these circles. We may assume no loss of generality that these circles are contained in some closed disc $D_0 = \{z ; |z| \leq \rho_0\}$.

Let $\{T_j\}_{j=1}^p$ be the elliptic transformations with period 2 corresponding to $\{K_j\}_{j=1}^p$, each of which transforms the outside of K_j onto the inside of itself. Let $\{T_j\}_{i=p+1}^{\infty}$ be the system of hyperbolic or loxodromic transformations, each T_i of which transforms the outside of H_i onto the inside of H_i . Then the system $\mathcal{Y} = \{T_i, T_i^{-1}\}_{i=1}^{\infty}$ $(T_i = T_i^{-1}, 1 \leq i \leq p)$ generates an infinitely generated discontinuous group denoted by G and we call \mathcal{Y} the generator system of G, where T_i^{-1} denotes the inverse of T_i .

Take a positive integer q (>p) and consider a subset $\mathcal{Y}_{N} = \{T_{j}\}_{j=1}^{p} \cup \{T_{i}, T_{i}^{-1}\}_{i=1}^{q}$ (N=2q-p) of \mathcal{Y} . Then \mathcal{Y}_{N} generates a finitely generated subgroup G_{N} of G. If we denote by B_{N} a domain bounded by $\{K_{j}\}_{j=1}^{p} \cup \{H_{i}, H_{i}'\}_{i=p+1}^{q}$ (N=2q-p), it is well

— 95 —

known that B_N coincides with a fundamental domain of G_N . We gave some results with respect to the singular set E_N of G_N by using the relations between E_N and the computing functions on G_N ([2]). We shall get G from G_N for $N \rightarrow \infty$.

2. Denote by r(H) the radius of a circle $H \in \{H_i, H_i'\}_{i=p+1}^{\infty}$ and assume that there exists some positive constant K independent of H such that it holds

(A)
$$\frac{r(\mathrm{H})}{l(H)} \leq K$$

where $l(H) = \inf |z - \zeta|$ and the infimum is taken for all points $z \in H$ and for all points ζ on any circle from $\{H_i, H_i'\}_{i=p+1}^{\infty} - \{H\}$.

Defining the product ST in G by ST(z)=S(T(z)), we can write any element U of G in the form

$$U = T_{i_n} \cdot \dots \quad T_{i_2} T_{i_1} (T_{i_j} \in \mathcal{Y} (1 \le i \le n) ; T_{i_{j+1}}^{-1} \neq T_{i_j}).$$

We call the positive integer n the grade of U and for simplicity we use the notation $S_{(n)}$ to clarify grade of U.

Consider the image $S_{(n)}(B_N)$ by any element $S_{(n)} = T_{i_n}$. $T_{i_2}T_{i_1} \ (\epsilon \ G_N)$. It is easily seen that $S_{(n)}(B_N)$ is bounded by an outer boundary circle $S_{(n)}(C_{T_{i_1}}^{-1})$ and (N-1)inner boundary circles $S_{(n)}(C_{T_j}) \ (T_j \not\models T_{i_1}^{-1}, T_j \epsilon \mathcal{U}_N)$. We shall call such inner boundary circle the circles of grade n. Circles $\{K_j\}_{j=1}^p$ and $\{H_i, H_i'\}_{i=p+1}^q$, which bounds B_N , are of grade 0. The circles of grade n with respect to G can be defined in the same way.

Now let us impose a restriction with respect to the accumulation of circles for G. Consider the circle $C_{T_i} : |z - \alpha(T_i)| = r_{T_i}$ of radius r_{T_i} with center $\alpha(T_i)$ for any $T_i (\epsilon \mathcal{U})$. Take some boundary circle $C_{T_i}(T_j \neq T_i)$ of B and denote the distance from $\alpha(T_i)$ to C_{T_i} by $\rho_j(T_i)$, that is,

(1.1)
$$\rho_j(T_i) = \inf_{z \in C_{T_j}} |z - \alpha(T_i)|.$$

It is obvious that $\rho_j(T_i) > r(T_i)$ and from the property (A)

(1.2)
$$\frac{r(T_i)}{\rho_j(T_i)} \leq \frac{K}{K+1}$$

We assume that there exists a positive constant $K_1(\alpha)$ depending only on some positive number α (0< α <2) satisfying

96

(B)
$$W(T_{j},\alpha) = \sum_{\substack{T_{i} \in \mathcal{U} \\ T_{i} \in \mathcal{U}}} \left(\frac{r(T_{i})}{\rho_{j}(T_{i})^{2}} \right)^{\alpha} \leq K_{1}(\alpha),$$

where $\sum_{T_i \in Q} denotes the sum with respect to all <math>T_i$ $(\neq T_j)$. Then we can determine the unique number α_0 (≥ 0) such that

(1.3)
$$\alpha_0 = \inf \{\alpha ; K_1(\alpha) < +\infty\} .$$

We note that α_0 is always equal to 0 for G_N .

