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Abstract. We develop a coupled interface-network and fluid model to simulate nonsymmetric
triple junction motion with arbitrary surface tension in two dimension. The motion of the inter-
face is governed by the gradient flow of a surface energy. For the numerical method, we adapt
a vector valued BMO algorithm. To advance the BMO algorithm, we use a vector-type discrete
Morse flow that handles the volume constraint via a penalization. Then, we add buoyancy force as
an outer force to the interface model. By using this method, we simulate phenomena of a rising
oil droplet in water. Lastly, we present the results of numerical experiments.
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1 Introduction

Triple line dynamics appears when triple line, which refers to interface of three immiscible fluids
that intersect at one point, is moving due to some factors such as surface energy, fluid motion
and inertial effects. Understanding the triple line dynamics is very useful to realize some kind of
important motions. An example of such phenomena is the motion of a rising oil droplet. When
the oil droplet rise to the water surface, the interface of three different fluids meet at a single point
and adjust into the shape of triple line.

Numerical simulation of flows with moving triple line have been developed by using some meth-
ods. One of them is so-called Bence-Merriman-Osher (BMO) algorithm. Bence, Merriman, and
Osher [1] introduced the original BMO method, an implicit scheme for realizing interfacial motion
by mean curvature flow. Svadlenka et al. [2] reformulated the BMO algorithm in vector-valued
formulation for multiphase motion. However, it is restricted to the symmetric case. Shofianah et al.
[4] modified the original vector-valued BMO algorithm of [2] by generalizing the reference vectors
and the way of diffusing so that it can accomodate motions for any triple of surface tensions.

In this work, we consider three evolving curves meeting at a junction and having arbitrary
surface tensions. We adapt method in [4] to achieve the simulation of such a triple junction by
generalizing the reference vectors.

2 Basic Model

Triple line for two dimension case is actually a triple point which is called also a triple junction.
In our case, when the droplet touches the water surface, the triple junction occurs so that we have
three immiscible fluids whose interfaces meet at triple junction. Thus, to get the normal velocity
and the condition that has to be satisfied at triple junction, we have to consider the total surface
energy of the interfaces and compute its variation.
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For a fixed smooth region Ω of R2, we consider three evolving curves γi(s), s ∈ [pi, qi], i = 1, 2, 3.
These curves meet the outer boundary ∂Ω at a right angle and there will be a point, called triple
junction xT = γi(qi), i = 1, 2, 3, at which the curves meet. Each curve has different surface tension
σi. Then the surface energy of all curves is given by

L(γ) =
3∑
i=1

∫
γi

σidl =
3∑
i=1

∫ qi

pi

|γ′i(s)|ds

From its variation, we can find the gradient flow of surface energy. For a smooth vector field
ϕ(s) = (ϕ1, ϕ1), we compute

d

dε
L(γ + εϕ)|ε=0 =

3∑
i=1

∫ qi

pi

σiti·
d

ds
(ϕ(γi))ds

=
3∑
i=1

(
−
∫
γi

(σiκini)·ϕdl + σiti·ϕ(xT )

)
where ti is the tangential vector, κi is curvature, and ni is outer normal of γi with

ti =
γ′i
|γ′i|

, κi = −
γ′ixγ

′′
iy − γ′iyγ′′ix
|γ′i|3

,ni =
1

|γ′i|
(γ′iy − γ′ix)

Figure 1: Triple junction

From this result, the motion by gradient flow satisfies

1. The normal velocity of interface
vi = σiκi.

2. Condition at triple junction
3∑
i=1

σiti = 0, (1)

The junction condition (1) is the balance of forces which is well-known to be equivalent to the
Young’s law

sin θ1

σ1
=

sin θ2

σ2
=

sin θ3

σ3
,
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where θ1, θ2, and θ3 are the angles at the junction (see Figure 1). By connecting this formula to
the triangle as in [5], we obtain the junction angles by law of cosines:

cos(π − θ1) =
σ2

3 + σ2
2 − σ2

1

2σ2σ3
,

cos(π − θ2) =
σ2

1 + σ2
3 − σ2

2

2σ1σ3
,

θ1 + θ2 + θ3 = 2π

Note that as long as any given triple of surface tensions satisfies the triangle inequality, we can
compute the stable angles.

3 Numerical Method

3.1 Vector-valued BMO algorithm

The BMO algorithm is a process for realizing mean curvature motion of interfaces. Originally, it
takes advantage from the fact that the characteristic function of a region enclosed by an interface
is evolved for a small time by the heat equation according to its mean curvature. Then, a step
called truncation is implemeneted to obtain the new interface (given by the 1/2-level set of the
diffused function). The convergence of this algorithm goes to motion by mean curvature as the
short-time ∆t goes to zero (see [3]).

Svadlenka et al. in [2] modified the BMO algorithm with different approach so that it can treat
any number of phases in any dimension and can be extended to more general motions such motion
with transport. By reformulating this algorithm into vector-type setting, then:

1. Define reference vectors pi, each corresponding to a phase Pi for i = 1, 2, 3.

2. Given regions Pi, i = 1, 2, 3, set u0(x) = pi for x ∈ Pi.

3. Solve the vector-valued heat equation with initial condition u0(x)

ut(x, t) = ∆u(x, t) for (t, x) ∈ (0,∆t]× Ω (2)

∂u

∂n
= 0 on (0,∆t]× ∂Ω

u(x, 0) = u0(x) in Ω

4. Update u0 by identifying the reference vector which is closest to the solution u(x,∆t) (see
Figure 2 for illustration)

u0 = pj , where pj ·u(x,∆t) = max
i=0,1,...,k

pi·u(x,∆t)

The redistribution of reference vectors determines the configuration of each phase after time
∆t.

