C,1-summability of Fourier Series With Some Gap
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1. W. C. Randels [1] and M. Kiyohara [2] obtained the following

Theorem A. Let f(x) be Lebesgue integrable in the intevval (-z, n) with period
2z. If at every point y on the closed interval [-w, =], there exit @ function g, (x)
and @ 0=0,>>0 such that (1) g,(x) = f(x) for | x —y | <<0, and (ii) the Fourier
series of gy (x) is | C, « |-summable for an o« (0 <<o < 1), then the Fourier series

of f(x) is | C, a | - summable.

This is analogous to a theorem of the absolute convergence proved by N. Wiener
[3], and a key point of the proof of this theorem is the following

Theorem B. If the Fourier sevies gy, (x) is|C, & | - summable (0<<a =1) at
every point x, then the Fourier sevies of gy (x) « h(x-y) is also | C, « | -summable
at every point x, where h (x) is an even and peviodic function with period 2=, and

defined by

A(x —8)8 + B(x— 0)2 %gng

h(x)={ 1 for 0 <%=

(1.1) 0 d<x==
B(3/2) =1, #(3/2) = 0.

The above function % (x) is exactly determined, i.e. A = 1603 and B = 126-2.

Though we have by (1.1)

h(x—9)-g,(x) =g (%) =f(x) for ERTIESS

we do'nt know whether the Fourier series of f(x) is | C, « | - summable in the
interval (y 9 y +%) or not, under the |C, «| - summability of the Fourier series

2 3
of gy (%).
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With regard to this problem the following theorem will be established.

Theorem. Let the Fourier series of f(x) and g(x) be, respectively,

(1.2) fx)~ %‘1 cp €77, g (x) ~ ; Tp €77,
and let the former be a gap series satisfying the following gap conditions

(1.8) cp =0 for D+ ny =0, &1, £2, ..
wheve {ny; k=0, 1, 2, } is @ nondecreasing sequence of integval numbers such
that (i)

(1.4) 7o =0, By = — m, E=0,1, 2,

and (ii) the following conditions (1.5) arve satisfied,

15 (@ B oo he ot 2,
%
>k
R
SV M
@ ; (1 — m)2 =

If g (%) = f(x) in some interval (— 8, 0), then from the | C, 1| - summability of
the Fourier series of g (x) at every point x, the |C, 1|-summability of the Fourier
series of f (x) at every point x im the interval (— 0, 9), follows.

Remark 1. The case for | C, « > 1| - summability of our theorem follows imme-
diately from the well known theorem of L. S. Bosanquet [4].

Remark 2. The sequence {£4} satisfies (1.5) (a), (b), (¢). On the other hand
let {7} of our theorem satisfy the following conditions (1.6) in place of (1.5), i. e.
there exists a constant K such that if k= K, then for any positive integer I, both

(1 6) l4<nk<%k+1_< (l + 1)4
) 14 << (4 DE<mpsqg < (1+2)%

do not happen.
For this #;, let I§ be the nearest integer from #; in the set {04, 14, 24,...}, and
we define a new sequence {m;} of integers:
j& for j# 1
m; = {
n, for j=1I,
m—j = — m; =0,1, 2,
Now we consider the trigonometric serlesz cm ¢i™;* which is the Fourier series

of f(x) by reason of cm, =0 for m; # my, and {m} satisfies (1.5) (a), (b), (o).
Thus for a gap series w1_th gaps bigger than (1.5), if it does not satisfy both of
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(1.6), then our theorem is applied.

2. We must first prove a few lemmas.
Lemma 1. If

h (x) ~ 2 dneinﬁ’?, SM (x) = Z d"ein%
n l”|§M

arve the Fourvier sevies and its M-th partial sum of h(x), then

[ AM2 | x| =0
(2.1) [ Sy ()| = 1 Sfor
Az I.’Xz’l<5
(2.2) ldy | S A|n|-8

where A, A1 and Ao are absolute constants.

Proof. (2.2) is easily proved from the definition of %(x). To prove (2.1) if we
put | x| = d, then by (1.1) and (2.2)

[Su @ [= |2 (x) =Sy @ |+ |2(x)| =]k (x)— Sy ()]
< S Aln|-2< AM-2

ni=M
On the other hand, if we put | x | << 9, then by the above inequality,
[Su ()| =Th(x) =Sy ()| + [ h(2)] = AM2+ 1= Ao

We now define new sequences {n'k}, {N (v)} and {M (v)}, i. e for k=0, =1,

+ 2,
(2.3) i, =g (1 + Agn)
(2.4) N (v) =min (¥ — #—1, Bys1 — V)
for  m,_, <v=wm, and for v =0, + 1, + 2,
(2.5) M) =N) -1
Lemma 2. If {n,} satisfies (1.5), then
1
(2.6) ; Ny =

Proof. We have for k=1, 2,

N (3) :min (m — M1, By — M) < Hpr1 — Ny, <C

7y oy, 7,

It follows that

v 0 = 7 1 =21 1
© > N w)e T 2 Ny - Ny = 2 C ° Now)

This completes the proof.
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Since we have from (2.5), (2.4) and (2.3)

2.7 VM) <v+ N@)Zv + (Ogps — V) = Bira,
VM) SV NG E Y~ () — ) = W,

provided that
(2.8) wy S v,

we obtain from (2.7), (2.8) and (1.3)%
Cn (k)dV—n (€] 2‘217[— S f(x> SM(V) (x)e‘“’”dx