From now we shall call such discontinuous group with these properties (A) and (B) the Kleinian group with properties (A) and (B) and denote it by $G^*(\alpha_0)$ and the generator system by $\mathcal{U}^*(\alpha_0)$.

3. Let $S_{(n)} = T_{i_n}$. . $T_{i_2}T_{i_1}$ $(T_{i_j} \in \mathcal{Y}_N)$ be any element of G_N and assume that $T_{i_1}^{-1} \neq T$ for a fixed element $T \in \mathcal{Y}_N$ and take any point $z \in D_T$. If we denote by $R_{S_{(m)}}$ the radius of the isometric circle of $S_{(n)}$, we obtain easily

(1.4)
$$|\frac{\mathrm{d}S_{(n)}(z)}{\mathrm{d}z}|^{\frac{\mu}{2}} = \left(\frac{R_{S_{(n)}}}{|z-S_{(n)}^{-1}(\infty)|}\right)^{\mu} \quad (0 < \mu < 4),$$

where $S_{(n)}^{-1}$ denotes the inverse $(S_{(n)})^{-1} = T_{i_1}^{-1}$. . . $T_{i_n}^{-1}$ of $S_{(n)}$. Here we note that $z \in D_T$ and $S_{(n)}^{-1}(\infty) \in D_{T_{i_1}}^{-1} \neq D_T$.

Forming the sum of $(N-1)^n$ terms with respect to all $S_{(n)}$ (ϵG_N) such that $T_{i_1}^{-1} \neq T$ and $T_{i_j} \neq T_{i_{j+1}}^{-1}$ ($1 \leq j \leq n-1$), we had the function

(1.5)
$$\chi_{n,N}^{(\mu;T)}(z) = \sum_{S_{(n)} \in G_N} \left(\frac{R_{S_{(n)}}}{|z - S_{(n)}^{-1}(\infty)|} \right)^{\mu},$$

and called $\chi_{n,N}^{(\mu,T)}(z)$ the μ -dimensional computing function of order n on T. The domain of definition of $\chi_{n,N}^{(\mu,T)}(z)$ is D_T ([2]).

Since each term in the sum $\chi_{n,N}^{(\mu;T)}(z)$ is positive, $\chi_{n,N}^{(\mu;T)}(z)$ has necessarily the unique limit containing the infinity for any $z \in D_T$, if N tends to the infinity. Thus we can define the function

(1.6)
$$\lim_{N \to \infty} \chi_{n,N}^{(\mu;T)}(z) = \lim_{N \to \infty} \sum \left(\frac{R_{S_{(n)}}}{|z - S_{(n)}^{-1}(\infty)|} \right)^{\mu} = \sum_{S_{(n)} \in G} \left(\frac{R_{S_{(n)}}}{|z - S_{(n)}^{-1}(\infty)|} \right)^{\mu},$$

and we shall call it the μ -dimensional limiting computing function of order n on T and denote it by $\chi_{n,\infty}^{(\mu;T)}(z)$.

Now let us give the following definition ([4]).

Definition. Let $\{\chi_{n,\infty}^{(\mu;T)}(z)\}$ $(n=1,2,\cdots)$ be the sequence of the μ -dimensional limiting computing function on $T_{\epsilon}\mathcal{Y}$. If it holds

(1.7)
$$\lim_{n \to \infty} \chi^{(\mu;T)}_{n,\infty}(z) = 0 \quad (\text{or } \infty)$$

for some element T of \mathcal{Y} and some point $z \in D_T$, we call G the μ -convergent (or divergent) type. If it holds

(1.8)
$$0 < \underline{\lim_{n \to \infty}} \chi_{n,\infty}^{(\mu;T)}(z) \leq \overline{\lim_{n \to \infty}} \chi_{n,\infty}^{(\mu;T)}(z) < \infty$$

for some T ($\epsilon \mathcal{Y}$) and some point $z \epsilon D_T$, we call G the μ -finite type.

4. In the previous paper (4) we obtained the following results with respect to E.

PROPOSITION 1. (i) Let $G^*(\alpha_0)$ be a Kleinian group with properties (A) and (B). Then $G^*(\alpha_0)$ is the μ -divergent type, if and only if $M_{\frac{\mu}{2}}(E) = \infty$. (ii) If $G^*(\alpha_0)$ is the μ -convergent type, then it holds $M_{\underline{\mu}}(E) = 0$.

The Hausdorff dimension d(E) of the singular set E of G is defined in the following:

$$d(E) = \sup \{\frac{\mu}{2}; M_{\frac{\mu}{2}}(E) = \infty\} = \inf \{\frac{\mu}{2}; M_{\frac{\mu}{2}}(E) = 0\}$$

We had the following proposition ([4]).

PROPOSITION 2. Let $d(E) = \frac{\mu_0}{2}$ be the Hausdorff dimension of the singular set E of $G^*(a_0)$. If $\frac{\mu_0}{2} > a_0$, then it holds that $M_{\frac{\mu_0}{2}}(E) < +\infty$.

