The Normal Coordinate Analysis of a-Aminoisobutyric Acid Anhydride(3,3,6,6-Tetramethyl-2,5-Piperazinedion e)

メタデータ	言語: eng	
	出版者:	
	公開日: 2017-10-03	
	キーワード (Ja):	
	キーワード (En):	
	作成者: 浅井, 正友, 野田, 邦夫, 佐道, 昭	
	メールアドレス:	
	所属:	
URL	https://doi.org/10.24517/00011300	
	This work is licensed under a Creative Commons	

Attribution-NonCommercial-ShareAlike 3.0 International License.

Sci. Rep. Kanazawa Univ., Vol. 19. No.1, pp. 33-45 June 1974

The Normal Coordinate Analysis of *a*-Aminoisobutyric Acid Anhydride (3,3,6,6-Tetramethyl-2,5-Piperazinedione)

Masatomo ASAI*, Kunio NODA*, and Akira SADô**

*Department of Chemistry, College of Liberal Arts, Kanazawa University **Department of Chemistry, Faculty of Science, Kanazawa University

(Received May 31, 1974)

Abstract The infrared spectra of α -aminoisobutyric acid anhydride and its *N*-deuterated compound in the solid state have been observed in the frequency region from 4000 to 250 cm⁻¹. The normal coordinate analysis has been made by assuming the molecular symmetry of C_{2h} and by treating the methyl groups as mass points. A simple Urey-Bradley force field has been employed and the normal frequencies have been calculated by using the force constants of glycine anhydride. The assignments of the fundamental frequencies have been made by referring to isotopic frequency shifts, calculated frequencies, and potential energy distributions.

Introduction

The infrared spectroscopic study of amino acid anhydrides (2,5-piperazinediones) has been mostly done on glycine anhydride, which is the simple unsubstituted 2,5-piperazinedione, by many authors. On the other hand, the infrared absorption bands of the substituted 2,5-piperazinediones (*e.g.*, 3,3,6,6-tetramethyl-2,5-piperazinedione) have not been studied in detail. In the preceding paper¹⁾ the authors reported the normal coordinate analysis of glycine anhydride as a complete fourteen-body problem with C_{2h} symmetry. Therefore in the present work, the normal coordinate analysis of the *A*_u and *B*_u fundamental vibrations of α -aminoisobutyric acid anhydride and its *N*-deuterated compound has been attempted by applying the information on the force constants of glycine anhydride, and the analysis has also been made in an attempt to confirm the empirical vibration assignments of those compounds in our previous study²).

Results and Discussion

The infrafed spectra were recorded on a Nipponbunkô DS-301 infrared spectrophotometer equipped with sodium chloride prism in the $4000-650 \text{ cm}^{-1}$ region and on a Hitachi EPI-L grating infrared spectrophotometer in the $700-250 \text{ cm}^{-1}$ region. The samples were measured as mulls with Nujol and hexachlorobutadiene. The absorption

— 33 —

$[C(CH_3)_2CONH]_2$	$[C(CH_3)_2COND]_2$	Assignment
3370 w		N—H stretching (free)
00//	3300 vw	$2336 + (964)^{\omega}$
3244 s }		[N-H stretching (hydrogen bonded) [Fermi resonance]
3068 s J	0005	$(1682 + (1474)^{a}), (1726)^{a} + 1430$
3010 w }	3005 w }	CH ₃ asymmetric stretching
2988 w J	2980 m J	CH
2947 vw	2940 w	CH ₃ asymmetric stretching
2910 w	2877 vw	CH ₃ symmetric stretching
	2435 W	N—D stretching (Iree)
	2393 vw	
	2336 s	
	2294 w	N-D stretching (hydrogen bonded)
	2270 VW	
	2238 vw /	
1699 ***	2120 VW	C-O stratshing
1002 VS	1055 VS	C—O stretching
1490 S	1472 S	N_{3} asymmetric deformation
1405 SH		$\Omega = \Omega$ in plane bonding
1452 0		CH commotive deformation
1405 S	1442 0	CH ₃ asymmetric deformation and
	1442 5	ring skeletal stretching (overlapped)
1430 337		ring skeletal stretching (overlapped)
1400 W		C = 0 stretching
1379 37361	1380 yw)	CH ₂ symmetric deformation
1370 w	1369 w	orry symmetric deformation
1010 10 2	1289 w	ring skeletal stretching C(CH ₂), symmetric stretching.
		$C(CH_2)_2$ scissoring, N—D in-plane bending
	1262 vw	
1237 s		$C(CH_3)_2$ symmetric stretching, ring skeletal stretching,
		$C(CH_3)_2$ scissoring
1205 s	1225 s	$C(CH_3)_2$ antisymmetric stretching
1173 m	1170 m	CH ₃ rocking
	1137 m	N—D in-plane bending, C(CH ₃) ₂ symmetric stretching
1012 w	(1013 vw) ^{b)}	ring skeletal stretching
	955 m	ring skeletal stretching
	940 w	CH ₃ rocking
939 m		CH_3 rocking and
		ring skeletal stretching, ring skeletal in-plane
		deformation (overlapped)
	913 m	N—D in-plane bending, ring skeletal stretching
864 s	(863 vw) ^{b)}	N—H out-of-plane bending
813 w	(806 vw) ^{b)}	$C(CH_3)_2$ symmetric stretching, ring skeletal in-plane
		deformation

Table 1. Observed infrared frequencies (cm^{-1}) for α -aminoisobutyric acid anhydride and its *N*-deuterated compound and their assignments The Normal Coordinate Analysis of α -Aminoisobutyric Acid Anhydride

