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In the previous paper [4]) we gave the results between the singular sets of some
infinitely generated Kleinian groups and their computing functions and presented three
problems; (1) Is G*(ay) the p-convergent type, if Mu(E)=0? (II) Does it hold 0 <M (E)
at the Hausdorff dimension d(E)? (IIl) Does it always 2hola’ d(E)=q, for G*a,)?

The purpose of this paper is to show that ( 1) and (II) can be solved positively. We
shall give in §2 the properties of the limiting computing functions on G*(¢,) and show

in §3 that (I) and (II) are solved by using these properties.

§1. Preliminaries and Notations.

1. Let {K,}2, and {H,H/}%Zp+: be an infinite number of circles external to
one another in the extended complex plane C= {z ;]z| <00} , where {H,H/}% .,
tend to only a finite point @ for g—oo. Let B be a domain bounded by these circles.
We may assume no loss of generality that these circles are contained in some closed
disc Dy= {z;|z| <0} .

Let {T,/%2., be the elliptic transformations with period 2 corresponding
o {K,;}%,, each of which transforms the outside of K, onto the inside of itself.
Let {T;}%,:1 be the system of hyperbolic or loxodromic transformations, each T, of
which transforms the outside of H; onto the inside of H.. Then the
system (L/ = {T, T:'" % (T;=7T7", 1<i<p) generates an infinitely generated
discontinuous gromp denoted by G and we call 1 the generator system of G, where
T7' denotes the inverse of T,

Take a positive integer q (>p) and consider a subset (y (T}, Y AT, T‘1 b,
(N=2q—p) of ¢/. Then 1/ generates a finitely generated subgroup Gy of G If we
denote by By a domain bounded by {K;}2., Y {H, H/}%p, (N=2g—p), it is well
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known that By coincides with a fundamental domain of Gy. We gave some results with
respect to the singular set En of Gy by using the relations between EyN and the
computing functions on Gy ((2)). We shall get G from Gy for N—oo,

2. Denote by 7(H) the radius of a circle He {H;,H/}%,., and assume that there
exists some positive constant K independent of H such that it holds

r(H)

(A) @ = ,

where [(H)=inf | z—¢ | and the infimum is taken for all points zeH and for all points ¢
on any circle from {H,H /%, — {H} .

Defining the product ST in G by ST(z)=S(7T(z)), we can write any element U of G
in the form

+ T,).

1

=T, .. T,T, (Tijey (I=i=n); Ti‘j:_

We call the positive integer n the grade of U and for simplicity we use the notation S,
to clarify grade of U.

Consider the image S(,(By) by any element S,,=7;,. . . T,7T; (¢ Gy). Itis
easily seen that S(,,(By) is bounded by an outer boundary circle Se(Cr,-1) and (N—-1)
inner boundary circles S,(Cr) (T4 T7! , T,y). We shall call such inner boundary
circle the circles of grade n. Circles {K,}%., and {H;,H/}%,., , which bounds By,
are of grade 0. The circles of grade n with respect to G can be defined in the same
way.

Now let us impose a restriction with respect to the accumulation of circles for G.
Consider the circle Cr,: | z—a(T)) | = 7p, of radius 77, with center o(7",) for any T';(e ).
Take some boundary circle Cr(T;+ T;) of B and denote the distance from o(7",) to Cr,
by O(T,), that is,

(L1 PAT)= inf | z—a(T)|.
zeCTJ_

It is obvious that 07T ,)> »(T,) and from the property (A)

7(T) - K

1.2 <
o P(T) — K+1

We assume that there exists a positive constant K,(?) depending only on some

positive number « (0< a<2) satisfying
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(B) W= 3 () yeg g

~,CY = R = ,

’ T,-e(]/ /Oj(Tz')z '
where TZ' denotes the sum with respect to all T; (+ T;). Then we can determine the
unique number a, (=0) such that

(1.3) aq=inf {a; K,(e)<+ oo} .

We note that ¢, is always equal to 0 for Gy.

From now we shall call such discontinuous group with these properties (A) and (B)
the Kleinian group with properties (A) and (B) and denote it by G*(¢,) and the generator
system by 4/ *(a).

