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Abstract

Radiation fields from a vertical electric dipole antenna are obtained when the regions
I and II are arbitrary homogeneous media and when region III is a plane isotropic
ionosphere whose the electron density varies linearly with height and the collision frequency
is constant throughout the layer.

The point of observation is far away from the source point. So, if the integral solution
is expanded in the infinite series and only the first term of the series is used, the integral
solution can be shown by radiations from frour image sources. Moreover, as the argument
of Airy function is large, the propagation mechanism becomes clear by using the
asymptotic expansion.

In the case that one (I) of the three regions is sea water another (II) the atmosphere,

and the other (III) the ionosphere, the characteristics of the field intensity versus distance
is numerically calculated.

1 Introduction

On radio wave propagation in three plane layer media, integral solutions of
electromagnetic fields in three homogeneous plane layer media from vertical and horizontal
dipole antennae are obtained previously.” A.W. Biggs® has studied radiation fields from a
horizontal dipole antenna of which the region I is sea water, the region II the ice, the
region III the atomosphere.

However, the field intensity for inhomogeneous plane medium of the region III is not
obtained. In this paper, when the region III is ionosphere where the electron density varies
linearly with height, the integral solution of electromagnetic field from vertical electric
dipole antenna is obtained. And when the point of observation is far away from the source
point, the approximate solution is obtained. '

2 Fundamental Equations

The Hertz vector I is assumed to vary with time as e/®' in the medium. As shown

in Fig. 1, we regard a vertical electric dipole as transmitter Q, locate the source at z=h,
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Fig. 1 Profile of three media which contain
inhomogeneous medium.
(Q : Source point, P : Observation point. )

and show the observation point P by using a cylindrical coordinate system (r, ¢, z) in
which O0 direction is regarded as z axis. In such the case, the Hertz vector /7 has only
a z component and is invariant with respect to ¢ coordinate. So, hereafter the scalar
component of I7 is regarded as v, the homogeneous wave equation is given as follows:

Y +E (Y= 0, (1)

or by cylindrical coordinate,

i) o2
; 37 (’ a*/;)+ -t R@ V=0, (2)

where k(2)=wy ui(z) , €(2)=c(2)—jo(z)/w.
As the equation is separable, placing ¥=R(#)v(z) one finds

d*R 1 dR
-ty ay TR0, (3
B R () —st)o= 0, (4)

where the parameter & is a separation constant.
Eq. (8) has Bessel solutions of zeroth oder J, (x7) and N, (#7) as independent solutions,
but N, (s7) is inadequate because it becomes infinite at = 0. And also, we assume that
the solution of eq. (4) is v (z,x). Then, the general solution ef eq. (1) is given as follows:

v ={"F&)J(er)v(z,8)xde. (5)
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The primary field v,, which is radiated from the vertical electric dipole, satisfies the
following inhomogeneous wave equation which takes the wave source into consideration,

721#0 + k%"#a’: _47!5(R1)- ( 6 )
The solution of eq. (8) is given by

g—ikeBy

Vo= Rl s ( 7 )

where R=y r*+(z—h)? .

The expansion of eq. (7) in terms of cylindrical waves is well known and is given by eq.

(5) 8>

SVL(E) exp{—V/ 2k |z—h|}xdr. (8)

The secondary fields reflected from the upper and lower layers, which have z comonent
only, are respectively expressed by ¥, and v¥,. In each regions, v is given as follows;

Y= 2<<0,
=Yt ¥at+vy 0<lz<Tz, (9)
=y z2>>2.

Where, ¥, ¥, and v, are given as follows, on account of eq. (4) and eq. (5).