		Table 1. (continued)
	787 w	$C(CH_3)_2$ symmetric stretching, ring skeletal in-plane deformation
	770 m	N—D out-of-plane bending, C(CH ₃) ₂ twisting,
		C=O out-of-plane bending
745 vw	690 m	C(CH ₃) ₂ scissoring, ring skeletal in-plane deformation
700 m		$C(CH_3)_2$ rocking, C=O out-of-plane bending
	631 s	C(CH ₃) ₂ rocking, N—D out-of-plane bending,
		C=O out-of-plane bending
449 vs		C=O in-plane bending and
		C(CH ₃) ₂ rocking, C(CH ₃) ₂ twisting, N—H out-of-plane
		bending (overlapped)
	444 vs	C=O in-plane bending and
		C(CH ₃) ₂ twisting, N—D out-of-plane bending,
		$C(CH_3)_2$ rocking (overlapped)
339 w	337 w	$C(CH_3)_2$ wagging
314 w	312 w	$C(CH_3)_2$ twisting, C=O out-of-plane bending

a) Frequencies estimated for infrared inactive bands from combination bands.

b) Assigned to undeuterated species.

Fig. 1. Infrared spectra of α -aminoisobutyric acid anhydride (a) and its *N*-deuterated compound (b) in the region between 4000 and 250cm⁻¹.

frequencies are listed in Table 1 together with their assignments and the actual spectra are given in Fig. 1.

35

Spectral assignment

With the aid of the spectral change on deuteration, the frequency calculation, and the potential energy distributions, the infrared absorption bands observed for α -aminoisobutyric acid anhydride and its *N*-deuterated compound may be assigned as shown in Table 1. The present assignment agrees with the empirical assignment in the previous paper² except for several bands.

The 4000-2000 cm⁻¹ region. α -Aminoisobutyric acid anhydride shows a series of bands between 3400 - 2800 cm⁻¹. Deuteration shifts the bands from the 3400 - 3050 cm⁻¹ region to the 2500 - 2200 cm⁻¹ region as expected. These deuteration sensitive bands are obviously due to the stretching vibrations of the NH group. Among these bands, the weak band at the highest frequency 3370 cm⁻¹ may be assigned to the free N-H stretching vibration, as in the case of glycine anhydride¹⁾. The corresponding N-D stretching band also appears at 2435 cm⁻¹ in the deuterated compound. The unshifted bands in the 3050-2800 cm⁻¹ region are easily assigned to the C-H stretching vibrations of the CH₃ group. However, it is noteworthy that the shift on deuteration is about 30 cm⁻¹ in the CH₃ symmetric stretching band.

The $2000-900 \text{ cm}^{-1}$ region. The very strong bands at about 1670 cm⁻¹ in both isotopic species are readily attributable to the C=O stretching vibrations. The two bands at 1496 and 1453 cm⁻¹, the two bands at 1379 and 1370 cm⁻¹, and the two bands at 1173 and 939 cm^{-1} —all these six bands show no marked frequency shift on deuteration (1472, 1442 cm⁻¹; 1380, 1369 cm⁻¹; 1170, 940 cm⁻¹)-can be assigned to the CH₃ asymmetric deformation vibrations, CH3 symmetric deformation vibrations, and CH3 rocking vibrations, respectively, as usually seen many compounds³⁾. The band at 1430 cm⁻¹ which disappears on deuteration may not be assigned simply to the N-H in-plane bending vibration. By the normal coordinate analysis, in the normal species, the two bands at 1463 and 1430 cm⁻¹ are attributable to the mixed contributions of the N-H in-plane bending vibration, ring skeletal stretching vibration, etc. The 1463 cm⁻¹ band is observed as a weak shoulder by the stronger 1453 cm⁻¹ band. In the deuterated species, the highest frequency band mainly due to the ring skeletal stretching vibration may well be expected near 1445 cm⁻¹. In the actual spectrum the corresponding band does not appear there. Thus the missing band may be overlapped by the adjacent 1442 cm⁻¹ band which is assigned to the CH₃ asymmetric deformation vibration.

The strong band at 1237 cm⁻¹ in the normal species has been assigned to the ring skeletal stretching vibration in the previous paper²⁾, but now from the potential energy distributions, this band may be attributable to the CH_3 -C-CH₃ symmetric stretching vibration as mixed with the ring skeletal stretching vibration, *etc.* In the previous assignment, both the 1205 cm⁻¹ band in the normal species and the 1225 cm⁻¹ band in the deuterated species were ascribed tentatively to the overlap of the bands caused by the symmetric and antisymmetric stretching vibrations of the C(CH₃)₂ structure. However, the results of the normal coordinate analysis show only the contribution of the

 CH_3 -C-CH₃ antisymmetric stretching mode to those bands.

The band observed at 939 cm⁻¹ in the normal species appears as two separate bands at 940 and 913 cm⁻¹ on deuteration. This suggests an overlapping of two bands at 939 cm⁻¹. The missing band in the normal species is probably overlapped by the 939 cm⁻¹ band assigned to the CH₃ rocking vibration. Thus the band at 1012 cm⁻¹ and the missing one at 939 cm⁻¹ in α -aminoisobutyric acid anhydride are replaced by the bands at 955 and 913 cm⁻¹ on deuteration, as seen in Fig. 1 and Table 1. These four bands may all be attributed to the ring skeletal stretching vibrations. The new band of medium intensity which appears at 1137 cm⁻¹ on deuteration may be assigned undoubtedly to the N-D in-plane bending vibration. According to the potential energy distributions, the other new band at 1289 cm⁻¹ in the deuterated species is ascribed to a complicated vibration concerned with the ring skeletal stretching, CH₃-C-CH₃ symmetric stretching, C(CH₃)₂ scissoring, and N-D in-plane bending modes.

