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Abstract. We take a shape optimization approach to solve a free boundary problem of the Poisson
equation numerically. A numerical method called traction method invented by one of the authors
are applied. We begin by changing the free boundary problem to a shape optimization problem and
define a least square functional as a cost function. Then shape derivative of the cost function is
derived by using Lagrange multiplier method. Detail structures and profiles of exact solutions to a
concrete free boundary problem due to A. Henrot are also illustrated with proofs. They are used to
check the efficiency of the traction method.
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1 Introduction

Free Boundary Problem (FBP) deals with solving partial differential equations in a domain whose
boundary is partially unknown; that the portion of boundary is called a free boundary. The study
about free boundary problem is an important branch of partial differential equations (PDEs). In
most cases, it is difficult to obtain analytical exact solution of free boundary problem. Therefore
numerical analysis is needed to compute the approximation of the solutions.

Shape optimization approach can be used as one of the methods to solve free boundary problem
numerically. A numerical method called traction method was developed for solving many shape
optimization problems. However, the exact solution (optimal shape) is usually unknown even for a
simple problem since this method is often applied only in engineering field. Our aim in this paper
is to apply the traction method to obtain a numerical solution of free boundary problems. Then
to check the efficiency of the traction method, we consider the following free boundary problem,
since its exact solutions are analytically derived by using conformal mapping due to the idea of A.
Henrot [2].

Problem 1.1 Let µ be a given function in R2 with compact support. Find (u,Ω) such that
supp(µ) ⊂ Ω and 

−∆u = µ in Ω

u = 0 on Γ := ∂Ω
∂u

∂n
= −1 on Γ.

42



ISCS 2015 Selected Papers Maharani A. U. et al.

where µ is a combination of Dirac functions

µ :=
N∑
j=1

αjδξj ,

with αj > 0 and ξj ∈ C ∼= R2.

The organization of this paper is as follows. In Section 2, the detail structures and profiles
of exact solutions to a concrete free boundary problem due to A. Henrot [2] are illustrated with
proofs. Then we change this free boundary problem to a shape optimization problem by defining
a cost function. Cost function is a function that we want to minimize it. Afterwards, we derive
variation formula of the cost function using Lagrange multiplier method and an adjoint problem.
Finally we can apply the traction method and compare its result with the exact solutions from the
previous section.

2 Exact Solutions

We solve Problem 1.1 analytically by using conformal mapping. In this section, we identify R2 ∼= C.
Especially, we denote a R2-coordinate in Ω by x = (x1, x2) and its complex representation by
ξ = x1 + ix2 ∈ C. But we often mix these notation if no confusion occurs. For a complex variable
ξ = x1 + ix2 ∈ C, we denote the two dimensional Lebesgue measure by dL2

ξ . Let

G0 := {Ω |Ω is a bounded open set in R2, supp(µ) ⊂ Ω, ∂Ω is Lipschitz}.

We define a cut-off function η ∈ C∞(Ω) such that η(x) = 1 in a neighborhood of ∂Ω and η(x) = 0
in neighborhood of supp(µ). We call (u,Ω) a weak solution of Problem 1.1 if Ω ∈ G0 and they
satisfy, 

∫
Ω

∇u · ∇ϕdx = −
∫
∂Ω

ϕds (∀ϕ ∈ H1(Ω), supp(µ) ∩ supp(ϕ) = ∅)

u(x)−
N∑
j=1

αjE(x− ξj) is harmonic function in Ω

ηu ∈ H1
0 (Ω),

where E(x) = − 1
2π log |x| is the fundamental solution for −∆.

Lemma 2.1 Let Ω1 and Ω2 are bounded domains. We suppose that u ∈ H1
0 (Ω1) and set Φ(z) as

a conformal mapping that maps Ω0 to Ω1, and w(z) := u(Φ(z)) for z ∈ Ω0. Then w ∈ H1
0 (Ω0).