Vo= (0 o (eryexoly W 2)rdr, (10)
to= L e~V R, e, (1)
v Sn/{‘;(‘) Lot (sn)exp{V iR z}rdr, (12)

V,cT_Eg and VxT—Tf in eq. (8), eq. (10), eq. (11) and eq. (12) must be chosen such
that the fields vanish as z—c. we do this by making the real parts of those always
positive. In the region III, the complex dielectric constant ¢(z) in the isotropic medium of
which electron density is linearly distributed with height, N(z)=a(z—z,), is

e(2)=¢cf{l —a(z—z)}, (13)

where o=g(1-+jv/w)a/me,(w?+v2),
a: gradient of the electron density,
e: the charge of a free electron,
m: the mass of a free electron,

v: the mean collision frequency of a free electron which collides with the
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other particles.
Substituting eq. (13) into eq. (4), we obtain

a* 2 2 .
zg—'*‘[“’ gl —a(z—2,)}—£2lv= 0. (14)

By making variable tranformations

wi= (k) (y—p/a),

where y=z—z,, f=1—«r%*/k2,
the following Stoke’s equation is obtained

d%

dwz Wr=0. (15)

The solution of eq. (16) is expressed as the linear combination of the Airy functions A;
(w_) and B (w.);

v=D; A;(w.)+D,B (wy.). (16)
Substituting eq. (18) into (5), we obtain

1/fs=sc:]a(:cr){ﬂ;(/c)Ai(wL)+f4(/c)B,(wL)},cd,c, an
where f3(x)=Df(x), fi(x)=D,f(x).

In eq. (17), fi(x) must be zero in order to satisfy the radiation condition. Therefore eq.
(17) is given as follows:

1/f":S“:Jo(M’)fa('c)z‘li(w/,)’“i"- (18)

3 Integral Solution of the Field in the Region II

For v of eq. (9) in each region, ¥,, ¥4, ¥« and ¥y are respectively expressed as eqs.
(10), (11), (12) and (18). But those eguations include the unknown coefficients f;, f,, f.
and f,;. Therefore, these unknown coefficients can be determined by the following boundary

conditions.
a"/’.l a 2 L2
0z "’:‘W("/’a'*""r/’a'*“/’u) k1"r/’1"‘ko(1r/’o+"r/’y+"r/’u); (Z= 0)
(19)
0 v , e )
*3z(¢'o+‘/’u+¢'u)‘—'_az_ Ri(Vrot- Vot vru) =Ry, (z=2z)
that is,
fg_:lT<e_AaIzh—hls_*_erlzh“h]U), (20)
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fu:_{T(e—Aa]zh_h]T+e‘_‘Aa(zh_h)S) (21)
where 4d=MeA2 —Se—4o% ,
M=A,A,A;(w. ox)Bi—A A (wiox) (REa) R+ ALA (w, ox )k} — A, AL (w0 x )R (Bj2)¥,
S=—AAA; (wox) Bi— A A (w, ox) REaY RS+ ARA, (w_ox)F+A AN (w ox) B (Ka)™,
T=A,A A (w;ox) B+ A A (wrox) (Ra) R+ ASA (W ox) B+ A A (w0 x )EE(Rj),

U=—AAA (w ox)k+AA(w ox) (k) iki-+ ARA . (w ox)ki—A,A(w_ox)Ki(R§a)*,
- w dA;
A=V e, A=V p? | wiox=—Ra)(f/a), A’i(wl_ox):“*'%u;o—x)'
Now, let us transform 1/4 as follows:

1
T~ MeArn 1—-3p 24

As |M|>1{S|*t and R,A,=0, lSe—zA"z" /M|<1, so 1/4 is expanded as follows:

n—1

1 . 1 hd S n—1 _ _ A —'oo S _ _ A )
4 " MeA,z ﬂgl (7‘7) e—(2n—2) ozh._nzz)l Q e—(2n—1)4,2, (22)
Substituting eq. (22) into eq. (20), eq. (21), we have
fo= 5 ?;;-_,,1 e—(2n—1)A,z; (e—Aoth—h] S+elo(zn—h) Uy, (23)
n=1
Su= i %e—(Zn—l)Aozh (g—Ao]Zh—hl T +e—Azn+h) §). (24)
n=-1

Substituting eq. (23) and eq. (24) into eq. (11) and eq. (12), from the relation of eq. (9),
integral solution ¥ of Hertz vector in the region II is given as follows:

—jkoRy o ~ — A {(2n—2)z+h+2)
e oo Sn 1 e
=+ 29U
o Qu— _AO {ZnZh—h—z}
+S S T-S- Jo(er)ede +

wgr g~ Aolomn—hiz)
JoCeryede+ ("m0 Jo(er)sds

A, {2nz,+h—2z)

[~ Jo(rryeds . (25)

St e
oM™ A,

4 Approximate Solution When the Observation Point
is Far Away from the Source Point

As the radiation field in the integral form from a vertical electric dipole antenna is
obtained in ed. (25), we derive the approximate solution in this section when 2R, >1 ®.
At first, the first term in the bracket of eq. (25) is examined. Because of |S/M|<1,

*1] Appendix
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we may approximate the infinite series summed over # to the first term (s=1). By using

following formulas,

HP (e7)+HP (£7)
y HP(er)=—HP(—«kr),

Jo(er)= )
we replace the Bessel function by the Hankel function of the second kind as follows,
o —A,(h+2) - —A,(h+2)
(U e~ ja(,c,)xdx:_éﬁ-g_w%ﬁ: H® (xr)rds., (26)

« M 4,
The contour —eo to +co is deformed to the contour ¢--¢y-+¢, as indicated in Fig. 2, where
the contour ¢ is a half circle of infinite radius, ¢, and ¢, are the contours around the two
branch cuts from %, and k, to —joo respectively. The integral along ¢ can be shown to
give 0. Now, let I=I4,+1I;;, where I, and I, are the integrals along ¢, and ¢ respectively.

I
1
|
f
I

!
I

j

Contour of integration in the & plane

Fig. 2
(ko, ky : Branch point, Dotted line : Branch cut)

As the most of the value of the integral comes from the portion of the path of the
integration very close to #%=k%, U/M may be validly expanded in powers of l=yg_R ,

]
e—\/x!-k 3 (z+h)
(27)

g Bt B Bt Y HE (o) e

where B,, B,, By:----- are constants and independent of «,
It is possible to replace each / of eq. (27) by —8/8z. Using eq. (7) and eq.(8), we have

e—VEI—kE (241D

1 9 o
Liy=—5=(Bo— B+ By +++0) ScoH‘(’Z)(")W‘W
a az e“i"’nﬂa
.::(Bo—Bxa—z-l"Bza—zz_l_ ...... >( Rz ) (28)

Considering of 8/0z in eq. (28), we have
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7] e~ ik, . e ik By e—ikBy
2 (———Rz )— — _7k000502—R2 —cosf, R,

where z—;h =c0sf,.

The second term can be neglected when %,R,>1. Then,

) . .
—5—=—JFkicosty= — jkors, 29
0z

where ry,=cosf,.
Therefore, [=v/s2—k: in U/M of eq. (28) may be replaced by 7k,rs,

. '_ag_bz‘l‘b'g‘l‘dg_— e—jk‘R'
Iy= s+ by+cytd, R, (30

In the same way, I, is given as follows:

. - —ik1By '

It is assumed here that k%, has a negative imaginary part so that I;, of eq. (81) vanishes
at large R,. Therefore, I=I,,.

Next, the rest terms in the bracket of eq. (26) are obtained in the same procedure of
integration and eq. (25) is

'SI/":" e_jk°E‘ “az—bz‘l‘(o'g‘l‘dz e—jk‘B' —aa‘l‘bg‘l‘(fs_da e—i*R,
R, @+ botct+d, R, 3+ b+ Gy + dy Ry
ay—bytoy—dy e B —agt byt Gs—ds e Mk (32)
a4+b4+04+d4 R4 a5+b5+6‘5+d5 R5

where @,=r.Ai(Wrox)V 2 —1+72 bo=3V m—1+4r% A} (wro) (Ka)*/k,

C;= szAi(wLOX)ngr dx‘:jT:A;(wL()X)ng(k%‘z)%/ko:

nﬂ':kl/ko’ Tz:coso:n (x:2; 3: 4: 5)-

Moreover, as the argument w;,y of the Airy function which is contained in ., b&.,
¢. andd., is large, by using the following asymptotic expansions