We presented in [4] the following three problems. (I) Is $G^*(\alpha_0)$ the μ -convergent type, if $M_{\frac{\mu}{2}}(E)=0$? This is the converse of (ii) in PROPOSITION 1. (II) Does it hold $0 < M_{\frac{\mu_0}{2}}(E)^2$ at the Hausdorff dimension $d(E) = \frac{\mu_0}{2}$? If so, is $G^*(\alpha_0)$ the μ_0 -finite type? (III) Does it always hold $\frac{\mu_0}{2} \ge \alpha_0$ for $G^*(\alpha_0)$?

In the case of G_N , the above problems (I) and (II) were solved positively in [2] and it is not necessary to consider the problem (III), since $\alpha_0 = 0$.

REMARK. We obtained in (2) the result that $0 < M_{\frac{\mu_N}{2}}(E_N) < +\infty$ is equivalent to that

 $0 < \lim_{n \to \infty} \chi_{n,\infty}^{(\mu_N;T)}(z) \leq \lim_{n \to \infty} \chi_{n,N}^{(\mu_N;T)}(z) < +\infty$ for any T and any $z \in D_T$ But in the process of proving LEMMA 5 of this theorem there is a mistake. But this is easily corrected. The main part of this correction is similar to the method using inequalities (3.6) and (3.7) in the process of proving THEOREM 3 (§ 3) of this paper.

§2. Properties of the limiting computing function $\chi_{n,\infty}^{(\mu;T)}(z)$.

5. The purpose of this paper is to solve the problems (I) and (II). But now the problem (III) is still open.

At first we shall give some properties which will be necessary to solve these problems.

Let $G^*(\alpha_0)$ be the μ -convergent type. Then it holds for some element $T \in \mathcal{Y}^*(\alpha_0)$ and some point $z \in D_T$

$$\lim_{n\to\infty}\chi_{n,\infty}^{(\mu;T)}(z) = \lim_{n\to\infty}(\lim_{N\to\infty}\chi_{n,N}^{(\mu;T)}(z)) = 0.$$

Since it holds for any N

(2.1)
$$\chi_{nN}^{(\mu;T)}(z) \leq \chi_{n\infty}^{(\mu;T)}(z),$$

 $\lim_{n\to\infty}\chi_{n,N}^{(\mu;T)}(z)=0$

we have and hence

(2.2)
$$\lim_{N\to\infty} (\lim_{n\to\infty} \chi_{n,N}^{(\mu;T)}(z)) = 0.$$

Therefore we obtain

(2.3)
$$\lim_{N\to\infty} (\lim_{n\to\infty} \chi_{n,N}^{(\mu;T)}(z)) = \lim_{n\to\infty} (\lim_{N\to\infty} \chi_{n,N}^{(\mu;T)}(z)) = 0.$$

Next we suppose that $G^*(\alpha_0)$ is the μ -divergent type. Let G_N and $\frac{\mu_N}{2}$ for any integer N (>0) be the subgroup of $G^*(\alpha_0)$ and its Hausdorff dimension of the singular set E_N . We have already found in [3] that $\frac{\mu_N}{2}$ increases strictly according as the increment of the boundary circles of B_N and $\lim_{N\to\infty} \frac{\mu_N}{2} = -\frac{\mu_0}{2}$ (=d(E)). Further we have from Proposition 1 that $\lim_{n\to\infty} \chi_{n,\infty}^{(\mu_0,T)}(z) < +\infty$ for any element $T_{\epsilon}\mathcal{Y}^*(\alpha_0)$ and any point $z \epsilon D_T$ is equivalent to that $M_{\frac{\mu_0}{2}}(E) < +\infty$. Then from the definition of the Hausdorff dimension we have

(2.4)
$$\frac{\mu}{2} < \frac{\mu_0}{2} (= d(E)).$$

So there exists a positive integer N such that $\frac{\mu}{2} < \frac{\mu_N}{2}$ Hence we have from Theorem 2 in (2) that

(2.5)
$$\lim_{n \to \infty} \chi_{n,N}^{(\mu;T)}(z) = \chi_{\infty,N}^{(\mu;T)}(z) = \infty.$$

Since $\chi_{n,N}^{(\mu;T)}(z)$ is a monotone increasing function of N, we have

(2.6)
$$\lim_{N\to\infty}\chi^{(\mu;T)}_{\infty,N}(z) = \infty.$$

Thus from the assumption on $G^*(\alpha_0)$ and (2.6) we have

(2.7)
$$\lim_{N\to\infty} (\lim_{n\to\infty} \chi_{n,N}^{(\mu;T)}(z)) = \lim_{n\to\infty} (\lim_{N\to\infty} \chi_{n,N}^{(\mu;T)}(z)) = \infty.$$

Arranging the above result we have the following theorem.