3. Let Spy=T;,. . . T,T; (Tije(gN) be any element of Gy and assume that
T,-‘l‘ + T for a fixed element T (e (Z;N) and take any point zeD, . If we denote by R,

the radius of the isometric circle of S(,, we obtain easily

dS(n)(Z) = RS(n)
(1.4) — T = () (0<u<d),
| dz | 2—S5h(c0) |
where Si; denotes the inverse (Si»)'=7;' . . . T3 of Sy . Here we note that

zeDp and S(_nl)(oo)eDTi‘—l + Drp.
Forming the sum of (N—1)" terms with respect to all S, (¢Gy) such that 7, #= T
and 7'+ T;!, 1=j=n—1), we had the function

(1.5) y“Dz)= 3 (i)“
N SweGy | 2—S7h(e0) |

and called )(E&T)(z) the w-dimensional computing function of order n on 7. The
domain of definition of Xﬁf&ﬂ (z) is Dy ((2)).

Since each term in the sum )(gfi'\IT)(z) is positive, )(fl"‘i'\IT)(z) has necessarily the
unique limit containing the infinity for any zeDp, if N tends to the infinity. Thus we
can define the function

: 7 . Rsw
(L6) lim x40 (@)=lim 3 (———"——'=

Rs,,
) =3 (———
| Z_S(_nl)(oo) I SmeG | Z—S(rzl) (OO) I

“
’

and we shall call it the «-dimensional limiting computing function of order n on 7" and
denote it by y “D(z).

n,

Now let us give the following definition ((4)).
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Definition. Let {)(noo (2)} m=12,+) be the sequence of the #-dimensional
limiting computing function on Tef. If it holds

(1.7 }lm%gﬁoﬂ (z)=0  (or o)

for some element T of 9 and some point zeDy, we call G the wp-convergent (or
divergent) type. If it holds

(1.8) 0<lim x( (ﬂ T)(z) < hm x “T )(2) < oo

n—oco

for some T (e(l/) and some point zeDp, we call G the p—finite type.
4. In the previous paper (4] we obtained the following results with respect to E.
ProposiTION 1. (i) Let G*(o,) be a Kleinian group with properties (A) and (B). Then
G*(ay) s the p-divergent type, if and only if M a (E)=o0. (i) If G*(a,) is the u—convergent

type, then it holds Mﬂ (E)=0.

The Hausdorff dimension d(£) of the singular set E of G is defined in the
following :

d(E)=sup { 5 ,Mu (E)=o00} =inf {2 ,M# (E)=0} .
We had the following proposition ((4]).
PROPOSITION 2. Let d(E)— —— be the Hausdorff dimension of the singular set E of

then it holds that Mu (E)< +oo0.
2

We presented in (4] the following three problems. (1) Is G*(a,) the r-convergent
type, if Mﬂ (E)=0 ? This is the converse of (u) in ProrosiTioN 1. (II) Does it hold
0<Mx;o(E) at the Hausdonff dzmenszon d(E)— P If so, 1s G*(a,) the t,—finite type ?
(1) Does it always hold— Za for G*(a)?

In the case of Gy, the above problems (1) and (II) were solved positively in (2] and

it is not necessary to consider the problem (III), since a,=0.

ReEMARK. We obtained in (2] the result that 0<MﬂN(EN)< + oo is equivalent to that
2
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0<lim y g‘yo;T)(z)éxllim 1“8 (z)<+oco  for any 7 and any zeDy, But in the process of
n—oo ’ —00 g :

proving LEMMa 5 of this theorem there is a mistake. But this is easily corrected. The

main part of this correction is similar to the method using inequalities (3.6) and (3.7) in

the process of proving THeorem 3 (§ 3) of this paper.

§2. Properties of the limiting computing function y 47 (z).

5. The purpose of this paper is to solve the problems (1) and (II). But now the
problem (III) is still open.

At first we shall give some properties which will be necessary to solve these
problems.

Let G*(a,) be the u~convergent type. Then it holds for some element 7T'e?/*(e) and
some point zeDyp

lim, 120 (e) =i (i, () =0.

Since it holds for any N

2.1) 1P @)= 2 50 (),
we have lim y“7(z)=0
n—oo - n,N
and hence
3 : (;T) —
(2.2) I}l_rfolo (}lngerfN (z))=0.

Therefore we obtain
. . ( ,'T) R . ) _
(2.3) Jim (lim y £7(2))=lim (I}II_rgo X, 5 PE)=0.

Next we suppose that G*(e,) is the u-divergent type. Let Gy and LZN— for any
integer N (>0) be the subgroup of G*(,) and its Hausdorff dimension of the singular set
Ey. We have already found in (3] that %N—— increases strictly according as the
P ‘;" (=d(E)). Further we have
from ProposiTION 1 that I@ )(n(fggT) (z2) <+oo for any element Te?/*(a) and any point
zeD7 is equivalent to that M s (E) <+oco.  Then from the definition of the Hausdorff

2

dimension we have

increment of the boundary circles of By and 1\111m
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1

“o o
(2.4) 5 < 5 (=d(E)).
So there exists a positive integer N such that ZL < %‘— Hence we have from
THEOREM 2 in (2] that
(2.5) lim ¥ D (z) =y (z)=oo.

