C,1-summability of Fourier Series With Some Gap

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者: 松山, 昇
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00011370

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Sci. Rep. Kanazawa Univ., Vol. 11, No. 1, pp. 1-7 June 1966

|C,1| - summability of Fourier series with some gaps

Noboru MATSUYAMA

Department of Mathematics, Faculty of Science, Kanazawa University
(Received 31 March 1966)

1. W. C. Randels [1] and M. Kiyohara [2] obtained the following

Theorem A. Let f(x) be Lebesgue integrable in the interval $(-\pi, \pi)$ with period 2π . If at every point y on the closed interval $[-\pi, \pi]$, there exit a function $g_y(x)$ and a $\delta = \delta_y > 0$ such that (i) $g_y(x) = f(x)$ for $|x - y| < \delta$, and (ii) the Fourier series of $g_y(x)$ is $|C, \alpha|$ -summable for an α $(0 < \alpha \le 1)$, then the Fourier series of f(x) is $|C, \alpha|$ -summable.

This is analogous to a theorem of the absolute convergence proved by N. Wiener [3], and a key point of the proof of this theorem is the following

Theorem B. If the Fourier series $g_y(x)$ is $|C, \alpha|$ -summable $(0 < \alpha \le 1)$ at every point x, then the Fourier series of $g_y(x) \cdot h(x-y)$ is also $|C, \alpha|$ -summable at every point x, where h(x) is an even and periodic function with period 2π , and defined by

$$h(x) = \begin{cases} A(x-\delta)^3 + B(x-\delta)^2 & \frac{\delta}{2} \le x \le \delta \\ 1 & \text{for} \\ 0 & \delta \le x \le \pi \end{cases}$$

$$(1.1) \qquad h(\delta/2) = 1, \qquad h'(\delta/2) = 0.$$

The above function h(x) is exactly determined, i. e. $A = 16\delta^{-3}$ and $B = 12\delta^{-2}$. Though we have by (1.1)

$$h(x-y) \cdot g_y(x) = g_y(x) = f(x)$$
 for $|x-y| \le \frac{\delta}{2}$

we do'nt know whether the Fourier series of f(x) is $|C, \alpha|$ - summable in the interval $(y-\frac{\delta}{2}, y+\frac{\delta}{2})$ or not, under the $|C, \alpha|$ - summability of the Fourier series of $g_y(x)$.

With regard to this problem the following theorem will be established.

Theorem. Let the Fourier series of f(x) and g(x) be, respectively,

$$(1.2) f(x) \sim \sum_{p} c_{p} e^{ipx}, \quad g(x) \sim \sum_{p} r_{p} e^{ipx},$$

and let the former be a gap series satisfying the following gap conditions

(1.3)
$$c_p = 0$$
 for $p \neq n_k$ $k = 0, \pm 1, \pm 2, \dots$

where $\{n_k; k=0, 1, 2,\dots\}$ is a nondecreasing sequence of integral numbers such that (i)

$$(1.4) n_0 = 0, n_{-k} = -n_k k = 0, 1, 2, \dots$$

and (ii) the following conditions (1.5) are satisfied,

$$(1.5) (a) \frac{n_{k+1} - n_k}{n_k} \le C < \infty k = \pm 1, \pm 2, \dots$$

$$(b) \sum_{1}^{\infty} \frac{k}{n_k} < \infty$$

$$(c) \sum_{1}^{\infty} \frac{n_k}{(n_{k+1} - n_k)^2} < \infty$$

If g(x) = f(x) in some interval $(-\delta, \delta)$, then from the |C, 1|-summability of the Fourier series of g(x) at every point x, the |C, 1|-summability of the Fourier series of f(x) at every point x in the interval $(-\delta, \delta)$, follows.

Remark 1. The case for $|C, \alpha > 1|$ - summability of our theorem follows immediately from the well known theorem of L. S. Bosanquet [4].

Remark 2. The sequence $\{k^4\}$ satisfies (1.5) (a), (b), (c). On the other hand let $\{n_k\}$ of our theorem satisfy the following conditions (1.6) in place of (1.5), i. e. there exists a constant K such that if $k \ge K$, then for any positive integer l, both

(1.6)
$$l^{4} < n_{k} < n_{k+1} < (l+1)^{4}$$

$$l^{4} < n_{k} < (l+1)^{4} < n_{k+1} < (l+2)^{4}$$

do not happen.