THEOREM 1. Let $G^*(\alpha_0)$ be a Kleinian group with properties (A) and (B). If $G^*(\alpha_0)$ is the μ -convergent (or divergent) type, then it holds

(2.8)
$$\lim_{N \to \infty} (\lim_{n \to \infty} \chi_{n,N}^{(\mu;T)}(z)) = \lim_{n \to \infty} (\lim_{N \to \infty} \chi_{n,N}^{(\mu;T)}(z)) = 0 \quad (\text{or } \infty).$$

6. We defined the types of $G^*(\alpha_0)$ and divided them into three types. But it is natural to arise the following problem : Does there exist the type other than the above ones? In other words, there may exist the case that

$$\lim_{n\to\infty}\chi_{n,\infty}^{(\mu;T)}(z) < \overline{\lim_{n\to\infty}}\chi_{n,\infty}^{(\mu;T)}(z) = \infty$$

or

$$0 = \lim_{n \to \infty} \chi_{n,\infty}^{(\mu;T)}(z) < \lim_{n \to \infty} \chi_{n,\infty}^{(\mu;T)}(z)$$

for some element T and some point $z \in D_T$ and some number μ .

We shall prove that for any fixed number μ there are only three types of $G^*(\alpha_0)$, that is, the μ -convergent, divergent and finite types. For this purpose we shall give the following Lemma.

LEMMA 1 ([4]). Let $G^*(\alpha_0)$ be a Kleinian group defined in the above. (i) Then it holds

(2.5)
$$(4K+1)^{-\mu} \chi_{n,\infty}^{(\mu;T)}(z_0) \leq \chi_{n,\infty}^{(\mu;T)}(z) \leq (4K+1)^{\mu} \chi_{n,\infty}^{(\mu;T)}(z_0)$$

for any element $T \in \mathcal{U}^*(\alpha_0)$ and any two points z and $z_0 \in D_T$, where K is a positive constant in the property (A). (ii) Let T, T^* and $T^{**} (\neq T^{-1}, \neq T^{*-1})$ be arbitrary elements of $\mathcal{U}^*(\alpha_0)$. Then there exists a positive constant $K(G^*(\alpha_0), T^*, T^{**}, \mu)$ depending only on $G^*(\alpha_0), T^*$, T^{**} and μ (> 2 α_0) such that it holds for any two points z ($\in D_T$) and $z^* = T^*T^{**}(z)$ ($\in D_{T^*}$)

(2.10)
$$\chi_{n+2,\infty}^{(\mu;T)}(z) \ge K(G^*(\alpha_0), T^*, T^{**}, \mu)\chi_{n,\infty}^{(\mu;T^*)}(z^*).$$

Proof. Since the proof of (i) is given in [4], we shall give only the proof of (ii) here. Take any element $S_{(n+2)} = S_{(n)} T^* T^{**} = T_{i_n} \cdot \cdot \cdot T_{i_1} T^* T^{**}$ of grade n+2 such that $T^* \neq T_{i_1}^{-1}$.

Since

$$\left|\frac{dS_{(n+2)}(z)}{dz}\right|^{\frac{\mu}{2}} = \left(\left|\frac{dS_{(n)}(z^{*})}{dz^{*}}\right| \left|\frac{dT^{*}(T^{**}(z))}{dT^{**}(z)}\right| \left|\frac{dT^{**}(z)}{dz}\right|\right)^{\frac{\mu}{2}},$$

we have from the definition of the computing function

(2.11)
$$= \sum_{\substack{S_{(n+2)} \in G^*(\alpha_0) \\ S_{(n+2)} \in G^*(\alpha_0)}} \left(\frac{R_{S_{(n+2)}}}{|z - S^{-1}_{(n+2)}(\infty)|} \right)^{\mu} \left(\frac{R_{T^*}}{|T^{**}(z) - T^{*-1}(\infty)|} \right)^{\mu} \left(\frac{R_{T^{**}}}{|z - T^{**-1}(\infty)|} \right)^{\mu}.$$

Since all circles $\{K_i\}_{j=1}^p$ and $\{H_i, H_i'\}_{i=p+1}^{\infty}$ are contained in a closed disc D_0 , it holds $|z - T^{**^{-1}}(\infty)| \leq 2\rho_0$ and $|T^{**}(z) - T^{*^{-1}}(\infty)| \leq 2\rho_0$.

Hence we have

(2.12)
$$\sum_{\substack{S_{(n+2)}\in G^*(\alpha_0)\\ (\overline{|z-S_{(n+2)}^{-1}(\infty)|})^{\mu}} \left(\frac{R_{T^{**}}}{2\rho_0}\right)^{\mu} \left(\frac{R_{T^{**}}}{2\rho_0}\right)^{\mu} \sum_{\substack{S_{(n)}\in G^*(\alpha_0)\\ (\overline{|z^*-S_{(n)}^{-1}(\infty)|})^{\mu}}.$$

Thus we have from (2.12)

$$\chi_{n+2,\infty}^{(\mu;T)}(z) \ge K(G^{*}(\alpha_{0}), T^{*}, T^{**}, \mu) \chi_{n,\infty}^{(\mu;T^{*})}(z^{*}).$$

q.e.d.