Since )(‘rf‘i'f) (z) is a monotone increasing function of N, we have
) i W) (7=
26) lim 767)(z)=co.
Thus from the assumption on G*(a,) and (2.6) we have
i i wT) =1 i (T) —
(2.7) 1\1115.}0 (,111_{?0 X @)=lim (lim y 0 (z))=co.
Arranging the above result we have the following theorem.

TuroreMm 1. Let G*(0,) be a Kleinian group with properties (A) and (B). If G*(a) is
the r—convergent (or divergent) type, then it holds
; ; T () —1: ; D) (L)) —
(2.8) I}grolo (im y %D(z)=lim( lim X @)=0 (or oo).
6. We defined the types of G*(o,) and divided them into three types. But it is
natural to arise the following problem: Does there exist the type other than the above
ones ? In other words, there may exist the case that

lim ,%7(e) < Hm 7D ()=co
n—oo bl ’
or
0=lim y 50 (2) < lim x50 (2)
for some element 7 and some point zeD; and some number w.
We shall prove that for any fixed number u there are only three types of G*(a,),

that is, the u—convergent, divergent and finite types. For this purpose we shall give the
following Lemma.
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LemMa 1 ((4)). Let G*(ay) be a Kleinian group defined in the above. (i) Then it holds

(2.5) @K+ 2 %Tlzy) = x 8D () = UK +1* x“D(z,)

for any element T € Qél (@) and any two points z and z, € Dy, wheve K is a positive constant
in the property (A). (ii) Let T, T* and T** (+ T~

T*°Y) be arbitrary elements of (Z/*(%)-
Then there exists a positive constant K(G*(a,), T*, T**

1) depending only on G*(a,), T%,
T* and 1 (> 2 @) such that it holds for any two points z (¢ Dy) and z*=T*T**(z) (e
Dy.)
(2.10) 24D (2) =

K(G*(ap), T*T**, 1)y &1 (27).

Proof S;nce the proof of (i) is given in (4], we shall give only the proof of (ii) here
Take any element S0 =S T*T**=T

=T, -+ - T, T*T* of grade n+2 such that
T*+T73.
Since
dsm(z*) H dT(T*(2) || _dT*(2) |5
dz d7T**(z) | dz ’

we have from the definition of the computing function

S(mz) “

s(nn)zec'(ao) (\Z— S psay(00)]
(2.11)

Rs(n) RT* RT**
_S(MZ%G*(QO)('Z*_S‘_':’(OO)I ) (’T**(Z) T* I(OO)I) (,Z T** l(oo)l)

©

Since all circles {K;}%., and {H,, H/|2,., are contained in a closed disc D,, it
holds | z— T** (o) |

< 20, and | T**(z)— T* (o) | <
Hence we have

S(n+2) s
S(MEG*(%) (IZ“ an1+2)(°0)[)
(2.12) .
_RT.’L_ RT** A
a ) e (n,ezc*wo)( ‘2*—5&‘>(0°)|) '
Thus we have from (2.12)
Xﬁflleo(Z) K(G*(a), T*,T**, 1) %19 (z).

q.ed.
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7. By using the above LEMMA 1 we have the following result.

LeMMA 2. Assume that it holds Jim y “T7(zo)=c0 for some element T* and some

point zge€Dp.. Then G*(,) is the u-divergent type.

Proof. From the assumption there exists some subsequence {y ngoo) (zo)} (=12,

for some T* and some point z,eD7+ such that
(2.13) }Lrg ¥ (n”,_fl:)(zo): 0.

Take another element 7T** (+ T*"l)e(l/*(ao) and let it be fixed. Then from (i) of LEmMmaA 1
there exists a positive integer N, depending on large number M (>1), T*, T**, G*(a)
and # such that it holds for any integer n;,, = N, (>0) and any point z*eDp-

AK+1)"M

W, T*) (5%
214 Yoo &) > R(GHag), T%,T%"

where K is a constant in the property (A) and K(G*(a,), T*, T**, #) is a constant in (ii) of
LevmMa 1. Then we have from (ii) of LEmma 1

(2.15) i w@) > M
for any element T (+ 7**') uniformly on Dy. If we take another element T%*(+ T*")

different from 7** and similar steps as in the above, then there exists a positive integer
N; depending on M (>1), T*, T%*, G* () and u such that for any nj, =N

T (s WK+1)"'M
(2.16) Yoo B> (G ag), T%, 17, 2)

and hence it holds for any T (+ T3*7")