The $900-250 \text{ cm}^{-1}$ region. The strong band at 864 cm⁻¹ which disappears on deuteration can be assigned to the N-H out-of-plane bending vibration. The 813 cm^{-1} band in the normal species and the 787 cm⁻¹ band in the deuterated species were assigned together to the ring skeletal in-plane deformation vibrations in the previous paper²). However, the potential energy distributions reveal that the contribution of the CH_3 -C-CH₃ symmetric stretching vibration to those bands is larger rather than that of the ring skeletal in-plane deformation vibration. The four bands at 745, 700, 339, and 314 cm^{-1} in the normal species which do not appear in the spectrum of glycine anhydride may be assigned to the C(CH3)2 scissoring, rocking, wagging, and twisting vibrations, respectively, by referring to the calculated frequencies. These bands are replaced by the bands at 690, 631, 337, and 312 cm⁻¹ on deuteration. As for the above 745 and 700 cm⁻¹ bands, however, the former has been assigned to the $C(CH_3)_2$ rocking mode in the previous paper and the latter to the C(CH₃)₂ scissoring mode. From the potential energy distributions, it is clear that the contributions of the C(CH₃)₂ scissoring and ring skeletal in-plane deformation vibrations are mixed on the above 745 and 690 cm^{-1} bands. The above 631 cm^{-1} band has been assigned to the coupling between the N-D out-of-plane bending and $C(CH_3)_2$ rocking vibrations in the previous study. However, this band is now assigned to the $C(CH_3)_2$ rocking vibration as mixed with the N-D out-of-plane bending vibration, *etc.*, according to the normal coordinate analysis. Similarly, the 770 $\rm cm^{-1}$ band in the deuterated species, which was formerly assigned to the coupling between the $C(CH_3)_2$ rocking and N-D out-of-plane bending modes, is now assigned to the N-D out-of-plane bending mode as mixed somewhat with the C(CH₃)₂ twisting mode, C=O out-of-plane bending mode, etc.

In the previous paper, the very strong band at about 445 cm^{-1} in each isotopic species was ascribed to the overlap of the C=O in-plane and out-of-plane bending bands. However, the potential energy distributions elucidate that the C=O in-plane bending mode contributes to the 445 cm⁻¹ band, but that the C=O out-of-plane bending mode does not affect the band. Accordingly, the 445 cm⁻¹ band is now assigned to the overlap of the two bands caused by the C=O in-plane bending vibration and a complicated vibration involving the C(CH₃)₂ rocking and twisting, and N-H (or N-D) out-of-plane bending vibrations. From the normal coordinate analysis, it can be seen that the C=O out-of-plane bending vibration in each isotopic species contributes more or less to all bands in the region below 900 cm⁻¹. Therefore the band mainly due to the C=O out-of-plane bending mode cannot be identified. It is also shown that the two ring skeletal out-of-plane deformation bands lie in the region below 250 cm⁻¹. The two bands due to the internal rotations of the CH₃ group were unobserved, so it is likely that these bands lie in the region below 250 cm⁻¹ or their intensity is very weak.

Normal coordinate analysis

The X-ray diffraction study of α -aminoisobutyric acid anhydride has not been carried out. α -Aminoisobutyric acid anhydride can be regarded as the derivative of glycine anhydride, *that is*, the four hydrogen atoms of the methylene groups in the latter are replaced by the four methyl groups in the former. In the preceding paper¹, it was assumed that the glycine anhydride molecule belongs to C_{2h} symmetry by referring to the X-ray diffraction studies^{4),5)}. Accordingly, the molecular symmetry of α -aminoisobutyric acid anhydride adopted in the present calculation is that of the point group C_{2h} with the planar diketopiperazine ring, as in the case of glycine anhydride¹. On the basis of this model simplifying the methyl groups as mass points, we have calculated the normal vibrations of α -aminoisobutyric acid anhydride and its N-deuterated compound as a fourteen-body problem. Excepting the vibrations of the methyl groups which are simplified as mass points, there are thirty-six normal vibrations, and these are classified into twelve A_{g} , six B_{g} , eleven B_{u} , and seven A_{u} vibrations. The former two species are Raman active, while the latter two species are infrared active.

The Wilson GF matrix method⁶⁾ was used for the calculation. The numerical calculation was carried out by means of a computer program using a FACOM 230-25/35 electronic computer. The program was made conveniently for our calculation by modifying the programs BGLZ and LSMB written by Shimanouchi et al.⁷⁾ The inverse kinetic energy matrix, G, was constructed by using the structure parameters, internal coordinates, and internal symmetry coordinates. The structure parameters used for α -aminoisobutyric acid anhydride were those employed for glycine anhydride, excepting that the C-CH₃ bond length was assumed to be 1.52 Å. The internal coordinates are the same as those of glycine anhydride, excepting that the C-H bonds of glycine anhydride are replaced by C-CH₃ bonds. The internal symmetry coordinates are also the same as those of glycine anhydride. In the descriptions of the modes, however, the notation CH_2 is replaceable with $C(CH_3)_2$. The masses of atoms used in the calculation of the G matrix are naturally identical with those of glycine anhydride, excepting that the methyl groups are treated as mass points. The potential energy matrix, F, was a simple Urey-Bradley force field. The potential field took the same form as glycine anhydride. The force constants used in the calculation of the F matrix

were transferred from our result of glycine anhydride, excepting that the force constants, which are connected with the methyl group treated as a mass point, were assumed by referring to the force constants of tetramethylmethane⁸⁾ in the initial calculation. As usual, F' (linear repulsive force constant) was assumed to be -0.1 F (quadratic repulsive force constant). The force constants are the same set for both isotopic species since the only change between the compounds is that of mass.