For this n_k let l_k^4 be the nearest integer from n_k in the set $\{0^4, 1^4, 2^4, \cdots\}$, and we define a new sequence $\{m_i\}$ of integers:

Now we consider the trigonometric series $\sum_{-\infty}^{\infty} c_{m_j} e^{im_j x}$, which is the Fourier series of f(x) by reason of $c_{m_j} = 0$ for $m_j \neq n_k$, and $\{m_j\}$ satisfies (1.5) (a), (b), (c). Thus for a gap series with gaps bigger than (1.5), if it does not satisfy both of

(1.6), then our theorem is applied.

2. We must first prove a few lemmas.

Lemma 1. If

$$h(x) \sim \sum_{n} d_{n}e^{inx}, \quad S_{M}(x) = \sum_{|n| \leq M} d_{n}e^{inx}$$

are the Fourier series and its M-th partial sum of h(x), then

$$(2.1) |S_{M}(x)| \leq \begin{cases} A_{1}M^{-2} & |x| \geq \delta \\ A_{2} & |x| < \delta \end{cases}$$

$$(2.2) |d_{n}| \leq A |n|^{-3}$$

where A, A_1 and A_2 are absolute constants.

Proof. (2.2) is easily proved from the definition of h(x). To prove (2.1) if we put $|x| \ge \delta$, then by (1.1) and (2.2)

$$\begin{split} \mid S_{M}\left(x\right) \mid & \leq \mid h\left(x\right) - S_{M}\left(x\right) \mid + \mid h\left(x\right) \mid = \mid h\left(x\right) - S_{M}\left(x\right) \mid \\ & \leq \sum_{\mid n \mid \geq M} A \mid n \mid^{-3} \leq A_{1}M^{-2}. \end{split}$$

On the other hand, if we put $|x| < \delta$, then by the above inequality,

$$|S_{M}(x)| \leq |h(x) - S_{M}(x)| + |h(x)| \leq A_{1}M^{-2} + 1 \leq A_{2}.$$

We now define new sequences $\{n_k'\}$, $\{N\left(\nu\right)\}$ and $\{M\left(\nu\right)\}$, i. e. for k=0, \pm 1, \pm 2,...

(2.3)
$$n'_{k} = \frac{1}{2}(n_{k} + n_{k+1})$$

(2.4)
$$N(\nu) = \min(\nu - n_{k-1}, n_{k+1} - \nu)$$

for $n'_{k-1} \leq \nu \leq n'_k$ and for $\nu = 0, \pm 1, \pm 2, \cdots$

$$(2.5) M(\nu) = N(\nu) - 1$$

Lemma 2. If $\{n_k\}$ satisfies (1.5), then

Proof. We have for $k=1, 2, \cdots$

$$\frac{N(n_k)}{n_k} = \frac{\min(n_k - n_{k-1}, n_{k+1} - n_k)}{n_k} \le \frac{n_{k+1} - n_k}{n_k} < C$$

It follows that

$$\infty > \sum_{k} \frac{n_k}{N(n_k)^2} > \sum_{k=1}^{\infty} \frac{n_k}{N(n_k)} \cdot \frac{1}{N(n_k)} \ge \sum_{k=1}^{\infty} \frac{1}{C} \cdot \frac{1}{N(n_k)}$$

This completes the proof.

Since we have from (2.5), (2.4) and (2.3)

(2.7)
$$v + M(\nu) < \nu + N(\nu) \le \nu + (n_{k+1} - \nu) = n_{k+1},$$

$$v - M(\nu) > \nu - N(\nu) \ge \nu - (\nu - n_{k-1}) = n_{k-1},$$

provided that

$$(2.8) n'_{k-1} \leq \nu \leq n'_k,$$

we obtain from (2.7), (2.8) and (1.3)*)

$$c_{n(k)}d_{\nu-n(k)} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) S_{M(\nu)}(x) e^{-i\nu x} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} g(x) h(x) e^{-i\nu x} dx + \frac{1}{2\pi} \int_{-\pi}^{\pi} g(x) \{S_{M(\nu)}(x) - h(x)\} e^{-i\nu x} dx$$