Proof. We first remark the following equality:

‖∇(f ◦ Φ)‖L2(Ω0) = ‖∇f‖L2(Ω1).
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For z ∈ Ω0, we set ξ = Φ(z) ∈ Ω1. Then dL2
ξ = |Φ′(z)|2dL2

z holds. Since |∇(f ◦ Φ)(z)| =
|∇f(ξ)||Φ′(z)|, we have

‖∇(f ◦ Φ)‖L2(Ω0) =

∫
Ω0

|∇(f ◦ Φ)(z)|2dL2
z

=

∫
Ω0

|∇f(ξ)|2|Φ′(z)|2dL2
z

=

∫
Ω1

|∇f(ξ)|2dL2
ξ

= ‖∇f‖2L2(Ω1).

We choose a sequence {un} ⊂ C∞0 (Ω1) which satisfies

lim
n→∞

‖u− un‖H1(Ω1) = 0

and define wn := un ◦Φ ∈ C∞0 (Ω0). Since {un} is a Cauchy sequence in H1
0 (Ω1), from the Poincaré

inequality we have

‖wm − wn‖H1(Ω0) ≤ C(Ω0)‖∇(wm − wn)‖L2(Ω0)

= C(Ω0)‖∇(um − un)‖L2(Ω1)

≤ C(Ω0)‖(um − un)‖H1(Ω1),

and it follows that {wn} is a Cauchy sequence in H1(Ω0). Hence, there exists w∗ ∈ H1
0 (Ω0) such

that

lim
n→∞

‖w∗ − wn‖H1(Ω0) = 0.

For an arbitrary subdomain D with D̄ ⊂ Ω0, we have

‖w − w∗‖L2(D) ≤ ‖w − wn‖L2(D) + ‖wn − w∗‖L2(D)

≤ ‖w − wn‖L2(D) + ‖wn − w∗‖H1(Ω0),

where the second term tends to 0 as n→∞. On the other hand, the first term also converges to
0 as n→∞ as follows:

‖w − wn‖2L2(D) =

∫
D

|(w − wn)(z)|2 dL2
z

=

∫
Φ(D)

|(u− un)(ξ)|2 1

|Φ′(z)|
dL2

ξ

≤ C2
D

∫
ΦD

|u− un|2 dL2
ξ

= C2
D‖(u− un)(ξ)‖2L2(Φ(D))

≤ C2
D‖u− un‖2L2(Ω1),

where CD = (minz∈D̄ |Φ′(z)|)−1. Hence we have w = w∗ in L2(D) for an arbitrary domain D with
D̄ ⊂ Ω0. This implies

w(z) = w∗(z) L2
z-a.e. z ∈ Ω0,
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and we conclude that w ∈ H1
0 (Ω0). �

The following theorems are given in [2] without detail of their proofs. We give a proof here for
the readers convenience.

Theorem 2.1 (A. Henrot [2]) Suppose N = 1. Then (u,Ω) is a weak solution of Problem 1.1,
if and only if α1 > 0 and 

Ω =
{
x ∈ R2

∣∣ |x− ξ1| < α1

2π

}
u =

α1

2π
log

α1

2π|x− ξ1|
.

(1)

Proof. It is easy to show that (1) is a solution of Problem 1.1. We suppose that (u,Ω) is a weak
solution of Problem 1.1. We show that Ω is connected. Let Ω0 is an open component of Ω with
ξ1 /∈ Ω0, then ∆u = 0 on Ω0 and∫

Ω0

∇u · ∇ϕdx = −
∫
∂Ω0

ϕds ∀ϕ ∈ H1(Ω0).

We choose ϕ = 1 in Ω0, then we have

−|∂Ω0| = −
∫
∂Ω0

ϕds =

∫
Ω0

∇u · ∇ϕdx = 0.

This contradicts to |∂Ω0| > 0. Hence, all of the component of Ω has to include ξ1. Therefore, Ω is
connected.

Let Φ(z) be a conformal mapping from the unit disc D0 := {z ∈ C
∣∣|z| < 1} to Ω with Φ(0) = ξ1

and Φ′(0) > 0. We define

Ψ(z) :=


Φ(z)− Φ(0)

z
(z 6= 0, z ∈ D0)

Φ′(0) (z = 0),
(2)

then Ψ(z) is holomorphic in D0 and Ψ(z) 6= 0 for z ∈ D0.