The number of the fundamental frequencies observed for each isotopic species is fourteen, except for the frequencies assigned to the vibration modes of the methyl group treated as a mass point in the normal coordinate analysis. On the other hand, the corresponding number of the infrared active normal frequencies for each isotopic species is sixteen except for two ring torsion modes. Then, it may be considered that the two missing bands in each isotopic species are overlapped by the adjacent bands. The number of the force constants used in the calculation is thirty-one. In the refinement process, a number of force constants need to be fixed to the appropriate values, because of the large number of force constants against the small number of observed frequencies. The initial calculation revealed that with respect to the vibrations related to the methyl group which is treated as a mass point, the agreement between the calculated and observed frequencies is not so good as other vibrations. Then, we fix the force constants transferred from glycine anhydride and refine other force constants by the least squares method. The refined force constants are one stretching, three bending, and three repulsion force constants which are related to the $C-CH_3$ bond or the CH_3 group treated as a mass point. Furthermore, taking into account the result of the initial calculation, we suppose that the missing bands are probably overlapped by other bands at 939 and 449 cm⁻¹ in the normal species and at 1442 and 444 cm⁻¹ in the deuterated species. As a result of the calculation based on the above views, it may be said that the three repulsion force constants should be fixed to the appropriate values, which are larger than the value (0.33) transferred from tetramethylmethane, rather than be varied. This is because those force constants become the unreasonably large values in the refinement process and because a bending force constant becomes the negative value which does not have any special chemical meaning.

In view of the above fact, we fixed the three repulsion force constants to the assumed values (0.50) indicated in Table 3 and tried various calculations varying the initial values of the four force constants of Table 2 to be adjusted in the

	Set A	Set B
$K(C-CH_3)$ $H(CH_3-C-C)$ $H(CH_3-C-CH_3)$ $H(N-C-CH_3)$	2.65 1.11 0.67 0.26	4.05 0.35 1.27 0.19
$\Pi(\Pi - C - C \Pi_3)$	0.20	0.19

Table 2. Refined force constants (mdyn/ Å)

Stretching and b	ending	Repulsion, out-of bending, and tor	-plane sion
$K_1(C-CMe_2)^{a)}$	2.95	F_1 (N.C.CMe ₂)	0.50
$K_2(N-CMe_2)$	2.78	$F_2(C.CMe_2.N)$	0.30
$K_{3}(C-N)$	5.52	$F_3(CMe_2.N.C)$	0.30
$K_4(C=O)$	8.15	$F_4(O.C.N)$	1.50
$K_5(CCH_3)$	4.05%)	$F_5(CMe_2.C.O)$	0.50
$K_{6}(N-H)$	5.79	$F_6(\mathrm{H.N.CMe_2})$	0.44
$H_1(N-C-CMe_2)$	0.67	F_7 (C.N.H)	0.61
$H_2(CCMe_2N)$	0.25	$F_8(CH_3.C.C)$	0.50
$H_3(CMe_2-N-C)$	0.15	$F_9(CH_3.C.CH_3)$	• 0.50
$H_4(O=C-N)$	0.32	$F_{10}(N.C.CH_3)$	0.50
$H_5(CMe_2-C=O)$	0.71	$P_1(C=O)$	0.14
$H_6(H-N-CMe_2)$	0.10	$P_2(N-H)$	0.25
$H_7(CN-H)$	0.26	$T_1(C-CMe_2)$	0.040
$H_8(CH_3-C-C)$	0.35 ^{b)}	$T_2(N-CMe_2)$	0.038
$H_9(CH_3-C-CH_3)$	1.27 ^{b)}	$T_3(C-N)$	0.068
$H_{10}(N-C-CH_3)$	0.19%)		

Table 3. Force constants (mdyn/Å) used for α -aminoisobutyric acid anhydride

a) CMe_2 shows the carbon atom attached the methyl groups.

b) Refined.