$$+ \frac{1}{2\pi} \int_{-\pi}^{\pi} \{f(x) - g(x)\} S_{M(\nu)}(x) e^{-i\nu x} dx \equiv I_1 + I_2 + I_3,$$

where $S_{M(\nu)}(x)$ is the $M(\nu)$ -th partial sum of the Fourier series of h(x). From the hypotheses of Theorem and Lemma 1, it is obvious that,

$$|I_{3}| \leq \frac{1}{2\pi} \int_{|x| \geq \delta} \{|f(x)| + |g(x)|\} |S_{M(\nu)}(x)| dx \leq O(M(\nu)^{-2})$$

$$|I_{2}| \leq \frac{1}{2\pi} \int_{\pi}^{\pi} |g(x)| |h(x) - S_{M(\nu)}(x)| dx \leq O(M(\nu)^{-2})$$

We shall now consider the series $\sum M(\nu)^{-2}$. From (2.5), (2.3) and Lemma 2, it follows that

$$\sum_{\nu=0}^{\infty} \frac{1}{M(\nu)^{2}} = \sum_{k=1}^{\infty} \sum_{\nu=n_{k-1}'}^{n_{k}'-1} \frac{1}{M(\nu)^{2}} + \sum_{\nu=0}^{n_{0}'-1} \frac{1}{M(\nu)^{2}}$$

$$\leq \sum_{k=1}^{\infty} \left(\sum_{j=n_{k-1}'-n_{k-1}}^{\infty} \frac{1}{(j-1)^{2}} + \sum_{j=n_{k+1}-n_{k}'}^{\infty} \frac{1}{(j-1)^{2}} \right) + \sum_{j=n_{1}-n_{0}'}^{\infty} \frac{1}{(j-1)^{2}}$$

$$\leq O(1) \left(\sum_{k=1}^{\infty} \frac{2}{n_{k}-n_{k-1}} + \sum_{k=1}^{\infty} \frac{2}{n_{k+1}-n_{k}} + \frac{2}{n_{1}-n_{0}} \right)$$

$$\leq O(1) \sum_{k=1}^{\infty} \frac{1}{n_{k}-n_{k-1}} \leq O(1) \sum_{k=0}^{\infty} \frac{1}{N(n_{k})} < \infty,$$

so that we have under the hypotheses of Theorem, the absolute convergence of

$$\sum_{
u=0}^{\infty} \mid (I_2 + I_3) e^{i
u x} \mid < \infty.$$

Similarly, we have

$$\sum_{
u=-\infty}^{-1} \mid (I_2+I_3) e^{i
u x} \mid < \infty.$$

Hence we have that

^{*)} Hereafter n(k) means n_k $(k = 0, \pm 1, \pm 2, \cdots)$.

$$\sum^{\infty} \left(I_2 + I_3
ight) e^{i
u x}$$

converges absolutely and as a matter of course it is |C, 1| -summable at every point x.

Applying Theorem B, the Fourier series $\sum I_1 e^{i\nu x}$ of g(x) h(x) is |C, 1| - summable at every point x, and we obtain the following

Lemma 3. Under the hypotheses of Theorem, the trigonometric series

(2.9)
$$\sum_{k=-\infty}^{\infty} \sum_{\nu=n'_{k-1}}^{n'_k} c_{n(k)} d_{\nu-n(k)} e^{i\nu x}$$

is |C, 1| - summable at every point x.

Lemma 4. Let
$$\{n_{2k}; k = 0, \pm 1, \pm 2, \cdots\}$$
 satisfy (1.5) (a). If

$$(2.10) n_{2k+1} = (n_{2k} + n_{2k+2}) / 2,$$

then we have

(2.11)
$$\Delta = \left(\sum_{m=n_{2k}}^{n_{2k+2}} \frac{1}{m^2}\right) / \left(\sum_{m=n_{2k}}^{n'_{2k+1}} \frac{1}{m^2}\right) = O(1).$$

Proof.