s I 2 . 2 2 4

Ai(z)= —5% %{exp (——3—zﬁ)+_7exp(—3—z/2)} 3 r<argz<< 37 (33)
%

A; @) =" —exp(— ) +jexp(—o-2¥)}  —en<argi<—gw, (34

each coefficient except the first term of eq. (32) is obtained and eq. (32) is
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2 _ 2_ain X 2 — 2__ain?
ik B, nicosl, \/ng sin%f, ik 7écosty \/ng sin24, ) %wf_/éa P
je —5—

p=t
R, ”30050z+‘/n§—sin202 R nﬁcosﬂs-i-‘/ng_sinzga Ry
L3 _; #n2cost —an—sinzﬂ %
+]~e$3WL01 e .-1;;1?4 4 9 5 g Sje%wLOS . , (35)
! ”300505+‘/n§ —sin2f; R,
where  Ro=y/75t(z=h)? ,  Re=y7+(@+h)?,  Re=v7+Qa—htz),

R=v7r*+(z,—h—2z)¢ , Ry=/ 7"+ (2z,+h—2)? .

5 The Field Intensity and Its Consideration

It is found in eq. (82) that the radiation field in the case of large distance between
source and observation point can be approximately expressed by radiations from four image

sources. These relations are shown in Fig. 3.

z

/
%\\\ Rs /

~ —~ N(z)=a(z—z,)
~ h
& S / -
‘}\ R4 \\/ k
. 3
A \\ \\
S ~
=~ S~ Regionlll
Zp \\; \\
ko
\],nQ Ry P
h Region1I
04"\& " - ion 1
- R, - ,/ Region
/, ki
7’
7’
7’
7’
7’
7’
7’
Vi
‘t
Fig. 3 Image source of three media which contain

inhomogeneous medium. (3 : Image source. )

The coefficient of the second term of eq. (35) is the coefficient reflected only once
from the lower layer and always satisfies Fresnel law. Also, the coefficient of the fourth
term isthe one reflected only once from the upper layer and its absolute value with v=0 is
always 1. The coefficents of the third and the fifth term contain two reflections, that is,
one is from the lower layer and the other is from the upper layer. As the results, the
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Fig. 4 Propagation path in three mldia which contain
: inhomogeneous medium. () : Image source)

propagation path for each term of eq. (85) is shown in Fig. 4.
Electric and magnetic fields ars given as follows:

& 9 (8 .9
E=2V iy, E—5 A% ) Hy=—joe, O (36)

Substituting eq. (35) into egs. (86), we obtain electric and magnetic fields when
observation point is far away from the source point. Now when we neglect some amount
which is much smaller than 2, E, is given as follows:

E =By =ky.(v/v.) . (87)

E, is in proportion to .

Here, when we restore the constant factor of Hertz vector which is omitted in the
above mentioning, electric field intensity is

E _ _]IH 2 e—jk,B,+j0)t
z

_ —760rIH e i%Bitiot
= TIrew B R, (W/¥D=—7 7/
Now, Ry=7, so |E.| is
|Eul = Sy = AT VIOV E I - (38)
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where I: antenna current, H: effective height,
P: radiation power, 7: distance from source point to observation point.

As an example, we assume that the region I is sea water, II the atmosphere, and III
the ionosphere. And the numerical calculations are made in reference with the actual data
of the ionospheric D layer. These results are shown in Fig. 56 and Fig. 6.

Electric field intensity decreases roughly with distance, arising the interference pattern.
This is because the reflected waves add vectorially to the direct wave, producing domains
of reinforcement and domains of cancellation. When f is constant and v increases, the
amplitude of the interference pattern decreases. Namely, it is noticed that the influences
of reflected waves vanish and E, attenuates with 1/r. The field intensities in the
ionosphere are able to be obtained easily by calculating .

—
(=
(=4

—

90r

80

Electric field intensity (dB above 1 #'/m)

70t

60F

L L z : N . . .
10 50 90

Distance between source point and observation point (km)

Fig. 5 Electric field intensity over sea water.
(v=10%(sec), 0=4(T/m), a=2.5X10°, 1/es=80.
h=100(m) hp=20(m), P=1(kw).)
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Fig. 6 Electric field intensity over sea water.
(f=100(KHz), o=4(¥/m), a=2.5%X10%,
&1/60=80, A=100(m) hp=20(m) P=1(kw).)