7. By using the above LEMMA 1 we have the following result.

LEMMA 2. Assume that it holds $\lim_{n\to\infty} \chi_{n,\infty}^{(\mu;T^*)}(z_0) = \infty$ for some element T^* and some point $z_0 \in D_{T^*}$. Then $G^*(\alpha_0)$ is the μ -divergent type.

Proof. From the assumption there exists some subsequence $\{\chi_{n_i,\infty}^{(\mu;T^*)}(z_0)\}\ (i=1,2,\cdots)$ for some T^* and some point $z_0 \in D_{T^*}$ such that

(2.13)
$$\lim_{i\to\infty} \chi^{(\mu;T^*)}_{n_i,\infty}(z_0) = \infty.$$

Take another element $T^{**} (\neq T^{*^{-1}}) \epsilon \mathcal{U}_{\ell}^{*}(\alpha_{0})$ and let it be fixed. Then from (i) of LEMMA 1 there exists a positive integer N_{0} depending on large number M (>1), T^{*} , T^{**} , $G^{*}(\alpha_{0})$ and μ such that it holds for any integer $n_{i_{0}} \geq N_{0}$ (>0) and any point $z^{*} \epsilon D_{T^{*}}$

(2.14)
$$\chi_{n_{i_0},\infty}^{(\mu;T^*)}(z^*) > \frac{(4K+1)^{\mu}M}{K(G^*(\alpha_0), T^*, T^{**}, \mu)},$$

where K is a constant in the property (A) and $K(G^*(\alpha_0), T^*, T^{**}, \mu)$ is a constant in (ii) of LEMMA 1. Then we have from (ii) of LEMMA 1

(2.15)
$$\chi_{n_{i}+2,\infty}^{(\mu,T)}(z) > M$$

for any element $T \ (\neq T^{**^{-1}})$ uniformly on D_T . If we take another element $T_1^{**} \ (\neq T^{*^{-1}})$ different from T^{**} and similar steps as in the above, then there exists a positive integer N'_0 depending on $M \ (>1)$, T^* , T_1^{**} , $G^* \ (\alpha'_0)$ and μ such that for any $n'_{i_0} \ge N'_0$

(2.16)
$$\chi_{n'_{i_0,\infty}}^{(\mu;T^*)}(z^*) > \frac{(4K+1)^{\mu}M}{K(G^*(\alpha_0),T^*,T_1^{**},\mu)}$$

and hence it holds for any $T (\neq T_1^{**^{-1}})$

(2.17)
$$\chi_{n'_{\ell}+2,\infty}^{(\mu;T)}(z) > M$$

uniformly on D_T . If we take $N_0^* = \max(N_0, N_0')$, then it holds for any element $T \in \mathcal{Y}^*(\alpha_0)$ and any $n_i^* \ge N_0^*$

(2.18)
$$\chi_{n^{*}+2,\infty}^{(\mu;T)}(z) > M$$

uniformly on D_T . Since $\lim_{N\to\infty} \chi^{(\mu;T)}_{n^+_1+2,N}(z) = \chi^{(\mu;T)}_{n^+_1+2,\infty}(z)$, we can take a large positive integer

Types of Some Infinitey Generated Kleinian Groups

N depending only on small ε such that it holds for any element $T \epsilon \mathcal{Y}_{N}$

(2.19)
$$\chi_{n^*+2.N}^{(\mu;T)}(z) \geq M-\varepsilon > 1.$$

We know that this inequality is a sufficient condition for $M_{\frac{\mu}{2}}(E_N)$ to be infinity ([2]). Hence we obtain that $M_{\frac{\mu}{2}}(E) = +\infty$. Hence from (i) of PROPOSITION 1 we can conclude that $G^*(\alpha_0)$ is the μ -divergent type.

q.e.d.

8. Next we shall prove the following result.

LEMMA 3. Assume that it holds $\lim_{n\to\infty} \chi_{n,\infty}^{(\mu;T^*)}(z_0) = 0$ for some element $T^* \in \mathcal{Y}^*(\alpha_0)$ and some point $z_0 \in D_{T^*}$. Then $G^*(\alpha_0)$ is the μ -convergent type, that is, $\lim_{n\to\infty} \chi_{n,\infty}^{(\mu;T^*)}(z_0) = 0$.