No.	Calc.	Obs.	$PED(\%)^{a)}$	Description ^{b)}
Infrar	ed active	e vibratio	n	
$A_u \operatorname{sp}$	ecies			
1	1213	1205	$K_{5}(80); H_{8}(7), H_{10}(4), F_{8}(2), F_{10}(2)$	$\nu_a C(CH_3)_2; \ \rho C(CH_3)_2$
2	864	864	$P_2(72); H_8(3), H_{10}(2), F_8(1),$	π NH; $tC(CH_3)_2$; π CO
			$F_{10}(3); P_1(8)$	
3	618	700	$H_{8}(24), H_{10}(1), F_{8}(20), F_{10}(3);$	$\rho C(CH_3)_2; \pi CO; \pi NH$
			$P_1(22); P_2(10)$	
4	412	449	$H_{8}(1), H_{10}(26), F_{8}(1), F_{10}(31);$	$\rho C(CH_3)_2$, $tC(CH_3)_2$; πNH ;
			$P_2(15); T_3(11); T_2(10)$	$\tau CN; \tau N-CMe_2$
5	247	314	$H_{8}(26), H_{10}(9), F_{8}(16), F_{10}(10);$	$tC(CH_3)_2; \pi CO; \tau CN$
			$P_1(28); T_3(9)$	
6	105		$T_3(38); P_1(31); T_2(20); H_8(1),$	τ CN; π CO; τ N–CMe ₂ ;
			$H_{10}(5), F_8(1), F_{10}(5)$	$ ho \mathrm{C}(\mathrm{CH}_3)_2$
7	53		$T_1(54); T_2(27); H_8(2), H_{10}(2),$	τ C-CMe ₂ ;τ N-CMe ₂ ;
			$F_{8}(1), F_{10}(2); P_{1}(6); T_{3}(5)$	$\rho C(CH_3)_2; \pi CO; \tau CN$
_				
$B_u \operatorname{sp}$	ecies			
8	3380	3370	$K_{6}(91), F_{6}(3), F_{7}(5)$	νNH
9	1696	1682	$K_4(54); K_3(19); H_1(9)$	ν CO; ν CN; δ N–C–CMe ₂

Table 4. Calculated frequencies and main potential energy distributions of α -aminoisbutyric acid anhydried

Table 4. (continued)

10	1479	1463	$H_6(8), H_7(21), F_6(11), F_7(19);$ $K_7(12); H_7(3), H_7(6), F_7(1); K_8(7)$	β NH; ν C–CMe ₂ ; β CO; ν CN
11	1397	1430	$K_{3}(32); H_{6}(5), H_{7}(7), F_{6}(4), F_{7}(2);$ $K_{4}(14); K_{5}(11); K_{6}(8)$	ν CN; β NH; ν CO; ν C-CMe ₂ ; ν N-CMe ₂
12	1309	1237	$K_{5}(27); K_{1}(3); K_{2}(9); K_{3}(4); H_{9}(25)$	$\nu_s C(CH_3)_2$; $\nu C-CMe_2$; $\nu N-CMe_2$; νCN ; $\sigma C(CH_3)_2$
13	1097	1012	$K_{2}(31); K_{1}(10); H_{8}(9), H_{10}(5),$ $F_{8}(2), F_{10}(3); H_{4}(3), H_{5}(5),$ $F_{4}(2), F_{4}(6)$	ν N-CMe ₂ ; ν C-CMe ₂ ; ω C(CH ₃) ₂ ; β CO
14	935	939	$K_1(18); K_3(3); H_1(8); H_4(6), H_5(1), F_4(21), F_5(3)$	νC-CMe ₂ ; νCN; δN-C-CMe ₂ ; βCO
15	735	813	$K_{5}(39); H_{1}(7); H_{2}(2); H_{3}(2);$ $H_{9}(15), F_{9}(15)$	$\nu_s C(CH_3)_2; \ \delta N-C-CMe_2;$ $\delta C-CMe_2-N; \ \delta CMe_2-N-C;$ $\sigma C(CH_3)_2$
16	632	745	$\dot{H}_{9}(32), F_{9}(6); H_{1}(9); H_{2}(5);$ $H_{3}(4); H_{5}(13), F_{5}(3)$	$\sigma C(CH_3)_2; \ \delta N-C-CMe_2;$ $\delta C-CMe_2-N; \ \delta CMe_2- N-C;$ βCO
17	389	449	$H_4(8), H_5(17), F_4(16), F_5(8);$ $K_2(16); K_1(7)$	β CO; ν N–CMe ₂ ; ν C–CMe ₂
18	328	339	$H_{8}(26), H_{10}(15), F_{8}(22), F_{10}(20)$	$\omega C(CH_3)_2$

Infrared inactive vibration

$A_g \operatorname{sp}$	ecies		
19	3380	$K_6(91), F_6(3), F_7(5)$	$ u \mathrm{NH} $
20	$1709 - 1726^{c}$	$K_4(48); K_3(22); H_1(9)$	ν CO; ν CN; δ N–C–CMe ₂
21	1462 1474 ^{c)}	$K_1(21); K_3(19); H_4(4), H_5(7),$	ν C–CMe ₂ ; ν CN; β CO; ν CO;
		$F_4(4); K_4(9); H_6(1), H_7(6), F_6(2),$	$\beta \mathrm{NH}$
		$F_{7}(10)$	
22	1432 .	$H_6(13), H_7(28), F_6(17), F_7(16);$	β NH; ν CO
		$K_4(12)$	
23	1264	$K_{5}(27); H_{9}(23), F_{9}(1); K_{3}(15);$	$\nu_s C(CH_3)_2; \sigma C(CH_3)_2;$
		$K_{2}(10)$	ν CN; ν N–CMe ₂
24	1177	$K_2(23); K_1(16); K_4(12); H_8(4),$	ν N–CMe ₂ ; ν C–CMe ₂ ; ν CO;
		$H_{10}(2), F_{10}(3)$	$\omega C(CH_3)_2$
25	761	$H_4(11), H_5(23), F_4(22), F_5(6);$	β CO; ω C(CH ₃) ₂
		$H_8(8), H_{10}(6), F_8(7), F_{10}(4)$	
26	735	$K_{5}(35); H_{9}(23), F_{9}(17)$	$\nu_s C(CH_3)_2; \sigma C(CH_3)_2$
27	591	$K_1(22); H_9(19), F_9(4); H_1(5);$	ν C–CMe ₂ ; σ C(CH ₃) ₂ ;
		$H_2(3); H_3(5)$	δ N–C–CMe ₂ ; δ C–CMe ₂ –N;
			δCMe₂−N−C
28	483	$H_1(24); H_3(3); K_2(23); K_4(7)$	δ N–C–CMe ₂ ; δ CMe ₂ –N–C;
			ν N–CMe ₂ ; ν CO
29	335	$H_8(16), H_{10}(15), F_8(13), F_{10}(21);$	$\omega C(CH_3)_2; \beta CO$
		$H_4(3), H_5(11), F_4(5), F_5(5)$	
30	321	$H_2(25); H_3(9); H_8(11), H_9(6),$	δ C–CMe ₂ –N; δ CMe ₂ –N–C;
		$H_{10}(2), F_8(9), F_{10}(3)$	$\sigma(\mathrm{CH}_3)_2$
$B_g \operatorname{spe}$	ecies		
31	1257	$K_{5}(66); H_{8}(8), H_{10}(4), F_{8}(2), F_{10}(1)$	$\nu_a C(CH_3)_2; \rho C(CH_3)_2$