5. Repeat from step three for the next time step until desired time.

However, this method is only related to symmetric junctions. For arbitrary junction angles,
the reference vectors have to be generalized. The main ideas of the generalization were already
explained in [4] and will be outlined in the following part.
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p1

p2 p3

Figure 2: Reidentification of reference vector which is closest to the solution (yellow line)

3.2 Junction stability

Based on the stable configuration for triple junction that was explained in [4], we get

θ1p1 + θ2p2 + θ3p3 = 0. (3)

Since the reference vectors are determined up to rotation and scaling, we can choose one
reference vector arbitrarily, e.g., we set p3 = (1, 0). This closes system containing equation (3) and
condition of pi, i = 1, 2, 3, whose lengths must be equal, then we get the reference vectors:

p1 =

(
1− 2π

θ1θ3
(π − θ2),± 2

θ1θ3

√
π(π − θ1)(π − θ2)(π − θ3)

)
p2 =

(
1− 2π

θ2θ3
(π − θ1),∓ 2

θ2θ3

√
π(π − θ1)(π − θ2)(π − θ3)

)

The possible choices for the sign of the second component follow from the invariance of the
reference vectors with respect to flipping.

3.3 Minimizing movements

The heat equation is solved by using vector-type discrete Morse flow (DMF). For a given N > 0,
we solve (2) by discretizing time ∆t = h×N at each step and successively minimizing the following
functionals for n = 1, · · · , N over H1(Ω;R2)

Jn(u) =

∫
Ω

(
|u− un−1|2

h
+ |∇u|2

)
dx

The minimizers are found by conjugate gradient method.

In the volume constrained case, the minimization formulation of the vector-valued algorithm
allows the inclusion of volume constraints via a penalization. In particular, instead of the functional
Jn, we minimize

Fn(u) = Jn(u) +
1

ε

3∑
i=1

|Vi −meas(Pui )|2,

where ε > 0 is a small penalty parameter, Vi is the prescribed volume of region Pi.
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For the buoyancy effect, we include the transport term to the minimization formulation as in
[4], so we minimize

F̃n(u) = Fn(u) +

∫
Ω

f · u√
4πnh

,

where

f =


p

(pi · pj − 1)

|pi − pj |2
(pi − pj), if dist(x, γij) < δ1,

dist(x, Pk) > δ2

0, otherwise.

Here, γk, (k 6= i, j) is the interface between phase Pi and Pj . δ1, δ2 are small positive constants
(usually taken as several times the mesh size), p is fluid pressure, and pi,pj are the BMO reference
vectors.

4 Numerical Tests

Now, we present some numerical examples of the method. In this section, all numerical examples
are conducted on a [0, 1] × [0, 1] domain with time step ∆t = 0.002 and DMF partition N = 25.
We present the behaviour of the triple junction motion for two cases (with and without axial
symmetry) with types of setting as in Table 1.

Table 1: Numerical parameters for case 1 and case 2
parameter case 1 case 2

surface tensions
σ1

1
2

√
2

2
σ2 1 1

σ3

√
3

2

√
2

2

angles
θ1 150◦ 135◦

θ2 90◦ 90◦

θ3 120◦ 135◦

reference vectors
p1 (−0.8,−0.6) (−0.777,−0.628)
p2 (0, 1) (−0.333,−0.943)
p3 (1, 0) (1, 0)

For examining the behaviour of the triple junction motion, we start with an initial condition
where a T-shaped interface is rotated 90◦ counterclockwise and the T-junction is at point (0.25,0.5).
We take the region that is on the left of the line x = 0.25 as P2, and another top and bottom region
as P1 and P3 respectively. Here, the domain is triangulated into uniform grid with ∆x = 0.00625.
Then, we investigate the evolution of the triple junction for both cases.

1. 150◦ − 90◦ − 120◦ angle condition
For the first case, we plot the evolution of the initial T-junction for each time as in Figure 3.

For the first 20 time steps, the junction angles rapidly adjusts to approximate the 150◦ −
90◦ − 120◦ angle conditions. Note that the interface move to the region with the smallest
surface tension over time.
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(a) t = 0s (b) t = 0.04s (c) t = 0.08s (d) t = 0.12s

(e) t = 0.16s (f) t = 0.2s (g) t = 0.24s (h) t = 0.28s

Figure 3: Evolution of triple junction for case 1

2. 135◦ − 90◦ − 135◦ angle condition
Now we look at the behaviour of the junction motion with the parameter as on the second
condition. We expect these interfaces will evolve symmetrically with respect to the horizontal
line y = 0.5 since the surface tensions on the 1− 2 and 2− 3 interfaces are equal. This is in
accordance with the numerical result shown in Figure 4.

(a) t = 0s (b) t = 0.04s (c) t = 0.08s (d) t = 0.12s

(e) t = 0.16s (f) t = 0.2s (g) t = 0.24s (h) t = 0.28s

Figure 4: Evolution of triple junction for case 2

Note that the triple junction rapidly adjusts to approximate the 135◦ − 90◦ − 135◦ angle
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conditions after the first 20 time steps. Afterwards, the interface gradually is begun to move
horizontally to the right.

5 Conclusion

The triple junction motion with T-shaped interface as initial condition was presented. We took
two cases of parameters to know the behaviour of this motion. As remarks the test, the method
seems working well, so we would like to apply it for three dimensional rising droplet simulation
including the buoyancy force also.
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