;T
(2.17) relh @) > M

uniformly on D7. If we take Ni=max (N,,N,’), then it holds for any element T y*(ao)
and any nf=Nj%

(2.18) 24D &) > M

uniformly on Dy. Since lerl—rgo X&?—Z‘%,N(Z): X::;;-Z‘Z),oc(z)’ we can take a large positive integer
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N depending only on small ¢ such that it holds for any element Te @N
(2.19) 0@ =2 M—e > 1L

We know that this inequality is a sufficient condition for M%(EN) to be infinity ((2]).
Hence we obtain that M%(E)z +o0. Hence from (i) of ProprosiTioN 1 we can conclude
that G#(a,) is the #~divergent type.

q.e.d.

8. Next we shall prove the following result.

LemmMa 3. Assume that it holds r11_m ;ﬂ;j;{ *)(zo)zo for some element T*e (]J*(ao) and

some point z,eDys. Then G*(ay) is the u—convergent type, that is, lim )((rfof ) (2,)=0.
n—oo i
Proof. Assume that Iim )((:OZ V(z,)=k (>0) for some T* and some z,eDp.. Then
n—oo y
there exists a subsequence {;((rl‘ffOTO*) (zo)} (=1,2,~) of the wu-dimensional computing
functions on 7 such that

(2.20) lim y %50 (zo)=F.

Hence there is a positive integer N,=0N,(¢,n;) depending only on any ¢ and n; such that
it holds for N=N,

(2.21) X(&'g")(z(,) > k—e > 0.

On the other hand from the assumption lim x T (2,)=0 there exists a subse-

quence {)((n‘:g*)(zo)} (j=1,2,-) such that
(2.22) ]lgg P Kzz;) (24)=0.

Since y “T7(z,) < “I7 (2,) for any integer N (>0), it holds from (2.22)
; ST _
}lﬂ X%,N )(24)=0.
Hence from the property (LEMma 2 in (2]) of the computing function, we have

(2.23) lim 5 ¢87 (2)=0.
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Therefore we can determine the order n, depending only on §=+k—c¢
in {y %Iz, (i=12,) so that it may hold

(2.24) T W20 < 0,

which contradicts (2.21). Thus it must hold that lim )((rfof Mz,)=0 and hence it
n—oo 5
completes the proof of this Lemma.

g.e.d.
Then we have from LemMMAS 2 and 3 the following theorem.

THEOREM 2. There are only three types of G*(ay) for any fixed number wu, that is, the u-con
vergent, divergent and finite type.

§3; Relations between the Hausdorff measure of the singular sets of G*(a)

and their limiting computing functions.

9. Now let us solve the problem (I). For this purpose we shall show that IITI;I}’EI.S
)(gfg)(z)>0 implies M%(E)>0. If we suppose r@ )((rifg’(z):+oo, then we have
from ProposiTioN 1 and LeEmma 2 that G*(o) is the wu-divergent type and hence
M%(E)z +o0. So we may consider only the case that G*(q,) is the u—finite type, that is,

(3.1) 0<lim y%D(z) = Iim y®D(z) < +oo
n—oo ,OO —>00 ,00

for some element Te q{;*(ao) and some point zeDy. Then (3.1) holds for any element 7T
and any point zeD7 from LEMMAS 1 and 2.

Take a large positive integer N and let it be fixed. Then there is a some positive
number K depending only on N such that it holds

32) 4P < K|

for any element T€Q/N and any point zeDy  Further take a small number § and
consider a covering consisting of closed discs with radii 7z, (<) bounded by circles of
grade n; by S, (¢Gy) to the singular set Ey. Extract a sjubcovering of Ey~Dp+ from
this covering for some element 7T* (Uy ).

17
Denote the sum of radii of this subcovering by Z (73( ‘)5. Then from the relation
between the radii of the image circles and the 1sometr1c circles of these elements S,;
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((1)), we have

(33) ,§1(VSM)§ = K(GN,#) j%I(RSm.,)#: S(nj): T*S(nj‘l)-
j= s = s
Since %1(]25(‘" _])# = % (RS ) ), we have from (3.3)
i= y i=1
P “ P ” “°
(3.4) 521(75‘"1‘)2 = K(Gn El(Rs?n'ﬂ) = K(GnM) jél(Rs(-;r,,T*_l) .

On the other hand we have from the property of y (:NT) () ((2))

(3.5) P (Sim(e)= 3 (SmSm 5= TS,
Denote 1max (n;)=n*. Consider each element RS-I of the sum (3.4).