Proof. Assume that $\overline{\lim_{n\to\infty}} \chi_{n,\infty}^{(\mu;T^*)}(z_0) = k$ (>0) for some T^* and some $z_0 \in D_{T^*}$. Then there exists a subsequence $\{\chi_{n,\infty}^{(\mu;T^*)}(z_0)\}$ (i=1,2,...) of the μ -dimensional computing functions on T such that

(2.20)
$$\lim_{i\to\infty} \chi^{(\mu;T^*)}_{n_i,\infty}(z_0) = k.$$

Hence there is a positive integer $N_0 = N_0(\epsilon, n_i)$ depending only on any ϵ and n_i such that it holds for $N \ge N_0$

(2.21)
$$\chi_{\mathbf{n}_{i},\mathbf{N}}^{(\mu;T^{*})}(z_{0}) > k-\varepsilon > 0.$$

On the other hand from the assumption $\lim_{n\to\infty} \chi_{n,\infty}^{(\mu;T^*)}(z_0)=0$ there exists a subsequence $\{\chi_{n,\infty}^{(\mu;T^*)}(z_0)\}$ $(j=1,2,\cdots)$ such that

(2.22) $\lim_{\mathbf{j}\to\infty}\chi^{(\boldsymbol{\mu};T^*)}_{\mathbf{n}_{\mathbf{j},\infty}}(\boldsymbol{z}_0)=0.$

Since $\chi_{n,N}^{(\mu;T^*)}(z_0) \leq \chi_{n,\infty}^{(\mu;T^*)}(z_0)$ for any integer N (>0), it holds from (2.22)

$$\lim_{n\to\infty} \chi_{n,N}^{(\mu;T^*)}(z_0) = 0.$$

Hence from the property (LEMMA 2 in [2]) of the computing function, we have

(2.23)
$$\lim_{n\to\infty}\chi_{n,N}^{(\mu;T^*)}(z_0)=0.$$

103

104

Therefore we can determine the order n_i depending only on $\delta = k - \varepsilon$ in $\{\chi_{n,N}^{(\mu;T^*)}(z_0)\}$ (i=1,2,...) so that it may hold

(2.24)
$$\chi_{n,N}^{(\mu;T^*)}(z_0) < \delta,$$

which contradicts (2.21). Thus it must hold that $\overline{\lim_{n\to\infty}} \chi_{n,\infty}^{(\mu;T^*)}(z_0)=0$ and hence it completes the proof of this Lemma.

Then we have from LEMMAS 2 and 3 the following theorem.

THEOREM 2. There are only three types of $G^*(\alpha_0)$ for any fixed number μ , that is, the μ -con vergent, divergent and finite type.

§3; Relations between the Hausdorff measure of the singular sets of $G^*(\alpha_0)$ and their limiting computing functions.

9. Now let us solve the problem (I). For this purpose we shall show that $\lim_{n\to\infty} \chi_{n,\infty}^{(\mu;T)}(z) > 0$ implies $M_{\frac{\mu}{2}}(E) > 0$. If we suppose $\lim_{n\to\infty} \chi_{n,\infty}^{(\mu;T)}(z) = +\infty$, then we have from PROPOSITION 1 and LEMMA 2 that $G^*(\alpha_0)$ is the μ -divergent type and hence $M_{\frac{\mu}{2}}(E) = +\infty$. So we may consider only the case that $G^*(\alpha_0)$ is the μ -finite type, that is,

$$(3.1) 0 < \lim_{n \to \infty} \chi^{(\mu;T)}_{n,\infty}(z) \leq \lim_{n \to \infty} \chi^{(\mu;T)}_{n,\infty}(z) < +\infty$$

for some element $T \in \mathcal{Y}^*(\alpha_0)$ and some point $z \in D_T$. Then (3.1) holds for any element T and any point $z \in D_T$ from LEMMAS 1 and 2.

Take a large positive integer N and let it be fixed. Then there is a some positive number K depending only on N such that it holds

$$(3.2) \qquad \qquad \chi_{n,N}^{(\mu;T)}(z) < K$$

for any element $T \in \mathcal{Q}_N$ and any point $z \in D_T$. Further take a small number δ and consider a covering consisting of closed discs with radii $r_{R_{(n_j)}}$ ($<\delta$) bounded by circles of grade n_j by $S_{(n_j)}$ (ϵG_N) to the singular set E_N . Extract a subcovering of $E_N \cap D_{T^*}$ from this covering for some element T^* ($\epsilon \mathcal{Q}_N$).

Denote the sum of radii of this subcovering by $\sum_{j=1}^{p} (r_{S_{(n_j)}})^{\frac{\mu}{2}}$. Then from the relation between the radii of the image circles and the isometric circles of these elements $S_{(n_j)}$

q.e.d.

([1]), we have

(3.3)
$$\sum_{j=1}^{p} (r_{S_{(n_j)}})^{\frac{\mu}{2}} \ge K(G_N, \mu) \sum_{j=1}^{p} (R_{S_{(n_j)}})^{\mu}, \qquad S_{(n_j)} = T^* S_{(n_j-1)}.$$

Since $\sum_{j=1}^{p} (R_{S_{(n_j)}})^{\mu} = \sum_{j=1}^{p} (R_{S_{(n_j)}})^{\mu}$, we have from (3.3)

(3.4)
$$\sum_{j=1}^{p} (r_{S_{(n_j)}})^{\frac{\mu}{2}} \geq K(G_{N},\mu) \sum_{j=1}^{p} (R_{S_{(n_j)}^{-1}})^{\mu} = K(G_{N},\mu) \sum_{j=1}^{p} (R_{S_{(n_j-1)}^{-1}T^{*-1}})^{\mu}.$$