We define w(z) = u(Φ(z)) (z ∈ D0). From the conditions ∆u0 = 0 in Ω,

u(ξ) = α1E(ξ − ξ1) + u0(ξ) (ξ ∈ Ω \ {ξ1}),

we have

w(z) = α1E(Φ(z)− ξ1) + u0(Φ(z))

= α1E(Φ(z)− Φ(0)) + u0(Φ(z))

= α1E(zΨ(z)) + u0(Φ(z))

= α1E(z)− α1

2π
log |Ψ(z)|+ u0(Φ(z)).

Since the second and third terms of the equation above are harmonic in D0, we obtain −∆w = α1δ0
in D0. We define w̃(z) := η(Φ(z))w(z) = (ηu)◦Φ(z). From Lemma 2.1, w̃ ∈ H1

0 (D0). Since w̃ = w
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in a neighborhood of ∂D0 and is harmonic, from the theory of elliptic regularity [4], w is smooth
up to ∂D0 and w = 0 on ∂D0. Hence, the following equations holds

−∆w = α1δ0 in D0

w = 0 on ∂D0

∂w

∂n
= −|∇w| = −|∇u||Φ′| = −|Φ′| on ∂D0.

(3)

From the first two equations of (3), we have w(z) = α1E(z) and

∂w

∂n
= −α1

2π

( ∂
∂r

log r
)∣∣∣
r=1

= −α1

2π
.

By the third condition of (3), we obtain |Φ′(z)| = α1

2π on ∂D0. We set v(x, y) := Re[log |Φ′(z)|] =
log |Φ′(z)| and v(z) is harmonic since Φ is holomorphic and Φ′(z) 6= 0 in D0 . Then ∆v = 0 in D0

and v = log α1

2π on ∂D0 hold and these imply that v = log α1

2π in D0. Since Re[log Φ′(z)] = v = log α1

2π
in D0, we obtain that log Φ′(z) = log α1

2π + iβ for β ∈ R. From the condition Φ′(0) > 0, β = 0
follows. Hence we have Φ′(z) = α1

2π and conclude that

Φ(z) =
α1

2π
z + ξ1,

where we used Φ(0) = ξ1. Therefore by the conformal mapping Φ(z) we obtain

Ω = {x ∈ R2
∣∣|x− ξ1| < α1

2π
}

as a solution of Problem 1.1.
We know that u = 0 on ∂Ω, then we have u0 = α1

2π log α1

2π . Hence we can conclude that

u(x) = −α1

2π
log |x− ξ1|+

α1

2π
log

α1

2π
=
α1

2π
log

α1

2π|x− ξ1|
.

�

Let us consider the case N = 2. We suppose that c > 0 and ξ1, ξ2 ∈ C ∼= R2 are given as ξ1 = c
and ξ2 = −c. We denote the Dirac function at ξ1 and ξ2 by δc and δ−c, respectively, we consider

µ = αδc + αδ−c (4)

for same α > 0. Then we define a conformal mapping on D0

Φa(z) :=
α(1− a4)

4πa2

[
−2z

z2 − 1/a2
+ a log

1/a+ z

1/a− z

]
(5)

for 0 < a < 1.

Theorem 2.2 (A.Henrot [2]) We suppose a function µ as in (4),

1. (u,Ω) is a weak solution to Problem 1.1 and Ω is connected, if and only if there exists
a ∈ (0, 1) such that c = Φa(a), Ω = Φa(D0), and u(ξ) = w(Φ−1

a (ξ)), ξ ∈ Ω, where

w(z) :=
α

2π
log

∣∣∣∣1− a2z2

z2 − a2

∣∣∣∣ (z ∈ D0). (6)
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2. (u,Ω) is a weak solution to Problem 1.1 and Ω is disconnected if and only if α
2π < c and the

solution is given by 
Ω = B

(
ξ1,

α

2π

)
∪B

(
ξ2,

α

2π

)
,

u =


α

2π
log

1

|x− ξ1|

(
x ∈ B

(
ξ1,

α

2π

))
α

2π
log

1

|x− ξ2|

(
x ∈ B

(
ξ2,

α

2π

))
.