$$\Delta = 1 + \left(\sum_{m=n_{2k}}^{n'_{2k}} \frac{1}{m^2} + \sum_{m=n'_{2k+1}}^{n_{2k+2}} \frac{1}{m^2}\right) / \left(\sum_{m=n'_{2k}}^{n'_{2k+1}} \frac{1}{m^2}\right)$$

$$\leq 1 + \left\{ \left(\frac{1}{n_{2k}}\right)^2 + \left(\frac{1}{n'_{2k+1}}\right)^2 \right\} / 2 \left(\frac{1}{n'_{2k+1}}\right)^2$$

$$= 1 + \left(\frac{1}{2} + \frac{1}{2} \left(\frac{n'_{2k+1}}{n_{2k}}\right)^2\right) = \frac{3}{2} + \frac{1}{2} \left(1 + \frac{3}{4} \frac{n_{2k+2} - n_{2k}}{n_k}\right)^2$$

$$\leq \frac{3}{2} + \frac{1}{2} \left(1 + \frac{3}{4} C\right)^2 < \infty.$$

This completes the proof.

3. To prove Theorem, we may suppose without any loss of generality that $\{n_{2k}; k=0, \pm 1, \pm 2, \cdots\}$ satisfies (1.3)-(1.5) and $\{n_{2k+1}; k=0, \pm 1, \pm 2, \cdots\}$ satisfies (2.10) and

(3.1)
$$c_{n(2k+1)} = 0$$
 $k = 0, \pm 1, \pm 2, \cdots$

For any positive integer m, we put

(3.2)
$$A(m) = \sum_{|\nu| \leq m} |\nu| p_{\nu} e^{i\nu x},$$

where

(3.3)
$$p_{\nu} = c_{n(k)} d_{\nu-n(k)}$$
 for $n'_{k-1} \leq \nu \leq n'_{k}$

 $k=0, \pm 1, \pm 2, \cdots$ so that by (3.1) we have

(3.4)
$$A(m) = A(n'_{2k})$$
 for $n'_{2k} \le m \le n'_{2k+1}$

From Lemma 3 and the definition of |C, 1| - summability, we have

$$(3.5) \qquad \infty > \sum_{m=1}^{\infty} \frac{1}{m^2} |A(m)| \ge \sum_{k=1}^{\infty} \sum_{n_{2k}^{\prime} \le m \le n_{2k+1}^{\prime}} \frac{1}{m^2} |A(n_{2k}^{\prime})|$$

we must estimate $A(n'_{2k})$ more precisely.

$$(3.6) \qquad A\left(n_{2\,k}^{'}\right) = \sum_{j=1}^{k} \left(\sum_{\nu=n_{2\,j-1}^{\prime}}^{n_{2\,j}^{\prime}} \nu \, p_{\nu} e^{i\nu x} + \sum_{\nu=n_{-2\,j-1}^{\prime}}^{n_{-2\,j}^{\prime}} (-\nu) \, p_{\nu} e^{i\nu x}\right) \\ + \sum_{\nu=n_{-1}^{\prime}}^{n_{0}^{\prime}} |\nu| \, p_{\nu} e^{i\nu x} \equiv P + Q + R.$$

A little more precise formula of P is as follows.

$$egin{aligned} P &= \sum_{j=1}^k \sum_{\mu=n_{2j-1}-n_{2j}}^{n_{2j}-n_{2j}} \left(\mu + n_{2j}\right) c_{n(2j)} \, e^{i(\mu + n_{2j})^x} d_\mu \ &= \left(\sum_{j=1}^k n_{2j} \, c_{n(2j)} \, e^{in_{2j}^x}
ight) \left\{ h\left(x
ight) - \sum_{\mu > n_{2j}'-n_{2j}} + \sum_{\mu < -\left(n_{2j}-n_{2j-1}'
ight)}
ight) d_\mu \, e^{i\mu x}
ight\} \ &+ \sum_{j=1}^k \, c_{n(2j)} \, e^{in_{2j}^x} \sum_{\mu = -\left(n_{2j}-n_{2j-1}'
ight)}^{n_{2j}'-n_{2j}} \, \mu d_\mu \, e^{i\mu x} \equiv P_1 + P_2 + P_3. \end{aligned}$$

It follows from (1.5) (c) that, noticing $\{c_n\}$ is uniformly bounded,

$$(3.7) |P_{2}| \leq \sum_{j=1}^{k} |n_{2j} c_{n(2j)}| \left(\frac{1}{(n'_{2j} - n_{2j})^{2}} + \frac{1}{(n_{2j} - n'_{2j-1})^{2}} \right)$$

$$\leq A \sum_{j=1}^{\infty} \frac{n_{2j}}{N(n_{2j})^{2}} < \infty$$

$$(3.8) |P_3| \leq \sum_{j=1}^k |c_{n(2j)}| \sum_{\mu \neq 0} \frac{1}{\mu^2} \leq 2Ak$$