On the other hand we have from the property of $\chi_{n,N}^{(\mu;T)}(z)$ ([2])

(3.5)
$$\chi_{n,N}^{(\mu;T)}(S_{(m)}(\infty)) = \sum_{S_{(n)}} \left(\frac{R_{S_{(m)}S_{(m)}}}{R_{S_{(m)}}}\right)^{\mu}, \qquad S_{(m)} = TS_{(m-1)}.$$

Denote $\max_{\substack{1 \leq j \leq p}} (n_j) = n^*$. Consider each element $R_{S_{(n_j)}^{-1}}$ of the sum (3.4). We put $S_{(n_j)}^{-1} = TS_{(n_j-1)}^{-1} = TS_{(n_j-2)}^{-1} T^{*-1}$ and denote $n^* - n_j$ by $n^*(j)$. Then we have from (3.5)

(3.6)
$$K > \sum_{\substack{S_{(n^*(j))}) \\ S_{(n^*(j))}}} \left(\frac{R_{S^{-1}(n^*(j))}S^{-1}(n_j)}{R_{S_{(n_j)}^{-1}}} \right)^{\mu}.$$

Hence from (3.4) and (3.6)

(3.7)

$$\sum_{j=1}^{p} (R_{S_{(n_{j})}^{-1}})^{\mu} > K \sum_{S_{(n^{*}-1)}} (R_{S_{(n^{*}-1)}T^{*^{-1}}})^{\mu} \\
= K(R_{T^{*^{-1}}})^{\mu} \sum_{S_{(n^{*}-1)}} (R_{S_{(n^{*}-1)}T^{*^{-1}}})^{\mu} / (R_{T^{*^{-1}}})^{\mu} \\
= K(R_{T^{*^{-1}}})^{\mu} \chi_{n^{*}-1,N}^{(\mu;T^{*^{-1}})} (T^{*^{-1}}(\infty)).$$

Then we have from (3.4) and (3.7)

(3.8)
$$\sum_{j=1}^{p} (r_{S_{(n_j)}})^{\frac{\mu}{2}} \ge K(G_{N},\mu) K (R_{T^{*^{-1}}})^{\mu} \chi_{n^*-1,N}^{(\mu;T^{*^{-1}})}(T^{*^{-1}}(\infty)).$$

From the well known property about the Hausdorff measure (PROPOSITION 3 in [1]),

(3.9)
$$\mathbb{M}_{\frac{\mu}{2}}(E_{\mathbb{N}\cap}D_{T^*}) \geq \mathcal{K}^{-1}(\frac{k_0(\mathbb{N})}{2})^{\frac{\mu}{2}} K(G_{\mathbb{N}},\mu)K(R_{T^{*^{-1}}})^{\mu} \chi_{\mathfrak{n}^*-1,\mathbb{N}}^{(\mu;T^{*^{-1}})}(T^{*^{-1}}(\infty)),$$

where κ is an absolute constant and $k_0(N)$ is a constant depending only on N. Since $E \supset E_{\rm N}$, we have

where $K^*(G_N, N, T^*, \mu) = \mathcal{K}^{-1}(\frac{k_0(N)}{2})^{\frac{\mu}{2}} K(G_N, \mu) K(R_{T^{*^{-1}}})^{\mu}$ is a constant depending only on G_N , N, T^* and μ .

It holds that

(3.11)
$$\lim_{n\to\infty} \chi^{(\mu;T)}_{n,\infty}(z_0) = k > 0$$

for some element $T \in \mathcal{Y}^*(a_0)$ and any point $z \in D_T$. Hence there is an integer $n_0(\varepsilon)$ (>0) depending on any number ε satisfying $k > 2\varepsilon$ such that it holds for any integer $n \ge n_0(\varepsilon)$

(3.12)
$$|\chi_{n,\infty}^{(\mu;T)}(z)| \ge k-\varepsilon.$$

Then it is easily seen that there is a positive integer N_{o} depending on n and ϵ such that it holds

(3.13)
$$\chi_{n,N}^{(\mu;T)}(z) \geq k - 2\varepsilon > 0$$

for any integer $N \ge N_0$ and any point $z \in D_T$.

At first we gave a small number δ . Then we can take a grade number n so that the radii of the image circles by $S_{(n)} \epsilon G_N$ for any integer N may be less than δ . Hence from (3.10) and (3.13) we obtain for $T = T^{*^{-1}}$

(3.14)
$$\mathbf{M}_{\frac{\mu}{2}}(E_{\bigcap}D_{T^*}) \geq K^*(G_{\mathbf{N}},\mathbf{N},T^*,\mu)(k-2\varepsilon) > 0.$$

Since (3.14) holds for any integer N ($>N_0$), we can conclude that

$$\mathrm{M}_{\frac{\mu}{2}}(E_{\bigcirc}D_{T^*}) > 0$$

and therefore

$$M \underline{\mu}(E) > 0$$

Then from the contraposition of the above fact we can claim that $M_{\frac{\mu}{2}}(E)=0$ implies that $G^*(\alpha_0)$ is the μ -convergent type. Thus we have from (ii) of PROPOSITION 1 the following theorem, which solves the Problem (I).