(7)

Proof. Let g̃ be a conformal mapping from D0 := {z ∈ C : |z| < 1} to Ω with g̃(0) = ξ1, and set
g̃(ξ2) = beiθ (0 < b < 1). We define g(z) := g̃(eiθ0z) and f : D0 → D0 be a Möbius transform.
Since f(a) = 0 and f(−a) = b

a :=
1−
√

1− b2
b

∈ (0, 1),

f(z) :=
a− z
1− az

.

We can define a conformal mapping Φ(z) := g(f(z)) which mapsD0 to the domain Ω with Φ(a) = ξ1
and Φ(−a) = ξ2. Set w(z) = u ◦ Φ(z) = u(Φ(z)), then by using the similar argument in the proof
of Theorem 2.1, we have 

−∆w = αδa + αδ−a in D0

w = 0 on ∂D0

∂w

∂n
= −|∇w| = −|∇u||Φ′| = −|Φ′| on ∂D0.

(8)

We define

w0(z) :=
1

α
w(z)− E(z − a)− E(z + a) (z ∈ D0).

Then w0(z) becomes a harmonic function in D0. Since w(z) = 0 on the boundary, for z ∈ ∂D0,
we obtain

w0(z) = −E(z − a)− E(z + a)

=
1

2π
(log |z − a|+ log |z + a|)

=
1

2π
log |z2 − a2|

=
1

2π
log |1− a2z2|.

Hence we have w0(z) = 1
2π log |1− a2z2| in D0. Then

w(z) =
α

2π
log

1

|z − a|
+

α

2π
log

1

|z + a|
+

α

2π
log |1− a2z2| = α

2π
log
|1− a2z2|
|z2 − a2|

.

47



ISCS 2015 Selected Papers Shape Optimization Approach to an Inverse Free Boundary Problem

holds. From the third condition of (8), for z = eiθ ∈ ∂D0, we have

|Φ′(z)| = −∂w
∂n

(z)

= − ∂

∂r
w(reiθ)

∣∣∣∣
r=1

= − ∂

∂r

(
α

2π
log

∣∣∣∣1− a2r2e2iθ

r2e2iθ − a2

∣∣∣∣)∣∣∣∣
r=1

= − α

2π

∂

∂r

(
log |1− a2r2e2iθ| − log |r2e2iθ − a2|

)∣∣∣∣
r=1

= − α

4π

(
∂

∂r
(log |1− 2a2r2 cos 2θ + a4r4| − log |r4 − 2a2r2 cos 2θ + a4|)

)∣∣∣∣
r=1

= − α

4π

(
4a2(a2 − cos 2θ)− 4(1− a2 cos 2θ)

|e2iθ − a2|2

)
=
α

π

1− a4

|1− a2z2|2
.

Similarly to the proof of Theorem 2.1, the harmonic function v(z) := Re[log Φ′(z)] in D0 satisfies

v(z) = Re
[

log
(α
π

1− a4

|1− a2z2|2
)]

(z ∈ ∂D0).

Hence it follows that

log Φ′(z) = log(
α

π

1− a4

(1− a2z2)2
) + iβ (z ∈ D0),

for some β ∈ R. Then we have

Φ′(z) =
α

π
eiβ

1− a4

(1− a2z2)2
. (9)

We define

Φ0(z) =
(1− a4)

4πa2

[
−2z

z2 − 1/a2
+ a log

1/a+ z

1/a− z

]
.

