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Abstract. This research concerns the simulation of the motion of a droplet on a plane. We study
the film which represents the surface of the droplet [5]. The evolution of the film is described by the
hyperbolic equation with the volume preservation, which means that the volume between the film and
the surface where the droplet rests does not change in time. Moreover free boundary appears as a
moving boundary of the drop. The hyperbolic free boundary problem under the volume preservation
condition is solved by the discrete Morse flow method (DMF).
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1 Introduction

The model of the motion of a droplet on a plane consists of two related parts: the film of the
droplet and fluid inside the film. In this work, we only study the film which represents the surface
of the droplet. The crucial features of the drop are the volume preservation, free boundary and
positive contact angle.

The shape of the surface of the drop can be represented by the graph of a scalar function

u : Ω× (0, T ) → (0,∞),

where Ω is a domain in R2, T is the positive real number and (0, T ) is the time interval.

Figure 1: Droplet on a plane.

The contact angle is assumed to be small and depend on the surface tensions described by
Young’s equation

γSG − γSL = γLG cos θ.

where γSG is the solid surface tension,γLG is the liquid surface tension,γSL is the solid/liquid
interfacial surface tension.

1



ISCS 2015 Selected Papers W. Dee-am

Furthermore, the volume preservation of the film is assumtion∫
Ω

udx = V,

where V is the positive constant.
This problem is solved by the discrete Morse flow method.

2 Derivation of the film equation

In this section, we derive the film equation by calculating the first variation of the action function
of this phenomena. In order to define the action function, we have to consider the kinetic energy
and the potential energy of this problem. For the portential energy, we consider the surface energy
of the droplet which can be written as

E =

∫
Ω

γg
√
1 + |∇u|2χu>0dx+

∫
Ω

γsχu>0dx, (1)

where γg = γLG, γs = γSL − γSG, χu>0 the characteristic function.

By the assumtion of θ, |∇u| remains small. So the following Taylor approximation is available√
1 + |∇u|2 ≈ 1 +

1

2
|∇u|2. (2)

Then by the approximation 2, the equation 1 can be approximated as

Ẽ =

∫
Ω

γg
2
|∇u|2dx+

∫
Ω

R2χu>0dx, (3)

where R2 = γs + γg.
The kenetic energy of the film given by∫

Ω

σ

2
u2
tχu>0dx, (4)

where σ is the area density of the surface.
Hence, the Lagrangian of this problem can be expressed as

L(u) =

∫
Ω

(
σ

2
u2
tχu>0 −

γg
2
|∇u|2 −R2χϵ(u))dx, (5)

where χϵ is the smoothing function of the characteristic function given by

χϵ(u) =

{
1, u ≥ ϵ,
0, u ≤ 0.

and |χ′(u)| ≤ C/ϵ for u ∈ (0, ϵ). In order to avoid the existence of the delta function, we use χϵ

instead of χu>0 [7].
The action function within time interval (0, T ) can be written as

J(u) =

∫ T

0

L(u)dt (6)
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We have to seek a stationary point of the action function 6 in the following set

K = {u ∈ H1(Ω× (0, T ));u|∂Ω = 0,

∫
Ω

uχu>0dx = V }.

By assuming the existence of a stationary point, the first variation of the action function is

d

dϵ
J(uϵ)|ϵ=0 = 0,

with using the following test function and its volume are

φ ∈ C∞
0 ((0, T )× Ω ∩ {u > 0}), Φ =

∫
Ω

φ(t, x)dx.

and denoting

uϵ = V
u+ ϵφ

V + ϵΦ
.

We arrive at the following equation

0 =

∫ T

0

∫
Ω

(χu>0σutφt − γg∇u∇φ−R2χ′
ϵ(u)φ)dxdt (7)

+
1

V

∫ T

0

∫
Ω

(−σut(uΦ)tχu>0 + γg|∇u|2Φ+R2uχ′
ϵ(u)Φ)dxdt.