THEOREM 3. Let $G^*(\alpha_0)$ be a Kleinian group with properties (A) and (B). Then $G^*(\alpha_0)$ is the μ -convergent type if and only if $M \frac{\mu}{2}(E) = 0$.

106

10. Now let us consider the Problem (II). We know that $M_{\frac{\mu_0}{2}}(E) < +\infty$ at the Hausdorff dimension $d(E) = -\frac{\mu_0}{2}$ from PROPOSITION 2 and that there are only three types of $G^*(\alpha_0)$ from THEOREM 2. So it is easily conjectured from THEOREM 3 that $G^*(\alpha_0)$ is the μ_0 -finite type. We shall lead the contradiction under the assumption of the μ_0 -convergent type at the Hausdorff dimension.

Since $\lim_{n\to\infty} \chi_{n,\infty}^{(\mu;T)}(z) = +\infty$ is equivalent to $M_{\frac{\mu}{2}}(E) = +\infty$, $G^*(\alpha_0)$ is the $(\mu_0 - \delta)$ -divergent type for any number δ $(<\mu_0)$ from the definition of d(E). Hence however small δ is, it holds for some element $T \in \mathcal{U}^*(\alpha_0)$ and some point $z_0 \in D_T$

(3.15)
$$\lim_{n \to \infty} \chi^{(\mu;T)}_{n,\infty}(z_0) = \infty, \quad (\mu = \mu_0 - \delta).$$

Take a large integer N and let it be fixed. Then $\chi_{n,N}^{(\mu;T)}(z_0)$ is a function of n and μ . Take a integer n_1 (>0). Since $\chi_{n,N}^{(\mu;T)}(z_0)$ is a continuous and monotone decreasing function of μ for some fixed integer n_1 (>0), we have

(3.16)
$$\chi_{n_1,N}^{(\mu_0;T)}(z_0) = \lim_{\mu \to \mu_0} \chi_{n_1,N}^{(\mu;T)}(z_0) = k(n_1,\mu_0).$$

Since $\chi_{n,N}^{(\mu;T)}(z_0)$ is a monotone increasing function of N, we have

(3.17)
$$\chi_{n_1,\infty}^{(\mu_0;T)}(z_0) \geq k(n_1,\mu_0).$$

As $G^*(a_0)$ is the μ -divergent type ($\mu < \mu_0$), there is a large integer n_2 (> n_1) such that

(3.18)
$$\chi_{\mathbf{n},\mathbf{N}}^{(\mu;T)}(z_0) > \chi_{\mathbf{n},\mathbf{N}}^{(\mu;T)}(z_0).$$

Hence from (3.17) and (3.18) we have

(3.19)
$$\chi_{\mathbf{n}_{2},\infty}^{(\boldsymbol{\mu}_{0},T)}(\boldsymbol{z}_{0}) \geq k(\mathbf{n}_{1},\boldsymbol{\mu}_{0}).$$

Continuing these procedures infinitely many times, we have the subsequence of computing functions $\{\chi_{n_i\infty}^{(\mu_0;T)}(z_0)\}$ (i=1,2,...) so that it may holds for any n_i

(3.20)
$$\chi_{\mathbf{n}_{i},\infty}^{(\mu_{0};T)}(\boldsymbol{z}_{0}) \geq k(\mathbf{n}_{1},\mu_{0}).$$

If we suppose that $G^*(\alpha_0)$ is the μ_0 -convergent type, it holds

(3.21)
$$\lim_{n\to\infty} \chi^{(\mu_0;T)}_{n,\infty}(z_0) = 0.$$

This fact contradicts (3.20). Thus $G^*(\alpha_0)$ is not the μ_0 -convergent type. Therefore we can claim that $G^*(\alpha_0)$ is the μ_0 -finite type and hence $M_{\frac{\mu_0}{2}}(E) > 0$, which solves the Problem (II). Hence we have from PROPOSITION 2 the following theorem.

THEOREM 4. Let $G^*(\alpha_0)$ be a Kleinian group with properties (A) and (B). Assume that $\frac{\mu_0}{2} > \alpha_0$. Then $G^*(\alpha_0)$ is the μ_0 -finite type if and only if $0 < M_{\frac{\mu_0}{2}}(E) < +\infty$.

References

- T. Akaza, Poincare theta-series and singular sets of Schottky groups. Nagoya math. J., 24 (1964). 43~65.
- [2] T. Akaza, Local property of the singular sets of some Kleinian groups. Tôhoku Math. J., 25 (1973), 1-22.
- (3) T. Akaza and T. Shimazaki, The Hausdorff dimension of the singular sets of combination groups. Ibid., 25 (1973), 61-68.
- [4] T. Akaza and E. Sakai, Singular sets of some infinitely generated Kleinian groups. (to appear).