-7

~_-_1_ g(x)h(x)e—-iuxdx_}_L () {Syw (%) — h(x)}eiv*dx
2 . o7 .
+_217Lf S {f(x) —g®}Syw (e vdx=Iy + I, + Is,

where Sy ) (x) is the M (v)-th partial sum of the Fourier series of % (x). From the
hypotheses of Theorem and Lemma 1, it is obvious that,

|BlS5r | Uf@ 1+ 1201} Syw ()| da< O (v) %)
|| =>

Ll S5 § 12 1k~ Sk () | dx < O (v)-2)

We shall now consider the series ¥ M (v)~2. From (2.5), (2.3) and Lemma 2,
it follows that

o 1 o -1 1 nh—1
AWM~ X2 Mew T & EOL
§§ i 1+ i G _11)2) i —1—
LN jenl g -mey G—D2 j=mg-ng Y j=ni-ny (j—1)2
= 2 > 2
=0 (121 ”k*‘”h—l Z "k+1—nk +1’l1 *no>
=0 B 500 2 Wewy <

so that we have under the hypotheses of Theorem, the absolute convergence of
;:,‘; | (T2 + Is) e | < oo

Similarly, we have
S Ut Iy eve | <o,

Hence we have that

- %) Hereafter (k) means n; (A =0, =1, &= 2,:-).
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o

D1+ I3) ev®

—00

converges absolutely and as a matter of course it is | C, 1| -summable at every point
x. ‘

Applying Theorem B, the Fourier series X I1e?® of g (x) h(x) is | C, 1] - sum-
mable at every point x, and we obtain the following

Lemma 3. Under the hypotheses of Theovem, the trigonometric servies

(2.9 D D1 ) o ett®

k=== v=np_y
is | C, 1| - summable at every point x.
Lemma 4. Let {ng, ; k=0, =1, +2,--} satisfy (1.5) (a). If
(2.10) Nopi1 = (H2p + Barvz) /2,

then we have

Mor+2 (23 |
(2.11) a=( 3" 25/ 2 Y=o
M=17ng m=mnj;
Proof.
i mhe 1 nzﬁfz 1 S
“te (S g 2 5e)/(2 )
m=ng;, =ok+1 m==nyy

IIA

+ {(%sz)2+ (”'2;1)2}/2 (”éiﬂ)z

—1+ (] +L(M)2): Sl (14 3 meam e
2

9 Nar 2Ty 4 7
3 1 3
§?+—2-(1+71—C)2<00

This completes the proof.

3. To prove Theorem, we may suppose without any loss of generality that {z.,;
k=0, +1, +2,..-} satisfies (1.3) —(1.5) and {#o4+1; £=0, =1, =2, ---} satis-
fies (2.10) and

(3'1> C?l(2k+1)=0 k:O, il, i2,"'
For any positive integer m, we put

(3.2) Am)= > |v|ps e,

v T=m
where

(3.3)  P=ci) dvww> for ni1 < v <,
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k=0, =1, +2, - so that by (3.1) we have
(3.4) Alm)=A (n;k) for n’zk <m< n;kﬂ

From Lemma 8 and the definition of | C, 1| - summability, we have

@5  w>SoalAmiz3 5 SLjach

1 nh=m=ny;, .4

we must estimate A(n;k) more precisely.

k

, nhj nloj . .
(3.6) A (”2k> = ]_21( 2 v prevt + Z (—v) pe )

Y=M5i 4 v=nlgjq

nl
+ ) | viper=P+Q+R

v=n!y
A little more precise formula of P is as follows.
nyj—haj

k
>0 > (4 + m25) Culzj) g D%y
=1 p=ny; 4 ~oj

p

I

.

I

(Ek] N2j Cu(2j) ei"zﬂ){h (x) — > + = )dﬂ ei,u.:c}

=1 u>ng; —ngj  pu<l—(Mgj—Nh;_ 1)
k nyj—Naj
+ 27 Cutzi) €2 21 pdy e® = Py + Py + Ps.
=1 w=—(gj—nh; 1)

It follows from (1.5) (c) that, noticing {¢,} is uniformly bounded,

3.7 lelgﬁlnzjcmm( e o
=1

(nh;—m2)2  (B2j—N3j—q)2

k
(3.8) | P3| < 21} [ encainl

Similarly if we write Q in the following formula

k
Q=2 Inulacwe—=fpw-( s+ 5 )d eine
=1 u<nly;—n_gj p<—-gj—M4; 4)
k ) nlgj—MN-2j )
+ 20 Cul-2i"-2;° > (= a)du ¢4 = Q1 + Qs + Qs,
=1 p=—n_gj—nlgj 1)

then we have

(3.7) 1021 S A 3wy <
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(3.8 | Qs | < 24k
Concequently, we obtain by (3.6), (3.7), (3.7), (3.8) and (3.8).
(3.9) |[P+Q+R|=|P+Q|—~|R]|
= h (%) l > lml cawem® | — Ak,
(7| <024
and thus from (3.5), (3.6), (3.9) and (1.5) (b)
o I _
(3.10) oo>nh (x)hgi nékgmgéém ) I Inzzl}gml m | cay €M | — A
Since % (%) >0 in the interval (— &, 0), (3.10) leads
S 1 SV | cawent | < oo,

CRIDIEED Y o

k=1 nékgménék+1 ]”l lém
Now applying Lemma 4 and (3.11),
i 1 Z ] | ] inzlwz_l 1 ]
e n | cuneimi® | = e ST I ] ewdeim®
2 n 2
m=1 = k=1 m=ng, M | |y Tzm
i Nop+g—1 1
= 3 > | 7 | enyeim®
=1 om=ng, " 0=,
o Mgl .
= | &, L l Z l nl | Cr()e"™1 " cd < oo
k=1 mZng, M? | ml=nz
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