 $K_{5}(66); H_{8}(8), H_{10}(4), F_{8}(2), F_{10}(1) \qquad \nu_{a}C(CH_{3})_{2}; \rho C(CH_{3})_{2}$

Masatomo ASAI, Kunio NODA, and Akira SADÔ

Table 4. (continued)

32	876	$P_2(54); K_5(20)$	$\pi \text{NH}; \nu_a \text{C}(\text{CH}_3)_2$
33	008	$\Gamma_{2}(34); \Gamma_{1}(17); \Pi_{8}(10), \Gamma_{8}(14)$	π NH; π CO; ℓ C(CH ₃) ₂ , ρ C(CH ₃) ₂
34	391	$H_{8}(10), H_{10}(32), F_{8}(6), F_{10}(36);$ $P_{2}(7)$	$t C(CH_3)_2, \rho C(CH_3)_2;$ πNH
35	254	$H_{8}(26), H_{10}(5), F_{8}(16), F_{10}(6);$	$\rho C(CH_3)_2; \pi CO$
36	112	$F_{1}(40)$ $P_{1}(32); T_{3}(23); T_{2}(15); T_{1}(14);$ $H_{8}(1), H_{10}(7), F_{10}(7)$	π CO; τ CN; τ N-CMe ₂ ; τ C-CMe ₂ ; ρ C(CH ₃) ₂

a) PED(%): potential energy distributions (in %) for force constants.

b) ν: stretching: δ: in-plane deformation; β: in-plane bending; π: out-of-plane bending;
σ: scissoring; ω: wagging; ρ: rocking; t: twisting; τ: torsion. a: antisymmetric;
s: symmetric. CMe₂ shows the carbon atom attached the methyl groups. ν_a and ν_s,
or ω, ρ, and t can be distinguished from potential energy distributons for symmetry coordinates.

c) Estimated from combination bands.

No.	Calc.	Obs.	PED(%)	Description
Infrar	ed active	e vibratio	n	
$A_u \operatorname{sp}$	ecies			
1	1211	1225	$K_{5}(80); H_{8}(7), H_{10}(4), F_{8}(2), F_{10}(2)$	$\nu_{\rho}C(CH_3)_2; \rho C(CH_3)_2$
2	783	770	$P_2(50); H_8(6), H_{10}(3), F_8(3),$	π ND: $tC(CH_2)_2$: π CO:
			$F_{10}(4); P_{1}(16); T_{3}(13)$	τCN
3	596	631	$H_{8}(22), H_{10}(4), F_{8}(19), F_{10}(9);$	$\rho C(CH_2)_2$; πND ; πCO ;
			$P_2(15); P_1(13); K_5(10)$	$\nu_{\rm c} C(CH_{\rm o})_{\rm o}$
4	348	444	$H_{10}(25), F_{10}(27); P_2(32)$	$tC(CH_2)_2$, $\rho C(CH_2)_2$; πND
5	245	312	$H_{8}(26), H_{10}(7), F_{8}(16), F_{10}(7);$	$tC(CH_2)_2$; πCO : τCN
			$P_1(31); T_3(9)$	
6	102		$T_{3}(40); P_{1}(29); T_{2}(20); H_{8}(1),$	τCN : πCO : τN -CMe ₂ :
			$H_{10}(4), F_{10}(4)$	$\rho C(CH_3)_2$
7	53		$T_1(53); T_2(28); H_8(2), H_{10}(2),$	$\tau C - CMe_2$: $\tau N - CMe_2$:
			$F_{8}(1), F_{10}(2); P_{1}(6)$	$\rho C(CH_3)_3; \pi CO$
B_u sp	ecies			1° - (0,2) · · ·
8	2468	2435	$K_6(92), F_6(2), F_7(5)$	v ND
9	1691	1653	$K_4(56); K_3(20); H_1(9)$	ν CO: ν CN: δ N–C–CMe ₂
10	1421	1442	$K_1(27); K_3(27); H_4(5), H_5(7),$	$\nu C - CMe_{2}$: $\nu CN: \beta CO: \nu CO$
			$F_4(5); K_4(11)$	
11	1345	1289	$K_2(19); K_3(14); K_5(21); H_9(21),$	ν N-CMe ₂ : ν CN: ν _s C(CH ₃) ₂ :
			$F_{9}(1); H_{6}(2), H_{7}(3), F_{6}(1), F_{7}(1)$	$\sigma C(CH_{a})_{a}$: βND
12	1138	1137	$H_{6}(5), H_{7}(21), F_{6}(5), F_{7}(14);$	β ND: $\nu_{\rm e}C(CH_2)_2$: β CO
			$K_{5}(11); H_{4}(4), H_{5}(1), F_{4}(9)$	p =
13	1084	955	$K_1(15); K_2(23); K_3(3); H_8(9),$	ν C-CMe ₂ : ν N-CMe ₂ : ν CN:
			$H_{10}(6), F_{8}(2), F_{10}(2); K_{4}(7);$	$\omega C(CH_2)_2$; $\nu CO: \beta ND$
			$H_6(2), H_7(1), F_6(11)$	~ = (===s/2, v = c, p = c