Similarly if we write Q in the following formula

$$Q = \left(\sum_{j=1}^{k} \mid n_{-2j} \mid c_{n(-2j)}e^{in_{-2j}x}\right) \left\{h\left(x\right) - \left(\sum_{\mu < n'_{-2j} - n_{-2j}} + \sum_{\mu < -(n_{-2j} - n'_{2j-1})}\right) d_{\mu} e^{i\mu x} + \sum_{j=1}^{k} c_{n(-2j)}e^{in_{-2j}x} \sum_{\mu = -(n_{-2j} - n'_{-2j-1})}^{n'_{-2j} - n_{-2j}} (-\mu) d_{\mu} e^{i\mu x} \equiv Q_{1} + Q_{2} + Q_{3},$$

then we have

(3.7')
$$|Q_2| \le A \sum_{j=1}^{\infty} \frac{n_{2j}}{N(n_{2j})^2} < \infty$$

$$(3.8') |Q_3| \leq 2Ak$$

Concequently, we obtain by (3.6), (3.7), (3.7), (3.8) and (3.8).

$$(3.9) |P + Q + R| \ge |P + Q| - |R|$$

$$\ge h(x) \Big| \sum_{|n_l| \le n_{0l}} |n_l| c_{n(l)} e^{in_l x} |-Ak|,$$

and thus from (3.5), (3.6), (3.9) and (1.5) (b)

$$(3.10) \qquad \infty > h(x) \sum_{k=1}^{\infty} \sum_{\substack{n'_{2k} \leq m \leq n'_{2k+1} \\ m \geq k}} \frac{1}{m^2} \left| \sum_{\substack{|n_l| \leq m \\ |n_l| \leq m}} |n_l| c_{n(l)} e^{inl^x} \right| - A$$

Since h(x) > 0 in the interval $(-\delta, \delta)$, (3.10) leads

$$(3.11) \qquad \sum_{k=1}^{\infty} \sum_{n'_{2k} \leq m \leq n'_{2k+1}} \frac{1}{m^2} \left| \sum_{|n_l| \leq m} |n_l| c_{n(l)} e^{in_l x} \right| < \infty,$$

Now applying Lemma 4 and (3.11),

$$\sum_{m=1}^{\infty} \frac{1}{m^{2}} \left| \sum_{\substack{|n_{l}| \leq m}} |n_{l}| c_{n(l)} e^{in_{l}x} \right| = \sum_{k=1}^{\infty} \sum_{\substack{m=n_{2k}}}^{n_{2k+2}-1} \frac{1}{m^{2}} \left| \sum_{\substack{|n_{l}| \leq m}} |n_{l}| c_{n(l)} e^{in_{l}x} \right|$$

$$= \sum_{k=1}^{\infty} \sum_{\substack{m=n_{2k}}}^{n_{2k+2}-1} \frac{1}{m^{2}} \left| \sum_{\substack{|n_{l}| \leq n_{2k}}} |n_{l}| c_{n(l)} e^{in_{l}x} \right|$$

$$= \sum_{k=1}^{\infty} \sum_{\substack{m=n_{l},\\ m=n_{l}}}^{n_{2k+1}} \frac{1}{m^{2}} \left| \sum_{\substack{|n_{l}| \leq n_{2k}}} |n_{l}| c_{n(l)} e^{in_{l}x} \right| \cdot \Delta < \infty$$

References

- [1] W. C. RANDELS, On the absolute summability of Fourier series, III, Duke Math. Jour., 7 (1940), 204-207.
- [2] M. KIYOHARA, On the local property of the absolute summability C, for Fourier series, Jour. Math. Soc. Japan, 10 (1958), 55-63.
- [3] N. WIENER, Tauberian theorems, Ann. Math., 33 (1932), 1-100.
- [4] L. S. Bosanquet, The absolute Cesàro sammability of Fourier series, Proc. Lond. Math. Soc., 11(1936), 517-528.