A Supplement to "On Normality of a Family of Holomorphic Functions"

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者: 渡辺, 力
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00011295

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Sci. Rep. Kanazawa Univ., Vol. 19. No.1, pp. 13—14 June 1974

A Supplement to "On Normality of a Family of Holomorphic Functions"

.Chikara WATANABE

Department of Mathematics, College of Liberal Arts, Kanazawa University.

(Received May 29, 1974)

In our previous paper¹⁾, we proved the following :

Let D be a domain in C^n and let $\{f_j\}$ be a sequence of holomorphic functions in D such that

(i); $\{f_j\}$ is bounded at each point of D, i. e., $\{f_j(p)\}$ is a bounded subset of the complex plane C for each point $p \in D$,

(ii); the sequence $\{G_j\}$ of graphs of f_j converges analytically to an analytic set A in $D \times C$.

Then the sequence $\{f_j\}$ converges uniformly to a holomorphic function in D on every compact subset of D.

In this note we show that the condition (ii) cited above is weakened, that is we show the following

THEOREM • Let D be a domain in C^n and let $\{f_j\}$ be a sequence of holomorphic functions in D such that

(i); $\{f_j\}$ is bounded at each point of D,

(ii); the sequence $\{G_j\}$ of graphs of f_j converges geometrically to a proper analytic set A in $D \times C$.

Then $\{f_j\}$ converges uniformly to a holomorphic function in D on every compact subset of D.

Proof. Let E be a set of non fine point of A, that is $p \in E$ if and only if the set $A(p) = A \cap \{(p,w) \in C^{n+1}\}$ has no finite accumulating point. Then E is a proper analytic set in D^{2} . Let $P_0 \in D - E$, then since $\{f_j(p_0)\}$ is bounded there exists at least one limit point q_0 . By the definition of the geometric convergence, it holds that $(p_0, q_0) \in A$. Since A is proper and since $p_0 \in E$ we can take an open polydisc $\Delta \subset D - E$ with center at p_0 and an open disc $U \subseteq C$ with center at q_0 such that $A \cap (\Delta \times \partial U) = \phi$. Then there

¹⁾ On normality of a family of holomorphic functions, Publications RIMS, Vol 9, No. 3, 1974.

²⁾ See ibid., section 2.

Chikara WATANABF

exists a positive integer j_0 such that $G_j \cap (\Delta \times \partial U) = \phi$ and $G_j \cap (\Delta \times U) \neq \phi$ for all $j \ge j_0$. Let $\pi: \Delta \times U \rightarrow \Delta$ be the natural projection and put

$$\pi_j = \pi \mid G_j \cap (\Delta \times U) : G_j \cap (\Delta \times U) \longrightarrow \Delta.$$

Then it is easily seen that π_j is a proper mapping, so that $(G_j \cap (\Delta \times U), \pi_j, \Delta)$ is an analytic cover³). Thus π_j is onto. This means that $\{f_j\}$ is uniformly bounded on Δ , that is $\{f_j\}$ is locally uniformly bounded on D-E. Let $p_0 \in E$. Since E is a proper analytic set in D, by a linear change of coordinate if necessary, we may assume that there exists a polydisc Δ with center at p_0 such that E does not meet with the distinguished boundary of Δ . Then by the maximum principle of the holomorphic functions, $\{f_j\}$ is bounded on Δ . That is $\{f_j\}$ is locally uniformly bounded on D, and then $\{f_j\}$ is a normal family. If a subsequence $\{f_{\nu_j}\}$ of $\{f_j\}$ converges to a holomorphic function f on every compact set in D, then $\{G_{\nu_j}\}$ converges uniformly to f on every compact set in D.

REMARK 1. Under the condition of the above theorem, the set E is in fact empty since A is a graph of a holomorphic function.

REMARK 2. The conditions (i), (ii) are said in other words as follows.

(i); $\{f_i\}$ is bounded at each point of D and equicontinuous at some point $p_0 \in D$,

(ii); the sequence $\{G_j\}$ converges geometrically to an analytic set A in $D \times C$.

In fact, we have only to show that A is proper. There exists an open polydisc $\Delta \subset D$ and a positive constant M such that $|f_j(p)| \leq M$ if $p \in \Delta$. Thus if $(p_0, q) \in A$ then $|q| \leq M$, that is A is a proper analytic set.