Then, integrating (9), we have Φ(z) = eiβΦ0(z) + γ, where γ ∈ C. Since Φ(±a) = ±c, using
Φ0(a) + Φ0(−a) = 0, we obtain

0 = Φ(a) + Φ(−a) = eiβα(Φ(a)0 + Φ0(−a)) + 2γ = 2γ,

and γ = 0. Also from Φ0(a) > 0 (see Figure 1), β = 0 follows. Therefore we have

Φ(z) = Φa(z),

where Φa(z) is defined in (5).
It is easy to show that (u,Ω) defined in (7) is a solution of Problem 1.1 with µ as in (4) for

α
2π < c. Let us suppose (u,Ω) is a weak solution and Ω is disconnected. Then, from the same
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argument of the proof of Theorem 2.1, each open component of Ω should contain ξ1 or ξ2 and Ω
should have exactly two components Ω1 and Ω2 (ξ1 ∈ Ω1, ξ2 ∈ Ω2). Then from Theorem 2.1, we
obtain (7). �
Remark In the Henrot’s paper [2], equation (6.5) has a typo. The correct expression of (6.5) is∆v = 0 in Ω0

v = log
(α
π

1− a4

|1− a2z2|2
)

on ∂Ω0.

We define l = 2c, based on the conformal mapping Φa in (5), we know that α
l = 1

2Φ0(a) . Then

we can plot a graph α/l versus a as in Figure 1.

Figure 1: α/l vs a graph

From the graph in Figure 1, we can see that for 2.300.. < α/l < π there exist two connected
solution and that for α/l > π there exists a unique solution (which is connected). Table 1 shows
the number of the exact solutions of Problem 1.1 where µ as in (3). Although this table was
shown in [2], we present it in more detailed form, particularly for the values α/l = 2.300... and
α/l = 2.827.... According to [2], Ω is convex if and only if a ≤ 1/

√
3. We have α

l = 2.827... for

a = 1/
√

3.

Table 1: Table of number of the solutions

α/l 0 ... 2.300... ... 2.827... ... π ...
# connected convex solution 0 0 0 0 1 1 1 1
# connected non-convex solution 0 0 1 2 1 1 0 0
# connected solution 0 0 1 2 2 2 1 1
# disconnected solution 0 1 1 1 1 1 0 0

Example of connected solutions are given in Figure 2 - 7 for α = 3, where we use MATLAB
to draw them. We change α/l = 2.3007, 2.400, 2.827, 3.000, π, 3.300. Then the number of solutions
becomes 1, 2, 2, 2, 1, 1 for each figure.
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Figure 2: α/l = 2.300

Figure 3: α/l = 2.400

Figure 4: α/l = 2.827

Figure 5: α/l = 3.000
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Figure 6: α/l = π

Figure 7: α/l = 3.300

3 Shape Optimization Approach

We consider Problem 1.1 with µ as in (4). Then we replace µ by

µ(x) = αδε(x− ξ1) + αδε(x− ξ2) (10)

for sufficiently small ε < 0, where

δε(x) :=


1

πε2
|x| < ε

0 |x| ≥ ε.

We remark that the problems for µ = α(δc + δ−c) and for (10) are equivalent except for u(x) in
D := B(ξ1, ε) ∪B(ξ2, ε).

We fix β > 0, and rewrite Problem 1.1 in the following equivalent form with a Robin boundary
condition 

−∆u = µ in Ω

u = 0 on Γ

βu+
∂u

∂n
= −1 on Γ.

We define

G := {Ω |Ω is a bounded domain in R2, D̄ ⊂ Ω, ∂Ω : Lipschitz }.
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Then for given Ω ∈ G with Γ = ∂Ω, we can find a unique solution uΩ ∈ H1(Ω) to the following
problem

uΩ :

−∆u = µ in Ω

βu+
∂u

∂n
= −1 on Γ.

If uΩ = 0 on Γ then (uΩ,Ω) is a solution for Problem 1.1. Then we define a cost function as follows

J(Ω) =
1

2

∫
Γ

|uΩ|2ds.

We want to minimize J(Ω) among Ω ∈ G. We remark here that (Ω, u) is a solution if and only if
J(Ω) = 0 and u = uΩ.

4 Variation Formula of Cost Function

We use Lagrange multiplier method [5] to derive the variation formula of cost function J(Ω) with
respect to the domain Ω ∈ G. For a vector field V ∈W 1,∞(R2,R2), we define

Ω(t) := {x+ tV(x)
∣∣x ∈ Ω} (0 ≤ t < t0).