Table 5. Calculated frequencies and main potential energy distributions of N-deuterated α -aminoisobutyric acid anhydride

The Normal Coordinate Analysis of α -Aminoisobutyric Acid Anhydride

14	838	913	$H_{6}(7), H_{7}(12), F_{6}(13), F_{7}(10);$ $K_{1}(11); H_{4}(4), H_{5}(1), F_{4}(13),$ $F_{2}(1): H_{2}(5)$	β ND; ν C–CMe ₂ ; β CO; δ N–C–CMe ₂
15	732	787	$K_{5}(38); H_{1}(7); H_{2}(2); H_{3}(2); H_{9}(17), F_{9}(16)$	$\nu_{s}C(CH_{3})_{2}; \delta N-C-CMe_{2}; \delta C-CMe_{2}-N; \delta CMe_{2}-N-C; \sigma C(CH_{2})_{2}$
16	624	690	$H_9(30), F_9(5); H_1(10); H_2(5);$ $H_3(4); H_5(13), F_5(3)$	$\sigma C(CH_3)_2; \ \delta N-C-CMe_2; \\ \delta C-CMe_2-N; \ \delta CMe_2-N-C; \\ \beta CO$
17	388	444	$H_4(8), H_5(18), F_4(15), F_5(9);$ $K_2(16); K_1(7)$	β CO; ν N-CMe ₂ ; ν C-CMe ₂
18	327	337	$H_{8}(26), H_{10}(15), F_{8}(22), F_{10}(21)$	$\omega C(CH_3)_2$
Infrad	inactive	vibation	L	
$A_g \operatorname{sp}$	ecies			
19	2468		$K_6(92), F_6(2), F_7(5)$	ν ND
20	1705		$K_4(49); K_3(23); H_1(9)$	ν CO; ν CN; δ N–C–CMe ₂
21	1455		$K_1(23); K_3(19); K_4(17); H_4(4), H_5(6), F_4(5)$	ν C–CMe ₂ ; ν CN; ν CO; β CO
22	1270		$K_5(22); K_1(2); K_2(16); K_3(12);$ $H_2(19), F_2(1)$	$\nu_s C(CH_3)_2; \ \nu C - CMe_2;$
23	1207		K (10), K (14), K (8), H (2)	$\mathcal{V}_{11} = \mathcal{C}_{11} \mathcal{V}_{12}$
20	1201		$H_{1}(10), H_{2}(14), H_{3}(0), H_{6}(2),$ $H_{6}(8) F_{6}(1) F_{6}(3); K_{6}(12); K_{6}(9)$	$PO(CH_2, PI(CH_2, PCH, PCH, PCH, PCH))$
24	1057		$H_{-}(11) = H_{-}(22) = F_{-}(23) = F_{-}(15)$	β ND: α C(CH) : α C-CM α :
51	1001		$H_{6}(11), H_{7}(22), F_{6}(20), F_{7}(10),$ $H_{7}(10), H_{7}(10),$	β ND, $\omega \in (CH_3)_2$, $\beta \in -CMe_2$,
			K (5) K (5)	
25	737		$K_{1}(3), K_{2}(3)$ $K_{1}(3), K_{2}(3)$ $K_{1}(3), K_{2}(3)$	C(CH) + C(CH)
26	715		$H_{5}(30), H_{9}(10), F_{9}(10) = E_{10}(5)$	$\mathcal{V}_{s} \subset (CH_{3})_{2}, \ \sigma \subset (CH_{3})_{2}$
20	715		$H_4(10), H_5(11), F_4(11), F_5(3),$ $H_1(0), H_1(2), F_2(2), F_1(2).$	β CO; ω C(CH ₃) ₂ ; β ND
			$H_{8}(0), H_{10}(0), F_{8}(0), F_{10}(0),$ $H_{10}(0), H_{10}(0), F_{10}(0),$	
27	578		$K_{6}(2), K_{6}(3), K_{6}(3), K_{7}(4)$	C-CMe · · · N-CMe ·
21	010		$H_1(22), H_2(0), H_1(0), H_2(0), H_2$	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$
			$11_{3}(0), 11_{9}(11), 1_{9}(0)$	$\mathcal{E}_{\mathcal{L}}^{\mathcal{L}} = \mathcal{E}_{\mathcal{L}}^{\mathcal{L}} = \mathcal{E}_{\mathcal$
28	482		$H(25) \cdot H(3) \cdot K(23) \cdot K(7)$	$\sum_{n=0}^{\infty} N_{n} C_{n} C_{n$
20	402		$11_1(20), 11_3(0), 11_2(20), 11_4(7)$	$0 \text{ N} - \mathbb{C} - \mathbb{C} \text{ M} e_2, 0 \mathbb{C} \text{ M} e_2 - \mathbb{N} - \mathbb{C},$
29	334		H(17) H(15) F(14) F(21)	$\mathcal{L}(CH) = \mathcal{L}(CH)$
25	004		$H_{8}(17), H_{10}(15), F_{8}(14), F_{10}(21),$ $H_{10}(2), H_{10}(11), F_{10}(5), F_{10}(5)$	$\omega C(CII_3)_2, \beta CO$
30	320		$H_{4}(3), H_{5}(11), H_{4}(3), H_{5}(3)$ $H_{4}(25), H_{4}(9), H_{4}(11), H_{4}(6)$	SC CMa N: SCMa N C:
50	520		$H_2(23), H_3(3), H_8(11), H_9(0),$ $H_2(2), F_2(0), F_2(2)$	$\partial C = CIVIE_2 = IN$; $\partial CIVIE_2 = IN = C$,
R on	ocies		$\Pi_{10}(2), \Pi_{8}(9), \Pi_{10}(3)$	$\sigma C(CH_3)_2$
21 Dg Sp	1952		K(69), H(9), H(4), F(2), F(1)	C(CH) = C(CH)
32	822		P(22), $K'(21)$, $P(12)$	$\mathcal{P}_a \subset (CH_3)_2, \ \mathcal{P} \subset (CH_3)_2$
33	536		$P_{2}(32), K_{5}(21), T_{1}(12)$ $P_{1}(40), H_{1}(23), H_{1}(3), F_{1}(16)$	$\pi ND; tC(CH); \pi CO$
00	550		$F_{10}(2); P_{1}(12)$	<i>x</i> (CI1 ₃) ₂ , <i>x</i> (C
34	355		$H_{8}(3), H_{10}(31), F_{8}(1), F_{10}(35);$	$tC(CH_3)_2, \rho C(CH_3)_2;$
25	250		$L_{2}(42)$ $D_{1}(42), U_{1}(22), U_{1}(2), E_{1}(12)$	π IVD
30	200		$F_{1}(42); H_{8}(20), H_{10}(3), F_{8}(10), F_{10}(4)$	$\pi \cup 0; \rho \cup (\Box \Pi_3)_2$
36	109		$P_1(31); T_3(24); T_2(15); T_1(15); H_8(1), H_{10}(7), F_{10}(7)$	π CO; τ CN; τ N–CMe ₂ ; τ C–CMe ₂ ; ρ C(CH ₃) ₂