6 Conclusions

The integral solution of electromagnetic waves from vertical electric dipole antenna in
three layer media which contain a linearly varying isotropic medium is obtained. Next,
the approximate solution in the case of large distance between source and observing points
is obtained.

Furthermore, as the argument of Airy function is very large, the propagation
mechanism is able to be made clear by making use of the asymptotic expansion. And, also,
the electric field intensity decreases roughly with distance, raising the interference pattern
which consists of domains of reinforcement and domains of cancellation, and if fis
constant and v increases, the amplitude of the interference pattern decreaces and E,
attenuates with 1/7.

We have following many similar unsolved problems on this study; problems on
1) not plane earth but spherical earth,
2) not large distance between source and observation points but small distance,
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3) not isotropic in homogeneous ionosphere but anisotropic‘ inhomogeneous ionosphere, etc.
FACOM 230-356 in Kanazawa Univ. was used for the numerical caluculations.

References

1) M. Mambo, I.Nagano : “Electromagnetic field in three plane layer media” 8 Hokuriku Joint
Convention Record of 4 Institutes of Electrical Engineers, Japan. Nos. 68, 69.

2) W. Biggs, : “Dipole Antenna Radiation Fields in Stratified Antarctic Media” IEEE Transactions on
Antennas and Propagation July 1968.

3) M. Mambo, S. Shimakura : “Electromagnetic Fields in an Inhomogeneous Medium of which both
Dielectric Constant and Condqctivity are Parabolically Distributed with Distance” Trans. IECE Vol
54-B No 4 1971. 4. '

4) S. Kozaki, Y. Mushiake : “Radic Wave Propagation in Longitudinally Inhomogeneous Anisotropic
Medium” Trans.IECE Vol 51-B No. 6 1968. 6.

5) K. G. Budden : “Radio Waves in the Ionosphere” Cambridge University Press, London.

6) J. A. Strattom : “Electromagnetic Theory” Cambridge 1941.

7) K. Maeda : “Radio Wave Engineering” Kyoritsu Shuppan 1959.

8) M. Oshio : “States of the Ionosphere : D-region” Review of the Radio Res. Lab. 1966.

9) W. H. Wise : “Asymptotic Dipole Radiation Formulas” Bell System Technical Journal, p. 662,
Oct. 1929.

Appendix

Substituting eq. (83) and eq. (84) into A; (w,¢x) and A% (w.yx) which contains the
first and the fourth terms of M and S, we obtain

-
S _”AoAlnT oclexp(— iWu>x)+1exp( 3 whx) VB — ALA (wpox) KE(RSa)'

M A"Al?;?, :(fx[exp( g1411.ox)-l~_7eX1')( 3 WLOX)jkg —A 1A (wrox) B3(RSa)¥

+ 34, (wro ) B+ AOE;—”w%oxL-exm—iw%m jexp<%w“(zx>zk%<ksa>%

+ARA (w.ox)EE Ao wLox[ exp(—-~2vwwx)+]exp( 3 wiox) ) (R3a)'

As the second and third terms of numerator and denominator of the above equation are
the same ones, we neglect them, and compare the first and the fourth terms.
The above equation is given as follows:

— A (exp(— —wLox)+Jexp( WLOX)]ko"‘JTzw,_ox[ eXp(——w ox)+jexp(g 2 i) )

Ay lexp(— --f-WwX)JrJexp( 2 wl) Vo —jir w5 (— exp(—~wum)+Jexp(~wLox)1k2

( — Ak~ ]T:ckz)eXp(‘—&‘WLox) (—jr B+ jA kR, )eXP(—‘WLox

(A ko+JrIk2)exp(—~wL0x)+(r;k§+1A1ko)exp(—3—wZ%x

Therefore, |S/M|<<1.
(Recieved May 19, 1973.)