Then we introduce an adjoint problem as follows

vΩ :

∆v = 0 in Ω

βv +
∂v

∂n
= −uΩ on Γ.

By using the Lagrange multiplier method and the adjoint problem, under some regularity condi-
tions, we obtain a variation formula of the cost function J(Ω):

d

dt
J(Ω(t))

∣∣∣
t=0

=

∫
Γ

(
(V · n)f + V · ∇g + (Vs · τ)g

)
ds, (11)

where τ is a counter clockwise tangential unit vector on Γ, Vs = ∂V
∂τ , and

f = ∇uΩ · ∇vΩ

g =
1

2
u2

Ω + αuΩvΩ + vΩ.

A proof of (11) will be given in our forthcoming paper.

5 Traction Method

The main idea of traction method is to treat the domain Ω as an elastic body and iterate small
deformation by a boundary traction given by the variational formula of J(Ω). In order to solve
Problem 1.1 using the traction method, we have to solve the following artificial elasticity problem

−div σ[w] = 0 in Ω \D
σ[w]n = −B on Γ

w = 0 on ∂D,

(12)

where w(x) ∈ R2 is a displacement field on Ω̄.
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Figure 8: The initial domain

We put B as boundary force, which is implicitly defined by∫
Γ

B ·V =
d

dt
J(Ω(t)) =

∫
Γ

(
(V · n)f + V · ∇g + (Vs · τ)g

)
ds (∀V ∈W1,∞(R2,R2)).

The complete procedure of solving Problem 1.1 by using the traction method can be summarized
as follows:

1. Define an initial domain Ω as in figure (8) and generate a finite element mesh on Ω.

2. Solve uΩ and vΩ by finite element method.

3. Solve the artificial elasticity problem (12) by finite element method.

4. Modify the domain Ωnew := {x + ηw(x)|x ∈ Ω} for sufficiently small η > 0, together with
the nodal points of the mesh.

5. Repeat step 2-4 until the domain Ω converges.

6 Numerical Examples

To study the efficiency of the traction method, we apply it into a free boundary problem as in
Problem 1.1 with µ as in (4). Figure 9 shows the numerical result of Problem 1.1 with α = 3 and
c = 0.47727 (α/l = π) where we use FreeFem++ [3] for the simulation. We also summarize the
value of the cost function for some iterations in Table 2.

Table 2: Table of the cost function

Iteration 500 1000 1500 2000 2500 2964
Cost function 0.00355... 0.000273... 0.0000541... 0.0000279... 0.0000218... 0.00000513...

From Table 2 we can see that the cost function becomes smaller with more iterations and it is
almost equal to zero (J(Ω) = 0.00000513...) after 2964 iteration.
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(a) (b)

(c) (d)

Figure 9: Numerical result of Problem 1.1 with α = 3 and c = 0.47727 (a) initial domain (b)
iteration 1000 (c) iteration 2000 (d) iteration 2964

Comparing with the exact solution in Figure 6, we can observe that the numerical result after 2964
iteration in Figure 9 gives an accurate solution.

7 Conclusion

This paper has presented a complete construction of exact solutions of a free boundary problem
by means of the conformal mapping based on the paper of A. Henrot [2]. We could classify
all the exact solution into connected/disconnected and convex/non-convex ones and specified the
number of each solutions for the case that µ is the combination of two Dirac function as shown
in Theorem 2.2 and Table 1. The figures of some exact solutions are also presented in this paper
using MATLAB. Hence we can use it as an comparison to the numerical result.

We also solved Problem 1.1 numerically using a shape optimization approach, specifically using
the traction method. First we changed the free boundary problem in Problem 1.1 to a shape
optimization problem as described in section 3. Then we derived the variation formula of the cost
function J(Ω). Under some regularity, the variation formula in (11) could be obtained using the
Lagrange multiplier method and the adjoint problem. The numerical result of Problem 1.1 (where
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µ is a combination of two Dirac function with same coefficient α) for α/l = π obtained by the
traction method was shown in Figure 9. It was observed that by comparing with the exact solution
in Figure 6, the traction method could give the numerical result with good accuracy.
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