Let us consider the last term on the right hand side of the equation 7, we integrate this by
parts respect to time, we attain to

1

V

∫ T

0

∫
Ω

(−σut(uΦ)tχu>0 + γg|∇u|2Φ+R2uχ′
ϵ(u)Φ)dxdt

=
1

V

∫ T

0

∫
Ω

(σuuttχu>0 + γg|∇u|2 +R2uχ′
ϵ(u))Φdxdt

By denoting the Lagrange multiplier of this problem as

λ =
1

V

∫
Ω

(σuuttχu>0 + γg|∇u|2 +R2uχ′
ϵ(u))dx.

We get the following relation∫ T

0

∫
Ω

(−χu>0σutφt + γg∇u∇φ+R2χ′
ϵ(u)φ− λφ)dxdt = 0. (8)

The governing equation of the film is the strong from of above relation which can be expressed
as

χu>0σutt = γg∆u−R2χ′
ϵ(u) + λ, (9)

For our problem, we consider the film equation with damping term, µut(t, x), which is the
resistance force acting against the vertical motion of the film. It can be represented by the speed
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of the film with constant µ in [5]. By defining γ = 1 + γs

γg
and choosing σ = 1, γg = 1. We only

consider the positive solution of the following equation with the initial and boundary conditions
χu>0utt(t, x) = −µut(t, x) + ∆u(t, x)− γχ′

ϵ(u) + χu>0λ(t) in (0, T )× Ω,
u(t, x) = 0 on (0, T )× ∂Ω,
u(0, x) = u0(x) in Ω,
ut(0, x) = v0(x) in Ω,

(10)

where u0(x) and v0(x) are the initial shape and the initial velocity, respectively, and the Lagrange
multiplier is

λ =
1

V

∫
Ω

(uutt + µutu+ |∇u|2 + γuχ′
ϵ(u))dx.

3 Discrete Morse flow method

The discrete Morse flow is the variational method used to solved the problem that dependent on
time. The method was first presented to solve parabolic problem by N.Kikuchi in [6] and further
applied to hyperbolic problem later in [2] and others. Moreover, it was also applied to solve the
numerical solution of the free boundary problem in [1],[3] and the volume-preserving problem in
[4],[5].

We fix a non negative integer N > 0, set the time step h = T/N . We seek a sequence {un} by
minimize the following functional for our problem see [5]

Jn(u) =

∫
Ω

(
|u− 2un−1 + un−2|2

2h2
χu>0 + µ

|u− un−1|2

2h
+

|∇u|2

2
+ γχϵ(u))dx, (11)

on the set

Kv = {u ∈ H1
0 ;

∫
Ω

uχu>0dx = V }.

where the sequence {un} determine by u0 is the initial shape, u1 = u0 + hv0 and for n = 2, 3, 4, ...
un are the minimizer of the functional 11 on the set Kv.

4 Algorithm

We can find the sequence of minimizer, {un}, of our functional 11 by the following algorithm

1. Given the initial shape, u0 and initial velocity, v0, put u1 = u0 + hv0.

2. For n = 1, 2, · · · , N , we can seek un+1 as follows:

(a) p1 = un, k = 1.

(b) Repeat the following.

• search for the minimizer p̃k+1 of Jn,

• pk+1 = max(p̃k+1, 0),

• project pk+1 on the volume constraint hyperplane vk+1 := Proj(ṽk+1),

• if the convergence criterion is fulfilled, leave the loop, else k = k + 1.

(c) un+1 = pk+1.
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Figure 2: t = 0 Figure 3: t = 1

Figure 4: t = 4 Figure 5: t = 20

5 Numerical approach

In this section, we use the spherical cap represented the shape of the drop for the initial shape and
given the velocity of the drop into the suitable direction. By using the discrete Morse method for
our problem where the radius of the drop is 0.85, the contact angle is 15◦, ϵ is 0.01294 and the
time step is 7.5× 10−3 . The results is presented on above.
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