We put S(,,) —TSM -1 TS(nJ oy T*' and denote n*—n; by n*(). Then we
have from (3.5)

RS“(n*m)S_l(nj) “
(3.6) K > Sz (—Rs;;ﬂ ).

Hence from (3.4) and (3.6)

p
é (Rsr_n)j)) > K z (Rsm* v T* l)

(n*

(3.7) =KRp)' 3 (Rs,, 7o) 1Ry

(n -1)

:K(RT*“) X(: Z‘I N(T* l(oo))

Then we have from (3.4) and (3.7)

kel

(3.8) ;1 (75("1))2 K(Gy) K (Rpu)" y &I )(T*‘l(OO))

= n* 1N
From the well known property about the Hausdorff measure (ProposITION 3 in (1)),

(3.9) M (ExnDr) 2 X *(LZN))% K(GNAK(Ryo) 26T (T (00),

where X is an absolute constant and %,(N) is a constant depending only on N. Since
EDEy, we have

(3.10) M2(EADr) =z KXGnN,T* 1) x 4T (T (o)),
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where K*(GN, T, )= (k (N) 2 K(GyK (RT*—x) is a constant depending only on
GN’ N, T* and w.
It holds that

(3.11) lim y“D(z)=k > 0
n—co !

for some element Tel/*(q,) and any point z € D Hence there is an integer ny(e) (>0)
depending on any number ¢ satisfying 2 > 2¢ such that it holds for any integer n=mn,(e)

(3.12) “D) = ke

Then it is easily seen that there is a positive integer N, depending on n and ¢ such that
it holds

(3.13) 140G =z k-2 > 0
for any integer N=N, and any point zeDr.

At first we gave a small number §. Then we can take a grade number n so that the
radii of the image circles by S(,¢Gy for any integer N may be less than §. Hence from
(3.10) and (3.13) we obtain for 7= T*"

(3.14) M%(EmDT*) = KGN, T* u)(k—2¢) > 0.
Since (3.14) holds for any integer N (>N,), we can conclude that

M%(EQDT*) > 0

and therefore
M%(E) > 0.

Then from the contraposition of the above fact we can claim that M,g_(E):O implies
that G*(a,) is the u—convergent type. Thus we have from (ii) of ProrosiTioN 1 the
following theorem, which solves the Problem (1 ).

THeOREM 3. Let G*(@,) be a Kleinian group with properties (A) and (B). Then G*(a,)
1S the r-convergent type if and only if M%(E)zo.
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10. Now let us consider the Problem (II). We know that M_go_(E) <400 at the
Hausdorff dimension d(E)= g" from ProprosiTiON 2 and that there are only three types
of G*(a,) from THEOREM 2. So it is easily conjectured from THEOREM 3 that G*(a,) is the

to—finite type. We shall lead the contradiction under the assumption of the w,—converge-

nt type at the Hausdorff dimension.

Since lim  y 1) (z)=+ oo is equivalent to M%(E)= +oo, G*ao) is the
(o — 6)-divergent type for any number & (<) from the definition of d(£). Hence
however small ¢ is, it holds for some element T'e Q/*(ao) and some point z,eDr
(3.15) lim )((:g) (20)=00, (u=w,—9).

n—oo

Take a large integer N and let it be fixed. Then y “7)(z,) is a function of n and
w«. Take a integer n, (>0). Since )((;‘»'?(zo) is a continuous and monotone decreasing
function of « for some fixed integer n, (>0), we have
(3.16) 2 e (zo)=lim x (iR (z0) = k().
Since X&NT) (z,) is a monotone increasing function of N, we have
(3.17) eD(zo) = k().
As G*(ay) is the #~divergent type (u<u,), there is a large integer n, (>n,) such that
(3.18) X(n/:’;g) (zo) > ?((:;;? (20).
Hence from (3.17) and (3.18) we have

(3.19) X(::,g)(z") > ko).

Continuing these procedures infinitely many times, we have the subsequence of
computing functions { )(g‘_oéoT)(zo)} (i=1,2,~+) so that it may holds for any n;,

(3.20) ){(;l_“g)(zo) = k().

If we suppose that G*(q,) is the w,—convergent type, it holds
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(3.21) lim x %1 (z,)=0.

This fact contradicts (3.20). Thus G*(q,) is not the y,—convergent type. Therefore we
can claim that G*(o,) is the y,—finite type and hence M%(E)> 0, which solves the
Problem (II). Hence we have from ProrosiTion 2 the following theorem.

TueoreMm 4. Let G*(o,) be a Kleinian group with properties (A) and (B). Assume that

“20 >0y, Then G*(%) is the po~finite type if and only if 0<Mu(E)< +oo.
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