refinement process. It can be see from the results of the calculations that the variable force constants are converged to either the values of the set A or those of the set B shown in Table 2, but that the weighted sum of the squared deviations of the calculated frequency parameters from the observed ones in the case of the set B is smaller than that in the case of the set A. Accordingly, the following result of the normal coordinate analysis is described with the case of the set B.

The force constants used in the final calculation are given in Table 3. The calculated frequencies, potential energy distributions, and approximate descriptions obtained from these force constants together with the observed frequencies are listed in Table 4 for α -aminoisobutyric acid anhydride and in Table 5 for its N-deuterated compound. The agreement between the observed and calculated frequencies in each isotopic species is not so good for both of A_{μ} and B_{μ} vibrations. This is mainly found in the vibrations related to the methyl group which is treated as a mass point. The poor agreement may be (1) because the methyl group was treated as a mass point; or (2) because the force constants transferred from glycine anhydride were not refined; or (3) because the assumed structure parameters were not good. Nevertheless, it is confirmed that the empirical assignment in the previous $paper^{2}$ is almost correct by referring to the potential energe distributions. However, it should be noted that the contribuion of the C=O out-of-plane bending vibration is dispersed to many A_u vibrations and then that the band mainly due to the C=O out-of-plane bending mode cannot be pointed out. In the previous study, the $C(CH_3)_2$ rocking frequency of species A_u was considered to be higher than the $C(CH_3)_2$ scissoring frequency of species B_u . The result of the normal coordinate analysis is rather inverse in this respect. Although the assignments of those frequencies have been made according to the result in the present work, a detailed examination may be required to account for the small difference between those frequencies. As a result of the refinement of force constants, it was found that the value of the C-CH₃ stretching force constant, K(C-CH₃), became somewhat larger than that of tetramethylmethane (3.44) used in the initial calculation and that the value of the CH_3 -C-CH₃ bending force constant, $H(CH_3$ -C-CH₃), became much larger than that of tetramethylmethane (0.20). As to the remaining two refined bending force constants, $H(CH_3-C-C)$ and $H(CH_3-C-N)$, the value of the former became larger, while that of the latter became slightly smaller, than the initial value (0.20) assumed from the value of tetramethylmethane.

The authors wish to express their gratitude to the staff of Data Processing Center, Kanazawa University, for the use of the FACOM 230–25/35 electronic computer.

References

- 1) M. Asai, K. Noda and A. Sadô, Spectrochim. Acta, 30A, 1147(1974).
- 2) M. Asai, K. Noda and A. Sadô, Ann. Sci. Kanazawa Univ., 7, 63 (1970).
- 3) L. J. Bellamy, "The Infrared Spectra of Complex Molecules," Methuen, London (1958).
- 4) R. B. Corey, J. Am. Chem. Soc., 60, 1598 (1938).
- 5) R. Degeilh and R. E. Marsh, Acta Cryst., 12, 1007 (1959).
- 6) E. B. Wilson, Jr., J. Chem. Phys., 7, 1047 (1939); 9, 76 (1941).
- T. Shimanouchi, "Computer Programs for Normal Coordinate Treatment of Polyatomic Molecules," The University of Tokyo (1968).
- 8) T. Shimanouchi, Nippon Kagaku Zasshi, 74, 266 (1953).